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Polariton gap and gap-stripe solitons in Zeeman lattices

Dmitry A. Zezyulin ,1,* Yaroslav V. Kartashov ,2 and Ivan A. Shelykh1,3

1ITMO University, St. Petersburg 197101, Russia
2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia

3Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland

(Received 29 January 2020; revised manuscript received 29 May 2020; accepted 2 June 2020;
published 15 June 2020)

We predict that spatially modulated Zeeman splitting resulting in the formation of a Zeeman lattice can be
used for creation of localized self-sustained excitations in spinor polariton condensates with dominant repulsive
interactions. In such lattices, the phenomenon of TE-TM splitting, playing the role of effective spin-orbit
interaction, leads to the emergence of the stripe phase and formation of stable gap-stripe solitons with a complex
intrinsic structure resulting from the presence of two characteristic spatial scales, one of which is set by the
period of the Zeeman lattice, while the other is set by the momentum in the depth of the Brillouin zone, at
which such solitons bifurcate from the linear spectrum. Gap-stripe polariton solitons can be excited by a suitable
resonant pump.
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I. INTRODUCTION

Magnetic fields can qualitatively change the properties
of physical systems and in some cases even lead to the
appearance of the new states of matter. Examples include
incompressible Fermi liquid in the regime of the fractional
quantum Hall effect [1], destruction of superconductivity by
magnetic fields exceeding critical value [2], magnetic-field-
induced crossover between regimes of weak localization and
antilocalization [3], and others. In the systems consisting
of neutral particles, such as cold atoms, excitons, or cavity
polaritons, magnetic field cannot influence the orbital motion
directly. However, it can still strongly affect characteristics
of the system by acting on the spin of the particles. In
this context, polaritonic systems reveal particularly rich phe-
nomenology.

Cavity polaritons (also known as exciton polaritons) [4] are
hybrid light-matter quasiparticles appearing in the regime of
strong coupling between the confined mode of a planar micro-
cavity and an excitonic transition brought in resonance with
it. Polaritons possess a set of peculiar properties which make
them ideal candidates for observation of quantum collective
phenomena at surprisingly high temperatures [5]. Many of
them are related with the spin structure of polaritons, inherited
from the spin structure of individual excitons and photons [6].

Polariton spin can be affected by application of an ex-
ternal magnetic field, which results in the Zeeman splitting
in circular polarized components of a polariton doublet and
by effective magnetic fields of various origin. Among these
latter, one should mention TE-TM splitting of the photonic
modes of a planar cavity, which results in the appearance of a
k-dependent in-plane effective magnetic field. Its role is sim-
ilar to that played by spin-orbit interaction in electronic sys-
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tems. Moreover, spin anisotropy of polariton-polariton inter-
actions [7,8] gives rise to the onset of an additional magnetic
field directed along the structure growth axis and dependent
on the polariton concentration and polarization. The interplay
between the effects caused by real and effective magnetic
fields results in a plethora of intriguing phenomena, such as
the spin Meissner effect [9–11], generation of synthetic gauge
fields [12–15], and formation of nontrivial topological phases
in polariton lattices [16–20].

In this paper we predict a different phenomenon, which
appears due to the interplay between periodically modu-
lated Zeeman splitting, TE-TM splitting, and spin-anisotropic
polariton-polariton interactions. We consider a system where
the value of the Zeeman splitting oscillates periodically along
one axis. Experimentally, this can be realized by application
of the inhomogeneous magnetic field, by patterning of a
semimagnetic cavity for which the polariton g factor is dra-
matically enhanced [21–23], by incorporating magnetic ions
[24], and by microcavity etching [25]. In atomic condensates,
the periodic Zeeman lattice (ZL) has been experimentally
synthesized using a combination of applied radio-frequency
magnetic and Raman fields that simultaneously couple the
atomic spin states [26]. We demonstrate that the periodic ZL
enables the formation of a rich variety of stable gap polari-
ton solitons. Moreover, under appropriate conditions TE-TM
splitting induces a stripe phase, leading to the appearance of
gap-stripe solitons with complex internal structure bifurcating
from the internal points of the reduced Brillouin zone (BZ)
and having no counterparts in conventional polaritonic lattices
[27–32]. Our results thus open the way for experimental
realization of such previously elusive topological defects in
a unique setting, which exposes the spinor components to
opposite effective potentials and hence results in physics
distinctively different from that in better studied conventional
optical lattices [33], where both components are subjected to
equal potentials.
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The rest of the paper is organized as follows. In Sec. II we
introduce the physical model and study its band-gap structure
in the linear limit. In Sec. III we present gap-stripe solitons
that form in Zeeman lattices with weak modulation. In Secs.
IV and V the consideration is extended in the case of deep
Zeeman lattices and lattices with nonzero mean, respectively.
In Sec. VI we address the dynamics of two-dimensional
solitons. Section VII concludes the paper.

