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The spectrum of electromagnetic collective excitations in Dirac semimetals placed in a quantizing magnetic
field is considered. We have found the Landau damping regions using the energy and momentum conservation
law for allowed transitions between one-particle states of electron excitations. Analysis of dispersion equations
for longitudinal and transverse waves near the window boundaries in the Landau damping regions reveals
different types of collective excitations. We also indicate the features of universal broadening of cyclotron
absorption for a magnetic field variation in systems with linear dispersion of the electron spectrum. The use
of the obtained spectrum also allows us to predict a number of oscillation and resonance effects in the field of
magneto-optical phenomena.
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I. INTRODUCTION

The existence of massless low-energy electron states [1,2]
in Dirac materials is one of the most important properties of
these media. The massless excitations in Dirac semimetals
are chiral as in graphene and are located inside the Brillouin
zone in contrast to the graphene case. The stability of this
electron phase state with respect to weak structural disorder
is guaranteed by the nonzero Chern topological invariant.
The study of the absorption of electromagnetic waves in
semimetals in a high magnetic field is one of the main methods
for exploring resonance phenomena in such materials. A fun-
damental constraint in this field of consideration is imposed
by the Kohn theorem [3], which states that the cyclotron
frequency is the only frequency near which absorption oc-
curs in infinite systems with a quadratic dependence of the
energy of electrons on the momentum. It is important that
this statement is valid with allowance for electron-electron
interaction. If the dispersion law of electrons differs from
quadratic, deviations from the Kohn law are minimal. In
this paper, we find conditions under which deviations from
the Kohn law can be significant. To achieve this task, we
consider a Dirac semimetal placed in a quantizing magnetic
field. Chiral electronic states with a linear dispersion law of
low-energy electronic excitations exist in three-dimensional
Dirac semimetals where inversion or time reversal symmetry
is broken. One of these symmetries is broken in a number
of crystals, e.g., CdAs, ZrTe, and ZrBeSi, and A3B families,
where A = (Na, K, Rb) and B = (As, Sb, Bi). The properties
of Dirac semimetals are analyzed in detail in the review in [4].

In order to study resonance properties of a Dirac semimetal
in a quantizing magnetic field, we, for simplicity, consider

the Cd3As2 compound whose Dirac spectrum of low-energy
electronic states was explored in Refs. [5–7]. To study the
cyclotron absorption of electromagnetic waves, we need exact
expressions for the spectrum and wave functions of Dirac
electrons in the quantizing magnetic field. Their application
in conservation laws of energy, momentum, and angular mo-
mentum of electronic excitations involved in the absorption of
a photon together with the Pauli exclusion principle makes it
possible to find the Landau collisionless damping region for
longitudinal and transverse collective excitations.

We consider longitudinal and transverse left-hand circu-
larly polarized electromagnetic waves propagating along the
magnetic field at an arbitrary frequency and an arbitrary
wave vector of the electromagnetic field. Near the wave
vector q = 0 at finite frequencies and for filling of one to
five Landau levels, we detected a significant broadening of
cyclotron absorption. This phenomenon is completely caused
by the existence of a “massive” spectrum of relativistic Dirac
electrons in the quantizing magnetic field. In this case, a sig-
nificant difference arises between the frequencies of electron
transitions between states with Fermi momenta corresponding
to the neighboring nth and (n + 1)th Landau levels. In the last
section, we discuss some magneto-optical phenomena where
the found effect occurred.

Massless electron excitations form a specific spectrum
of collective modes in Dirac semimetals. The dispersion of
collective modes in these Dirac materials in the absence of
a magnetic field has been studied in many papers [8–14]. In
particular, the plasma frequency in such media is inversely
proportional to the square root of the Planck constant [8] . The
spectrum of surface plasmon polaritons in Weyl semimetals
in a magnetic field was the subject of Ref. [15]. When the
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electrons at the Fermi energy share only the zero Landau
level, the unusual physical properties of Weyl semimetals in
these extremely strong magnetic fields result in a collective
mode [16,17] with the finite frequency in the long-wavelength
limit. This phenomenon is reflected in the response functions
calculated for Dirac cones with allowance for the chirality
sign [16–18].

