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Model wave functions for interfaces between lattice Laughlin states
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We study the interfaces between lattice Laughlin states at different fillings. We propose a class of model
wave functions for such systems constructed using conformal field theory. We find a nontrivial form of charge
conservation at the interface, similar to the one encountered in the field theory works from the literature. Using
Monte Carlo methods, we evaluate the correlation function and entanglement entropy at the border. Furthermore,
we construct the wave function for quasihole excitations and evaluate their mutual statistics with respect to
quasiholes originating on the same or the other side of the interface. We show that some of these excitations lose
their anyonic statistics when crossing the interface, which can be interpreted as impermeability of the interface to
these anyons. Contrary to most of the previous works on interfaces between topological orders, our approach is
microscopic, allowing for a direct simulation of, e.g., an anyon crossing the interface. Even though we determine
the properties of the wave function numerically, the closed-form expressions allow us to study systems too large
to be simulated by exact diagonalization.
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I. INTRODUCTION

One of the most striking characteristics of topological
orders is the bulk-boundary correspondence—the fact that
the bulk properties of the given phase can be inferred from
its physics at the edge. This is, however, not a one-to-one
relation, as a given bulk phase can have several different kinds
of edges even if it is terminated by vacuum [1–4]. The edge is
therefore richer than the bulk.

Even richer is the physics of interfaces between different
topological orders. The investigation of such systems gained
significant attention [3,5–27]. For example, several authors
studied the conditions under which the interfaces are gapped
or gapless [3,12–17,22,25]. Other works studied the charge
and spin of the interface modes [5,26,27]. There has been also
a considerable effort dedicated to determining the entangle-
ment entropy and entanglement spectrum at interfaces, which
show that interfaces themselves can have a topological struc-
ture [9,17,21,22,26–28]. All these properties are related to the
behavior of fractionalized anyonic excitations at the boundary.
Moreover, the physics of gapped interfaces of Abelian states
has a close relation to the physics of gapped edges [2–4,29–
37], as well as the theory of twist defects (genons) [38–41]—
these three can be described within one formalism [13,14].
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In analogy to genons, interfaces of Abelian states can host
non-Abelian parafermion zero modes [13,14,20,21,42–47],
which have potential applications in quantum computing
[43,44,48,49].

A particularly relevant class of topologically ordered states
are the fractional quantum Hall (FQH) states, which can be
created experimentally in a two-dimensional (2D) electron gas
in a high magnetic field. Interfaces between such states can be
created experimentally, when a different filling factor of Lan-
dau levels is achieved in different parts of the system [50,51].
For example, in an attempt to prove the existence of anyons,
an interferometer was created, in which ν = 2/5 and ν = 1/3
FQH states were placed next to each other [51]. The effective
theory of the interface, allowing for e/15 quasiparticle charge,
was invoked in the theoretical description of this experiment
[52]. More experiments were proposed to study further kinds
of interfaces, e.g., between ν = 2/3 spin-polarized domains
[46], in graphene [26,27], or in double quantum wells [53].

In addition to the continuum 2D electron gas, there are
also alternative experimental settings for FQH states, some of
which are lattice systems. The lattice FQH states can appear in
the form of fractional Chern insulators [54–56]. The presence
of the lattice affects the nonuniversal aspects of FQH physics,
and allows for generalizations of the FQH states [40,54–59].
Fractional Chern insulators were created experimentally in
moiré lattices in bilayer graphene in a magnetic field [60].
There are also numerous proposals for realizing them in
optical lattices [61–69]. Such a setting would allow for more
control over the system parameters, as well as a realization
of the bosonic versions of FQH states, so far not observed
experimentally.

The theoretical works on FQH interfaces can be divided
into two groups. The first is the “top-down” one, which
focuses on field theories and neglects the microscopic details
of the systems. The methods involved are based, e.g., on
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K matrices [2,3,20–22,25] or topological symmetry breaking
formalism [7–9,70,71] (see also [72] and references therein).
They are powerful tools to determine the universal features of
the interfaces, for example they allow for constructing general
classifications of the gapped ones [7,13,14,16,71].

The second approach is the “bottom-up” one, less general
but more detailed, focused on the microscopic aspects of the
system. It provides concrete examples of states belonging
to the general classes determined by the top-down methods,
which allows us to test the predictions from these works and
to investigate the nonuniversal properties of these states. Such
an approach can either rely on diagonalizing Hamiltonians,
or on proposing model wave functions. Numerical methods of
solving the Hamiltonians have size limitations, especially pro-
nounced in the case of interfaces (e.g., due to the reduction of
the translational symmetry). Thus, the exact diagonalization
[26,27,73] or DMRG [74] studies of interfaces are rare and
often complemented with other methods.

Another type of bottom-up approach is constructing model
wave functions. Such constructions are widely used in the case
of single quantum Hall states (i.e., without interface) since the
seminal work of Laughlin [75]. For such systems, they have
proven useful, as they can be studied both analytically and
numerically, and for the latter, the considered system sizes can
be much larger than in exact diagonalization. They can, but
do not have to, be related to Hamiltonians as exact ground
states of model Hamiltonians or approximate ground states of
short-range ones [69,76]. The wave functions themselves can
provide insights on the nature of certain FQH states (e.g., the
mechanism of anyon condensation in the Haldane hierarchy
[76] or composite fermion construction for Jain states [77]). A
particularly useful way to design model FQH wave functions
is the conformal field theory (CFT) construction, which has an
especially strong link with the top-down topological quantum
field theories [78–82].