II. MODEL AND LINEAR DISPERSION RELATIONS

The evolution of a spinor polariton wave function � =
(ψ+, ψ−)T in a circular polarization basis is governed
by the dimensionless Gross-Pitaevskii equations (see, e.g.,
Refs. [11,34] and Appendix A):

i∂tψ± =
[
−1

2

(
∂2

x + ∂2
y

) + |ψ±|2 + σ |ψ∓|2 ± �(x)

]
ψ±

+β(∂x ∓ i∂y)2ψ∓ − iγψ± + H±(x, y)e−iεt . (1)

Here x, y are the spatial coordinates; t is time; β is the
spin-orbit coupling (SOC) coefficient resulting from different
effective masses of TE and TM polaritons; the condensate
is dominated by strong repulsion between polaritons with
the same spin, while σ = −0.05 accounts for weak attrac-
tion between spin-positive and spin-negative polaritons; γ is
the polariton loss coefficient; and the terms ∼H± describe
resonant pumping with frequency detuning ε. Assuming the
effective polariton mass m∗ ≈ 10−34 kg and the unit length
	 ≈ 1 μm, the time unit in Eq. (1) is τ = m∗	2/h̄ ≈ 1 ps,
while the characteristic energy is E = h̄2/(m∗	2) ≈ 0.7 meV.
The Zeeman lattice �(x) = (2E )−1gμBB(x) results from the
spatially modulated applied magnetic field B(x), where g is

the effective exciton-polariton g factor and μB is the Bohr
magneton. We model the ZL using the π -periodic function
�(x) = � + δ cos(2x), where � and δ describe constant and
spatially modulated constituents of the Zeeman splitting, re-
spectively.

Since we are interested in the possibility to use ZL for
localization of nonlinear polariton states in the x direction,
we assume that the polariton condensate is uniform in the y
direction, i.e., ∂y = 0. To identify possible types of solitons in
the microcavity, we start from the conservative limit by setting
γ = 0 and H± ≡ 0 in (1). The domain of soliton formation is
determined by the band-gap structure of the underlying linear
ZL, which is obtained when nonlinear terms ∼|ψ±|2, |ψ∓|2
are neglected. Linear Bloch waves in the resulting periodic
system have the form ψ± = e−iμ(kx )t+ikxxU±(x), where U±(x)
are π -periodic functions, and kx ∈ (−1, 1] is the quasimo-
mentum in the reduced BZ. The lowest allowed bands μ(kx )
computed numerically [35] for the ZL with zero and nonzero
mean � are shown in Figs. 1(a) and 1(b), respectively. Starting
from the � = 0 case, we observe that at zero lattice depth
δ [see Fig. 1(a)], the spectrum consists of two folded (and
hence intersecting at nonzero kx) parabolas μ = k2

x (1/2 ± β )
and is gapless, except for the semi-infinite gap μ ∈ (−∞, 0],
where bright solitons cannot exist due to polariton-polariton
repulsion. When the depth δ is nonzero, a finite gap opens in
the vicinity of the intersections between two parabolas. As
a result, maxima (minima) of the lower (upper) dispersion
curves are achieved in the internal kx points of the Brillouin
zone [magenta arrow in Fig. 1(a)]. Thus, the combination
of SOC and spatially modulated Zeeman splitting leads to
a stripe phase, akin to that in atomic systems with pseudo-
SOC [36,37], that can potentially result in gap-stripe solitons
[38,39] when condensation in the Zeeman lattice is achieved