In this paper, we consider Dirac semimetals placed in a
quantizing magnetic field on the condition that the Landau
level index at the Fermi energy is finite. The Landau level
index lists the emerging quasi-one-dimensional subsystems
that participate in relative motions with respect to each other.
Such quasineutral oscillations of one-particle subsystems can
form new branches in the spectrum of collective excitations.
Collective modes will be undamped if their spectra belong to
windows in collisionless damping regions. Therefore, we will
start with finding the Landau damping regions of longitudinal
and transverse collective excitations at arbitrary frequencies
and wave vectors.

The key idea in the study of the spectrum of collective
modes is as follows. In contrast to systems with parabolic
electron dispersion, contributions to the energy of longitudinal
and transverse motion with respect to the direction of the
magnetic field (taking into account the square root in the
relativistic case) are not additive. It will be shown below that
this gives rise to a novel type of collective excitations.

II. LONGITUDINAL COLLECTIVE EXCITATIONS

To simplify the analysis, we assume that collective ex-
citations propagate in the z direction parallel to the mag-
netic field. The spectrum of longitudinal collective excitations
is determined by the solutions of the dispersion equation
εl (qz, ω) = 0. The dielectric function

εl (qz, ω) = 1 − V0�(qz, ω) (1)

includes the Fourier transform V0 of the bare Coulomb inter-
action and the polarization operator �(qz, ω) that depends on
the wave vector qz directed along the magnetic field and the
frequency ω.

The polarization operator in the considered Dirac spectrum
and quantizing magnetic field in the random phase aproxima-
tion has the form [8]

�(qz, ω) = 1

2π l2
H

∑
n,n′

∫
d pz

2π h̄
|Mn,n′ |2

× f0(E+
n (pz )) − f0(E+

n′ (pz + h̄qz ))
h̄ω + E+

n (pz ) − E+
n′ (pz + h̄qz ) + i0+ . (2)

In Eq. (2), the summation over n, n′ is taken over all
occupied Landau levels, n = 0,±1,±2, . . ., nF is the maxi-

mum Landau level index, E±
n (pz ) = ±

√
v2

F p2
z + ε2

0 |n| is the
spectrum of massless Dirac electrons in the magnetic field
H [19], ε0 = √

2h̄vF /lH , lH = (ch̄/eH )1/2 is the magnetic
length, pz is the electron momentum along the magnetic field,
vF is the Fermi velocity determining the slope of the Dirac
cone, c is the velocity of light, e is the elementary charge, h̄ is
the Planck constant, and f0(E±

n (pz )) is the equilibrium Fermi
distribution function at zero temperature. The case with finite

FIG. 1. Landau damping regions for longitudinal waves for � �
EF , q � kF , and nF = 4. The dispersion of acoustic magnetoplas-
mon excitations is plotted by the red lines.

temperature and finite lifetime of electrons due to collisions
will be examined in the last section. The matrix element
Mn,n′ is nonzero for the transitions with �n = n′ − n = 0 for
longitudinal waves.

The formula for polarization operator (2) takes into ac-
count only the interband transitions for the restricted region
of the frequency ω and the wave vector qz. We will limit
ourselves to considering such values of frequencies and the
wave vectors. For circularly polarized waves, the angular
momentum selection rules are such that the corresponding
matrix element is nonzero for �n = n′ − n = +1 for left-
hand circularly polarized waves and for �n = n′ − n = −1
for right-hand circularly polarized waves [20]. We do not give
here the matrix elements, because they are not essential for
constructing the regions of Landau damping of longitudinal
waves (see Ref. [20]).