FIG. 1. (a) Transformation of the band-gap structure of the ZL with zero mean � = 0 for β = ±0.1 and gradually increasing lattice depth
δ. Stokes parameters for δ = 0.3 for the stripe phase with kx ≈ 0.92 (corresponding to the magenta arrow) (a1), kx ≈ −0.92 (a2), and in the
center of the BZ kx = 0 (a3). (b) Transformation of the band-gap structure for β = ±0.3, lattice depth δ = 0.35, with increase of the mean
level �. Magenta arrows indicate some of the kx values at which stripe solitons emerge.
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in the nonlinear regime, e.g., in the presence of the external
pump [40]. Increasing δ broadens the gap but inhibits the
stripe phase by shifting the extrema of the dispersion curves
towards kx = 0 or 1. The peculiarity of the stripe phase
becomes evident from the pseudospin texture described by the
Stokes parameters S{x,y,z} = (�†σ{x,y,z}�)/(�†�), where σx,y,z

are Pauli matrices and † is Hermitian conjugation. The spin
texture for the stripe phase, shown in Fig. 1(a1,2) for positive
and negative kx values, is more complex than that in the center
of the BZ at kx = 0, shown in Fig. 1(a3). In the latter case the
diagonal Stokes parameter is identically zero: Sy = 0, whereas
spin texture of the stripe phase is characterized by nontrivial
distributions of all Stokes components.

III. GAP-STRIPE SOLITONS IN WEAK ZEEMAN
LATTICES WITH ZERO MEAN

Now we turn to the nonlinear case and study polariton
solitons in the finite first gap of the ZL that opens at δ > 0.
Considering the high-finesse microcavity, we first address
such states in a conservative system with γ , H± = 0. Sta-
tionary states have the form ψ± = e−iμt u±(x), where real μ

is the chemical potential, and u± are localized: |u±| → 0 as
|x| → ∞. The central result of this paper is the existence
of localized stripe-gap solitons bifurcating from lower gap
edge at quasimomentum values ±k̃x in the internal points of
the reduced Brillouin zone, whose properties are summarized
in Fig. 2. In comparison with conventional gap solitons,
gap-stripe solitons feature a more complex internal struc-

FIG. 2. Norm N (a) and width W (d) of the gap-stripe solitons
vs chemical potential μ in the ZL with zero mean � = 0 at δ =
0.3 and β = 0.1. Gray shaded domains indicate allowed spectral
bands. Examples of gap-stripe solitons at μ = 0.35 (b) and μ = 0.45
(c) corresponding to the red dots in (a), (d) that are weakly and
strongly localized, respectively. Dashed curves in (b), (c) are propor-
tional to sin2[(1 − k̃x )x] and cos2[(1 − k̃x )x], where k̃x ≈ 0.92, and
highlight a new spatial scale emerging from the gap-stripe phase.

ture, because in the vicinity of the bifurcation their form
is determined by a superposition U±(x)eik̃xx + U ∗

±(x)e−ik̃xx of
two Bloch states with a slowly decaying envelope. In the
particular case of weak ZL with δ = 0.3 and zero mean �,
the bifurcation of a gap-stripe soliton occurs at k̃x ≈ ±0.92
for β = 0. Therefore in the vicinity of the bifurcation, un-
der a broad decaying envelope of the gap-stripe soliton one
observes not only fast oscillations with a period equal to
that of the lattice but also slow modulation with a char-
acteristic spatial scale π/(1 − k̃x ) ≈ 40, clearly visible in
Fig. 2(b). To characterize the family of the gap-stripe solitons,
we introduce the total norm of the spinor wave function
N = ∫ ∞

−∞(|u+|2 + |u−|2)dx, which increases with increase of
the peak condensate density/amplitude, and squared integral
width W = N−1

∫ ∞
−∞(x − X )2(|u+|2 + |u−|2)dx, where X =

N−1
∫ ∞
−∞ x(|u+|2 + |u−|2)dx is the center of mass. The gap-

stripe soliton family emerging at the lower gap edge at small
amplitudes vanishes at its upper edge [Fig. 2(a)], where the
soliton’s amplitude remains finite. The width of the soliton
plotted in Fig. 2(d), being a nonmonotonic function of μ,
diverges at both edges of the gap. The example of a strongly
localized soliton with nearly minimal width is shown in
Fig. 2(c).