Collisionless absorption of collective excitations due to
their damping at electron-hole excitations are described by the
pole bypass rule i0+ in Eqs. (2). The regions of collisionless
damping of collective excitations are related to the excitations
of electron-hole pairs and are determined by the nonzero
imaginary component of the dielectric function [Eq. (1)].
Using the energy and momentum conservation law for this
process

E+
n (pz ) + h̄ω = E+

n′ (pz + h̄qz ) (3)

and the conditions

E+
n (pz ) � EF , E+

n′ (pz + h̄qz ) � EF , (4)

where EF is the Fermi energy, we obtain the Landau damp-
ing regions for excitations in Dirac semimetals placed in
a quantizing magnetic field. For brevity, we introduce the
dimensionless variables E+

n (kz ) = E+
n (pz )/ε0, EF = EF /ε0,

kz = vF pz/ε0, � = h̄ω/ε0, and q = lH qz/
√

2. The solutions
of inequalities (4) are a set of inequalities for longitudinal
(�n = 0), transverse left-hand circularly polarized (�n = 1),
and right-hand circularly polarized (�n = −1) waves.

In this section, we consider longitudinal excitations. We
provide below the exact boundaries of the Landau damping
regions of longitudinal waves in Dirac semimetals placed in
a quantizing magnetic field. For longitudinal waves (�n = 0)
shown in Fig. 1, the Landau damping regions for 0 � � � 1
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and 0 � q � 1 are determined by the inequalities⎧⎪⎪⎨
⎪⎪⎩

� � −EF +
√
E2

F + q2 + 2q
√
E2

F − n,

� � | − EF +
√
E2

F + q2 − 2q
√
E2

F − n|.
(5)

The corresponding Landau damping regions are shown in
Fig. 1.

The line � = q in the plane (q,�) corresponds to the
zero Landau index n. The windows in the Landau damp-
ing regions can be conventionally divided into two groups:
the windows adjacent to the axis � and the windows adja-
cent to the axis q. Without a magnetic field, the frequency
ωp =

√
e2/h̄vF (64π/3)1/6vF n1/3

b of longitudinal plasma os-
cillations [8] in the long-wave limit and for e2/h̄vF = 1
is located in the first-type transparency region. Here nb is
the electron bulk density. This also takes place in the limit
of a very strong magnetic field when nF = 0 and ωp =√

e2/h̄vF (2/π )1/2vF /lH [16,17].
The vanishing of Landau damping at the points qn =

2
√
E2

F − n along the axis q is reflected in singularities of
the real part of the polarization operator near these points,
which leads to oscillations of the static screening potential
with an oscillation period determined by the position of these
points. In the regions in the plane (q,�), there are groups
of transparency windows in the Landau damping regions,
the positions of which are given by discrete values vn =
vF

√
1 − n/E2

F of the Dirac electron velocity at Landau levels.
It is seen that in the transparency windows located in

collisionless damping regions at low frequencies � and for
a small wave vector q, there can exist [21–23] undamped
collective excitations with linear dispersion � = Vnq. In
Fig. 1, we schematically show the dispersion of these lon-
gitudinal collective waves. Their velocity Vn is in the range
(vn+1, vn) of Dirac electron velocities at neighboring Landau
levels. The existence of a series of these acoustic magneto-
plasmon excitations as solutions of the dispersion equation
ε(qz, ω)l = 0, which in the considered region has the form

nF∑
n=0

vn

v2
n − V 2

n

= 0, (6)

follows from the fact that the real part of the polarization
operator has singularities at the boundaries of the transparency
windows due to the Kramers-Kronig relations. Different signs
of the singularities lead to the solutions of the dispersion
equation due to the intersection of the singular part of
the equation with its smoothly varying part in the considered
frequency range. These collective modes are similar to weakly
damped acoustic Pines-Schrieffer plasmons in a degenerate
two-component plasma with significantly different carrier
masses. For the relativistic dispersion of electron excitations,
the spectrum of undamped collective modes terminates at dif-
ferent frequencies, in contrast to the nonrelativistic quadratic
electron dispersion in a quantizing magnetic field [20–23].

If the Landau level index n is equal to its maximum nF , the
electron velocity vn at this level for a certain magnetic field
can coincide with the sound speed s. If the condition vn =
s is violated, there is no collision damping (the dispersion

dependence for sound is in the transparency window). For
a varied magnetic field, this leads to giant oscillations of
sound absorption by Dirac electrons at Landau levels. The
difference of this effect from a similar phenomenon for a
parabolic electron dispersion in a quantizing magnetic field
consists in nonequidistant position of maxima of the sound
absorption coefficient in its dependence on the magnetic field.
This difference is due to the fact that E+

n (pz ) ∼ √
Hn for n �

1. If the condition s < vn with n = nF is violated, sound is
absorbed at discrete frequencies �n corresponding to discrete
values of the wave vector qn = �n/s (see Fig. 1).

III. LEFT-HAND CIRCULARLY POLARIZED
COLLECTIVE EXCITATIONS

Let a circularly polarized electromagnetic wave with the
frequency ω and wave vector qz = q propagate along a
magnetic field with the strength H . The dispersion equation
ε(ω, q)+ = c2q2/ω2 for left-hand circularly polarized trans-
verse electromagnetic modes includes the dielectric function.
In the random phase approximation with the small parameter
rs = e2

ε0 h̄vF
, which is similar to the fine structure constant e2

h̄c ,
this function has the form

ε(ω, q)+ = ε0 + ω2
p

ωωc
,

1

ωc
= h̄2vF

nF∑
nn′ss′

∫
dkz

f0(En,s(kz )) − f0(En′,s′ (kz + q))
En,s(kz ) − En′,s′ (kz + q)

× |cosθn′,s′ (kz + q)sinθn,s(kz )|2
En,s(kz ) + h̄ω − En′,s′ (kz + q) + i0+

× Fss′ (kz, kz + q). (7)

Here, ε0 is the background lattice dielectric constant of
the system and ω2

p = e2

h̄vF

2
π

( vF
lH

)2 is the square of the plasma
frequency in the case of filling of the zeroth Landau level
[16,17] at ε0 = 1; summation over the Landau level numbers
n and n′ is performed up to the extreme Fermi number nF of
the Landau level,

tan θn,s(kz ) = En,s(kz ) − h̄vF kz

ε0
√

n
. (8)

The subscripts s = +1 and −1 correspond to the conduc-
tion (+1) and valence (−1) bands, respectively. The presence
of the function Fss′ (kz, kz + q) = (1 + ss′ cos ϑ )/2 (ϑ is the
angle between kz and k′

z = kz + q) in Eq. (7) is similar to
the situation in graphene and reflects the chiral nature of
electrons in a Dirac semimetal, including the contribution
of interband transitions, e.g., the transition (s = −1 → s′ =
+1) [12] in addition to the standard (s = +1 → s′ = +1)
intraband transition. The chosen electron variant of filling
of bands corresponds to the case where the Fermi energy is
EF > 0.

We now discuss the collisionless Landau damping regions
of left-hand circularly polarized collective excitations. The
rule of bypass of the pole in (7) at a nonzero numerator
makes it possible to determine the collisionless damping
region of collective excitations. According to the law of con-
servation of the energy En,s(kz ) + h̄ω = En′,s′ (k′

z ), momentum
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FIG. 2. Landau damping regions for left-hand circularly polar-
ized waves for � � EF , q � kF , and nF = 4.

k′
z = kz + q, and angular momentum n′ = n ± 1 [24], inequal-

ities En,s(kz ) < EF , En′,s′ (k′
z ) > EF following from the Pauli

exclusion principle describe the Landau damping region. In
the case of interest n′ = n + 1 occurring for left-hand circu-
larly polarized electromagnetic waves [20], the collisionless
damping regions are shown in Fig. 2 at the dimensionless
frequency � = h̄ω/ε0 and for dimensionless wave vector
Q = lH qz/

√
2.