We examine the soliton stability using linear stability
analysis [41], i.e., introduce a perturbed solution ψ± =
e−iμt [u±(x) + ξ±(x)eiλt + χ∗

±(x)e−iλ∗t ], linearize governing
equations with respect to small perturbations ξ±, χ±, and
evaluate the spectrum of exponents λ. For stable solitons
all λ should be real. Stability analysis demonstrates that
the gap-stripe soliton family from Fig. 2 is stable for small
and moderate values of the norm N . Stability has also been
validated using direct simulations of the soliton evolution up
to t ∼ 104 with small random complex initial perturbations.
A representative example of stable evolution is shown in
Fig. 3(a). For sufficiently large norms N , gap-stripe solitons
become unstable with weak oscillatory instabilities ubiquitous
for repulsive condensates [42]. However, the increments of
such instabilities (i.e., imaginary parts of eigenvalues λ) may
be very small, so that instability development sometimes
requires huge times in comparison with the polariton lifetime.
For this reason, we do not mark exact stability border in
Fig. 2 but mention that appreciable instabilities are detected
for solitons with μ > 0.5.

IV. SOLITONS IN DEEP ZEEMAN LATTICES

We proceed to solitons in ZL with larger depths δ. Accord-
ing to Fig. 1(a), increasing δ inhibits the stripe phase in the
lowest finite gap but increases the width of this gap, thereby
substantially enriching the variety of the coexisting stable
solitons. The simplest gap soliton in deep ZL has a symmetric
profile in both components, u±(x) = u±(−x), see Fig. 4(a).
This soliton coexists with the unstable in-phase [Fig. 4(b)]
and stable out-of-phase [Fig. 4(c)] dipolelike solitons with
shifted peak locations in spin-positive and spin-negative com-
ponents. Notice that such solitons have never been considered
in polariton condensates and they exist only in ZL, where two
components feel opposite potentials and, hence, tend to popu-
late spatially shifted minima of respective potentials. Soliton
families N (μ) presented in Fig. 4(d) reveal that symmetric
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FIG. 3. Stable evolution of (a) stripe-gap broad soliton with μ = 0.35 in shallow ZL with δ = 0.3 and of (b) strongly localized symmetric
soliton with μ = −1 in deep ZL with δ = 3. (c) Formation of persistent breather from unstable soliton with shifted in-phase components at
μ = −0.34, δ = 3. In (a), (b), (c) β = 0.1, � = 0. (d) Excitation of a stripe soliton in the second gap in ZL with nonzero mean using a resonant
pump. Here � = 0.45, δ = 0.3, β = 0.3, ε = 0.41. The initial condition is small-amplitude random noise. In all cases only the ψ− component
is shown.

solitons and in-phase dipoles emerge at the left gap edge
(from the small norm limit N → 0), whereas out-of-phase
dipoles exist only if the norm N exceeds a nonzero threshold.
In-phase (out-of-phase) dipole solitons are typically unstable
(stable) for positive (negative) values of the SOC coefficient
β, which can be understood from the contribution of SOC
into the total energy functional (see Appendix B). Stability
of symmetric and out-of-phase solitons has also been con-
firmed in dynamical simulations. Figure 3(b) showcases stable
evolution of a representative symmetric soliton. Interestingly,

FIG. 4. (a) Profile of the simplest symmetric soliton in deep ZL
with δ = 3 at μ = −1, and profiles of dipolelike solitons with in-
phase (b) and out-of-phase (c) spatially shifted components at μ =
−0.79. Dashed lines schematically indicate ZL profile for u+ and
u− components. (d) Norm N vs chemical potential μ for the above
soliton families (lower solid line corresponds to symmetric soliton,
while the upper solid and dashed lines correspond to out-of-phase
and in-phase dipoles, respectively). Red dots correspond to profiles
in (a), (c).

dynamical instability of the in-phase dipoles triggers forma-
tion of persistent breathers, whose shape changes periodically
upon evolution, see Fig. 3(c).

Another distinctive class of nonlinear localized states in
ZL corresponds to soliton trains, i.e., complex multipole
structures with several density peaks. These solitons can be
interpreted as the truncated nonlinear Bloch waves [43,44].
There exists a rich variety of such states with equal or dif-
ferent numbers of peaks in each component. Similar to their
dipole counterparts, in-phase (out-of-phase) soliton trains are
typically unstable (stable) for positive (negative) values of
the SOC coefficient β. A representative stable out-of-phase
soliton train with different numbers of peaks in the ψ± com-
ponents is shown in Fig. 5(a), while Fig. 5(b) presents the
typical evolution dynamics of the unstable soliton train. All
such states typically exist above the minimal norm N .