For left-hand circularly polarized waves (�n = +1), the
Landau damping boundaries for 0 � � � 1 and 0 � q � 1 in
Fig. 2 are determined by the following inequalities:

� � −EF +
√
E2

F + q2 + 1 + 2q
√
E2

F − n, q∗
n < q, (9)

� � EF −
√
E2

F + q2 − 1 − 2q
√
E2

F − n − 1, q∗
n < q,

(10)

� � −EF +
√
E2

F + q2 + 1 + 2q
√
E2

F − n, q∗
n > q, (11)

� � EF −
√
E2

F + q2 − 1 − 2q
√
E2

F − n − 1, q∗
n > q,

(12)

� � EF −
√
E2

F + q2 − 1 + 2q
√
E2

F − n − 1, q < q′′′
n ,

(13)

� � −EF +
√
E2

F + q2 + 1 − 2q
√
E2

F − n, q < q′′′
n , (14)

where

q′′′
n =

√
2E2

F − 2n − 1 − 2
√
E4

F − E2
F − 2E2

F n + n2 + n

and q∗
n is the point of the contact of transparency windows

corresponding to different n.
As distinct from the Landau damping regions for longi-

tudinal waves, the regions for left-hand circularly polarized
waves have a more complicated structure. This property sub-
stantially manifests itself even in the long-wavelength limit
shown in Fig. 2. In particular, for q = 0, on the axis of the
frequency �, there is a frequency range �min < � < �max

FIG. 3. Numerical solution to the dispersion equation for the left-
hand circularly polarized collective excitations. nF = 4.

where collisionless damping is nonzero. Here �min = −EF +√
E2

F + 1 and �max = EF −
√
E2

F − 1. The lower boundary
of the range, i.e., the frequency �min, arises as the energy
difference between neighboring Landau levels. For � < �min

and q < q′′′
nF

, we find a region without collisionless damping
of collective excitations. To clarify the physical meaning
of the frequency range [�min,�max], consider the electron
energies En(kz ) and En+1(kz ) at two neighboring Landau levels
for the momentum kz equal to kn+1

F and kn
F . Then the vertical

transition frequency En(kn+1
F ) → En+1(kn+1

F ) is �max, while
the transition frequency En(kn

F ) → En+1(kn
F ) is �min. These

frequencies are independent of the Landau level index. For a
quadratic electron dispersion, these frequencies coincide and
are equal to the cyclotron frequency.

In the low-frequency range in the plane (q,�), there is
a collective excitation in a strong magnetic field known as
the helicon whose spectrum in Weyl semimetals was recently
studied in Ref. [25]. This low-frequency mode with quadratic
dispersion for increasing frequency and wave vector for its
finite discrete values q̄n is subjected to a collisionless Landau
damping. If the magnetic field varies when passing from
one transparency window to another, giant oscillations of the
helicon damping coefficient occur.

A phenomenon arises in the region � > �max. In this part
of the plane (q,�) inside the collisionless damping regions,
there are transparency windows in which collective excita-
tions with finite values of the wave vector Q can propagate.
They are somewhat similar to the acoustic magnetoplasmon
excitations considered above for waves with longitudinal po-
larization (see Fig. 3).

We note that the windows in the collisionless Landau
damping regions and the collective excitations are due to the
absence of energy additivity mentioned in the Introduction
when the energies of longitudinal and transverse motions
in a quantizing magnetic field are added under the square
root of the relativistic dispersion. Physically, the existence
of the excitations is based on the possibility of longitudi-
nal oscillations of two subsystems relative to each other,
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which are accompanied by rotation during the cyclotron
period.