V. SOLITONS IN ZEEMAN LATTICES
WITH NONZERO MEAN

Remarkably, SOC acting in a polariton system can induce
stripe phases not only in lower but also in higher gaps of the
ZL with nonzero mean � 
= 0. This is illustrated in Fig. 1(b),
where we show transformation of the bang-gap spectrum with
the increase of the mean value �. For sufficiently strong

FIG. 5. (a) Example of a stable out-of-phase gap soliton train in
deep ZL at μ = 0.25. (b) Decay of an unstable in-phase soliton train
at μ = −0.34. Only the ψ− component is shown. In both panels δ =
3, β = 0.1, � = 0.

245305-4



POLARITON GAP AND GAP-STRIPE SOLITONS IN … PHYSICAL REVIEW B 101, 245305 (2020)

FIG. 6. Solitons in ZL with nonzero mean. (a) Gap soliton from
the first finite gap with μ = −0.145. (b) Gap-stripe soliton from
the second finite gap at μ = 0.41. In both cases � = 0.45, δ = 0.3,
β = 0.3.

SOC, gap-stripe solitons emerge in the second finite gap
[see magenta arrow in Fig. 1(b) indicating kx at which such
solitons bifurcate from the linear spectrum]. Such a lattice
then simultaneously supports conventional stable gap solitons
[Fig. 6(a)] in the first gap and gap-stripe solitons in the second
gap [Fig. 6(b)].

Polariton condensates are essentially dissipative and re-
quire external pump [40]. The advantage of the ZL sys-
tem is that all states reported above can be excited with a
suitable resonant pump. To illustrate this, we consider the
complete nonequilibrium system (1) with a typical polariton
loss coefficient γ = 0.02 and localized resonant pump H± =
H0 exp{−x2/w2

0} with H0 = 0.05 and w2
0 = 10. The solitons

are efficiently excited when the pump frequency detuning
ε is chosen in the forbidden gap. Gap-stripe solitons can
be excited even from noisy random inputs. An example of
the resonant excitation of the gap-stripe soliton in ZL with
nonzero mean is shown in Fig. 3(d).

VI. TWO-DIMENSIONAL SOLITON DYNAMICS

While the above results demonstrate the formation of stable
polariton solitons in the one-dimensional (1D) ZLs, they
disregard dynamics in the second spatial dimension y, since
wave functions ψ± are considered y independent. When this
dimension is taken into account, the full two-dimensional
(2D) model in Eq. (1) implies the possibility of the transverse
instabilities [45] of quasi-1D soliton stripes, excluded in the
1D geometry. Such instabilities can also develop in our sys-
tem, despite the fact that polariton-polariton interactions are
predominantly repulsive. In Fig. 7 we present an example of
the transverse instability development for a simple quasi-1D
(i.e., polariton wave functions ψ± in such solitons are initially
uniform in the y direction) symmetric soliton from Fig. 4(a).
Its evolution dynamics has been modeled using the full 2D
model in Eq. (1). The instability triggered by small-amplitude
input noise results in the development of deep y modulation
of the initially uniform soliton stripe.

Such transverse instabilities can be arrested in polariton
microcavity wires, providing strong confinement in the y
direction (such structures were realized experimentally [46]).
Another promising route to realization of fully 2D stable
solitons may be based on 2D Zeeman lattices. In Fig. 8 we

FIG. 7. Dynamics of development of transverse instability of
perturbed symmetric soliton in deep ZL obtained at μ = −1, � = 0,
δ = 3, β = 0.1. Top row shows peak amplitudes of two soliton
components a± = maxx,y |ψ±| vs time, while bottom row shows ψ−
distributions in selected moments of time corresponding to the red
dots in the top panel.

present an example of a stable 2D (i.e., localized in both
x and y directions) symmetric gap soliton obtained in the
2D Zeeman lattice �(x, y) = � + δ[cos(2x) + cos(2y)] with
� = 0 and δ = 3. The stability of such 2D solitons was
confirmed by simulation of their evolution dynamics in the
presence of small initial noise: Corresponding dependencies
of peak amplitudes of two soliton components with time are
presented in the top row of Fig. 8.