IV. UNIVERSAL BROADENING OF CYCLOTRON
ABSORPTION

Collisionless damping regions at Q = 0 in Fig. 1 include
a remarkable frequency range �min � � � �max, where the
absorption of electromagnetic waves occurs. The physical
reason for the appearance of this range with the width
�� = �max − �min was discussed in the Introduction. The
boundaries of the range depend on the dimensionless Fermi
energy EF = EF /ε0 as �max = EF −

√
E2

F − 1 and �min =
−EF +

√
E2

F + 1.
To describe the conditions of absorption of electromag-

netic waves with frequencies above the plasma frequency, we
use the relations nF = E2

F = l2
H k2

F /2 = H0/H ≡ x2/2, where
kF = (3π2nb)1/3, nb is the bulk electron density, and H0 =
k2

F ch̄/(2e). To solve the problem of the transmission (ab-
sorption) of an electromagnetic wave through the plasma
medium under consideration, it is necessary to know the
magnetic field dependence of the reference plasma frequency
ωp(x) = ωp/(

√
ε0vF kF ), where x = √

2H0/H . For an arbi-
trary magnetic field, this dependence is expressed in terms
of the well-known asymptotic value of the plasma frequency
ωpBS = √

2rs/πvF /lH for a high magnetic field [16,17] when
only the zeroth Landau level is filled and the asymptotic value
ωpDS = √

rs(64π )1/6vF n1/3
b in zero magnetic field [8,9].

The dimensionless cyclotron absorption edges at Q = 0,
which are introduced by the formula ω = ω/(vF kF ), and the
dimensionless plasma frequency ωp = ωp/(vF kF ) as func-
tions of the parameter x are given by the expressions

ωmax = 1 −
√

1 − 2/x2, (15)

ωmin = −1 +
√

1 + 2/x2, (16)

ωp = a

x

√
1 + f (x). (17)

Here, a = √
2rs/π and the function

f (x) =
nF∑

n=1

√
1 − n/(x2/2) = x2/3

at nF � 1 and f (
√

2) = 0 at nF = 1.
The dispersion dependence of transverse waves at ω > ωp

and Q → 0 in the dimensionless variables has the form

ω2(Q) = ω2
p + 2c2

ε0v
2
F x2

Q2. (18)

The parameters given by Eqs. (15)–(17) are shown in Fig. 4
as functions of the parameter x at x �

√
2. At

√
2 � x < xmin,

the external electromagnetic wave with a fixed frequency ω <

ωmin will propagate without absorption at a decrease in the
magnetic field to the value x = xmin to the collisionless damp-
ing region from the frequency range ωp < ω < ωmin. With
a further decrease in the magnetic field, the electromagnetic
wave will again propagate without damping at x > xmax, when
the frequency of external radiation ω = const, being above the
plasma frequency ωp, intersects the curve ωmax in Fig. 4.

FIG. 4. Frequencies (upper line) ωmax, (middle line) ωmin, and
(lower line) ωp at a = 0.16 versus the parameter x. Collisionless
Landau cyclotron damping exists in the shaded region ωmin < ω <

ωmin between the upper and middle lines.

The width �ω of the collisionless cyclotron damping band
depends on the magnetic field H and electron density nb.
As is seen in Fig. 4, this width is maximal at nF = 1, when
�ω = 2 − √

2, and decreases at an increase in the number of
filled Landau levels (ωmax ≈ ωmin � ωp at nF = 5). We have
considered the case where the external magnetic field is a
variable parameter. A similar change of the regime of trans-
mission of the external electromagnetic field to the regime of
its absorption with the subsequent possibility of transmission
occurs if the frequency of the electromagnetic field is a control
parameter at x = const.

V. DISCUSSION

In this paper, we have analyzed the effect of collision-
less Landau damping in Dirac semimetals in a quantizing
magnetic field at the propagation of electromagnetic waves
in them. Since the electron spectrum in such systems is
nonequidistant, transparency windows appear in the Landau
damping regions at q ∼ kF , where collective modes can exist,
and the cyclotron absorption at q ≈ 0 is broadened. Electro-
magnetic waves in systems placed in the quantizing magnetic
field at q ≈ 0 are usually absorbed at the cyclotron frequency.
In systems whose electron spectrum is nearly square, this
occurs under wider conditions [3]. In Dirac semimetals with
a relativistic dispersion law in the ultraquantum case where a
few Landau levels are filled, the absorption of electromagnetic
waves occurs in the cyclotron frequency range [ωmin, ωmax].
The width of the range depends on the number of filled
Landau levels.