FIG. 8. Stable evolution of perturbed symmetric soliton obtained
at μ = −2, � = 0, δ = 3, β = 0.1 in two-dimensional ZL. Top row
shows peak amplitudes of two soliton components a± = maxx,y |ψ±|
vs time, while bottom row shows ψ± distributions at t = 900.
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VII. CONCLUSION

To conclude, we have demonstrated that periodically mod-
ulated magnetic field (i.e., Zeeman lattice) enables localiza-
tion of interacting polaritons with the formation of a variety
of gap and gap-stripe solitons. The latter are characterized by
a complex internal structure but can be stable. Deep Zeeman
lattices support in-phase and out-of-phase dipole solitons, as
well as more complex soliton trains with multiple peaks. In
Zeeman lattices with nonzero mean, gap-stripe solitons exist
in higher spectral gaps and can be excited with a resonant
pump. When the second spatial dimension is taken into ac-
count, quasi-one-dimensional gap solitons can be prone to
transverse instabilities. However, the latter can be suppressed
in two-dimensional Zeeman lattices periodically modulated in
both spatial dimensions.
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APPENDIX A: NORMALIZATION OF
THE GROSS-PITAEVSKII EQUATION

In order to describe the dynamics of a spatially localized
polariton condensate, we use a system of Gross-Pitaevskii
equations (for the sake of simplicity, here we consider the
conservative limit):

ih̄
∂�±
∂T

= − h̄2

2m∗

(
∂2

∂X 2
+ ∂2

∂Y 2

)
�± ± gμB

2
B(X )�±

+ (α1|�±|2 + α2|�∓|2)�±

+χ

(
∂

∂X
∓ i

∂

∂Y

)2

�∓,

where X and Y are spatial coordinates, T is time, m∗ is
the effective mass, the constants α1,2 characterize polariton-
polariton interactions, and χ = h̄2(m−1

TE − m−1
TM)/4 is a param-

eter describing TE-TM splitting. Next, we introduce a normal-
ized set of spatial coordinates x = X/	 and y = Y/	, where
	 is a characteristic scale. Expecting formation of solitons
with characteristic widths of order ∼10 μm (which is con-
sistent with experiments on bright polariton solitons in GaAs
semiconductor microcavities [40]), one can reasonably choose

	 = 1 μm. The unit energy reads E = h̄2/(m∗	2), and time
is normalized as T = t/τ , where τ = h̄/E . The spin-orbit
coupling coefficient β in Eq. (1) of the main text is defined
as β = χm∗/h̄2, and the Zeeman lattice is connected to the
spatially modulated magnetic field as �(x) = gμB/(2E )B(X ).
Finally, using normalization of wave functions in the form
�± = √

E/α1 ψ±, one can arrive at Eq. (1) of the main text
(in the conservative limit).

APPENDIX B: (IN)STABILITY OF DIPOLE SOLITONS

In the conservative limit (γ = 0, H± = 0), the dimension-
less Gross-Pitaevskii equations (1) from the main text can be
derived as the Hamiltonian equations of motion

i∂tψ+ = δE

δψ∗+
, i∂tψ− = δE

δψ∗−
, (B1)

starting from the Hamiltonian (energy) functional E = Ekin +
ESOC + Eint + EZ , where

Ekin = 1

2

∫∫
dxdy (|∇ψ+|2 + |∇ψ−|2) (B2)

is the kinetic term,

ESOC = −β

∫∫
dxdx (−∂yψ

∗
+∂yψ− − 2i∂xψ

∗
+∂yψ−

+ ∂xψ
∗
+∂xψ−) + c.c.

is the term emerging from the spin-orbit interactions, and
Eint and EZ are the terms that take into account polariton
interactions and inhomogeneous Zeeman splitting:

Eint = 1

2

∫∫
dxdy (|ψ+|4 + 2σ |ψ+|2|ψ−|2 + |ψ−|4),

EZ =
∫∫

dxdy �(x)(|ψ+|2 − |ψ−|2).

For y-independent soliton solutions ψ± = e−iμt u±(x) with
real stationary wave functions u±(x), the SOC term simplifies
to ESOC = −2

∫
dx∂xu+∂xu−. Assuming that for the dipole

solitons, similar to those shown in Figs. 4(b) and 4(c) of the
main text, the SOC term is mainly determined by the region
where the wave functions u+ and u− overlap, we readily
conclude that for the in-phase dipole shown in Fig. 4(b) one
has ∂xu+∂xu− < 0 in the overlap region, while for an out-of-
phase dipole ∂xu+∂xu− > 0 in the overlap region. Thus, for
the positive SOC coefficient β > 0, the out-of-phase dipoles
are energetically more preferable and have more chances to
be dynamically stable than in-phase dipoles. Vice versa, for
negative β < 0, the in-phase dipoles are expected to be more
stable than the out-of-phase ones.
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