In the discussion of the Landau damping and spectrum of
collective modes, we assume that temperature dependence of
the distribution function is absent and the lifetime of electron
excitations is the largest of all time scales. When taking into
account the final temperature T and the final lifetime τ of
the charge carriers, these collective phenomena can occur if
kBT � ε0(ε0/EF ) and h̄/τ � ε0(ε0/EF ) because the right-
hand side of these conditions is the difference En+1(kFn) −
En(kFn) =

√
E2

F + ε2
0 − EF ≈ ε0(ε0/2EF ) between the Lan-

dau levels for kFn =
√

E2
F − ε2

0 |n|/h̄vF . Here kB is the Boltz-
mann constant and EF is the Fermi energy. These conditions
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can be provided at helium temperatures and in magnetic fields
of the order of 40 T.

Standard conditions for the experimental observation of
cyclotron resonance ν � ωc and kBT � h̄ωc hold in our
case. If the frequency dependence of damping in the fre-
quency range �ω = ωmax − ωmin is of interest, the width of
the frequency range �ω = ωmax − ωmin rather than cyclotron
frequencies should be used in these inequalities for an esti-
mate. This is necessary to avoid “smearing” of the frequency
range [ωmin, ωmax] because of broadening of energy levels
associated with a finite lifetime of electron states and tem-
perature expansion of the distribution function. The modified
observation conditions should now have the form ν � �ω

and kBT � h̄�ω. The dimensional frequencies ωmin and ωmax

can be represented as

ωmin = −EF

h̄
+ vF

lH

√
E2

F l2
H

h̄2v2
F

+ 2, (19)

ωmax = EF

h̄
− vF

lH

√
E2

F l2
H

h̄2v2
F

− 2. (20)

For the parameters vF = 1.5 × 108 cm/s and EF =
0.25 eV (nb = 6 × 1017 cm−3) and external magnetic field
B = 5 T (nF = 4), the condition kBT � h̄�ω is satisfied
at T = 10 K. In this case, kBT = 0.0008 eV and h̄�ω =
0.004 eV. The boundaries and width of the frequency range
are ωmin = 4.4 × 1013 s−1, ωmax = 5.1 × 1013 s−1, and �ω =
0.7 × 1013 s−1, respectively.

The frequencies ωmin and ωmax become dependent on q in
the region q ∼ kF . In terms of the dimensionless variables Q
and � introduced above, these dependences have the form

�min = −EF +
√

2Q
√
E2

F − n + E2
F + Q2 + 1, (21)

�max = EF −
√

−2Q
√
E2

F − n − 1 + E2
F + Q2 − 1. (22)

These expressions determine the edges of transparency
windows; the conductivity singularities near these edges have
different signs. The contribution of damping regions for in-
terband transitions at ω ∼ 2ωmin/max is insignificant in the
regions considered above (ω ≈ ωmin/max).

The above analysis reveals the following effects. The first
effect is a change in the polarization of a circularly polarized
electromagnetic wave with a variation of the magnetic field
when its frequency appears in the collisionless cyclotron
damping region where the propagation of the left-hand cir-
cularly polarized wave is suppressed. The second effect is the
control of the considered effect by an electric field perpen-
dicular to the magnetic field [26,27]. In this case one has to
use the pulse mode to avoid the electric field screening. For
experimental studies of the collective phenomena investigated
in the present paper, one should employ a combination of high
magnetic fields, low temperatures, and appropriate frequen-
cies as in the experiments [19].

The third effect is related to the helicon spectrum which in
the considered ultraquantum limit has the following form:

ω = 2ωcc2

ω2
pv

2
F x2

Q2. (23)

Here, ωc = b/x, where the coefficient b can be find by inte-
gration in Eq. (7).

In summary, we have found longitudinal and transverse
collective electromagnetic excitations in Dirac semimetals in
a quantizing magnetic field. We have also described universal
broadening of cyclotron absorption in systems with linear
dispersion of the electron spectrum.
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