In the case of interfaces, model wave functions were
constructed within the matrix product state (MPS) formalism
[26,27,83]. This method builds on infinite-dimensional matrix
product states, which can be derived from CFT for a number
of single quantum Hall states [84–87]. It was shown that at
least in some cases (Halperin-Laughlin, Halperin-Pfaffian),
one can connect the matrices belonging to different states and
create a wave function of the interface [26,27,83]. Such an
approach allows us to obtain wave functions for the ground
state as well as the gapless edge and interface excitations,
which were shown to have a high overlap with the exact di-
agonalization results. The entanglement entropy was studied,
confirming the presence of the area law at Halperin-Laughlin
interfaces. Although it was not demonstrated explicitly for
interfaces, the MPS approach also allows us to study bulk
quasihole [84,88] and quasielectron excitations [89].

In this work we focus on Laughlin-Laughlin interfaces,
for which the MPS construction was not yet demonstrated.
We construct microscopic model wave functions for certain
examples of such interfaces in a lattice system. Such a lat-
tice formulation is natural in the context of fractional Chern
insulators. We employ a CFT-based method related to, but
different from, the one used in Refs. [26,27,83]. Instead of
expressing vertex operators of the two CFTs as MPS matrices
as in [26,27,83], we patch them together directly. In this way

we construct the model wave functions for ground state and
localized bulk quasihole excitations. Their properties are then
studied using Monte Carlo methods [81,82,90,91]. With this
construction the interface wave functions are given in a form
resembling the original Laughlin expression [75]. While here
we focus on a cylinder geometry with the interface parallel to
the periodic direction, like in the MPS works, in general the
interface can have any shape, and our wave functions are valid
for planar systems also. Moreover, our results on quasiholes
are easily generalizable to the quasielectrons, which admit a
particularly simple description on the lattice [82].

The paper is organized as follows. In Sec. II we construct
the ground state wave function, and evaluate its correlation
function and entanglement entropy numerically. The former
suggests that for short-range Hamiltonians the interface would
be gapless (and thus, that it is a different type of interface
than studied in Refs. [17,20–22,25]). In Sec. III we construct
a wave function for the quasihole excitations. We perform a
microscopic simulation of a quasihole crossing the interface,
which was not yet demonstrated. We determine the conditions
under which quasihole statistics are well defined and evaluate
the statistical phases. Section IV concludes the article.

II. THE WAVE FUNCTIONS WITHOUT ANYONS

We begin with proposing and studying the model wave
functions for the ground state of a system with an interface.
First (Sec. II A) we review the CFT construction for a single
Laughlin state on the lattice. Next, in Sec. II B, we propose the
interface wave function, and discuss the conditions in which
it is well defined. Because these requirements enforce rather
low filling, before presenting concrete examples, we study
both sides of the interface separately and show that they are
topological (Sec. II C). Then, in Secs. II D and II E, respec-
tively, we determine numerically the correlation function and
entanglement entropy for a system with an interface.

A. Model wave functions from CFT: Preliminaries

The Laughlin states [75], occurring at filling factor ν =
1/q, q ∈ N+, of the first Landau level, are the simplest
fractional quantum Hall (FQH) states, with the ν = 1 integer
quantum Hall effect being a special case at q = 1. Each q
corresponds to a different topological order, with excitations,
quasielectrons, and quasiholes, having fractional charge (a
multiple of e/q) and fractional statistics (exchange phase be-
ing a multiple of π/q). Here we review the CFT construction
of the lattice versions of these states in planar geometry from
Refs. [80,81], which builds on the framework proposed by
Moore and Read for continuum FQH states [78].

The general form of the lattice wave function is

|ψ〉 = 1

C

∑
n

ψ (n) |n〉 , (1)

where n = [n1, n2, . . . , nN ] is the vector of occupation num-
bers of the lattice sites, |n〉 is the corresponding Fock-space
basis state (we assume that the creation operators in the defi-
nition of |n〉 are sorted by the site index), N is the number of
sites, and C is the normalization constant. The wave function
can describe either fermions or bosons, but we enforce the
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hard-core condition for the latter, i.e., ni ∈ {0, 1} in both cases.
Since we have a discretized system, we consider a magnetic
field which penetrates only the lattice sites. We describe it by
associating a positive real number ηi with each site i. This
number describes the number of flux quanta passing through
that site.

In the CFT construction, the squared modulus of the wave
function coefficient can be expressed by a correlator of a con-
formal field theory with compactification radius

√
q, which

can be written as

|ψ (n)|2 ∝ 〈0|
N∏

i=1

V (ni, zi, z̄i )|0〉 , (2)

where |0〉 is a vacuum of this CFT, zi = xi + iyi is a coordinate
of a lattice site i, z̄i is its complex conjugate, and V (ni, zi, z̄i )
is a vertex operator defined by

V (ni, zi, z̄i ) = : exp[iγi(ni )φ(zi, z̄i )] :, (3)

where φ(zi, z̄i ) is a free bosonic field, and γi is a function of the
occupation of a lattice site i, given by γi(ni ) = qni−ηi√

q . Evalu-
ating the correlator, we arrive at the following expression for
the unnormalized wave function:

ψ (n) = χnδγ

∏
i< j

(zi − z j )
γi (ni )γ j (n j ). (4)

Here δγ = δ[
∑N

i=1 γi(ni )] and χn is an arbitrary phase factor.
Since the wave function is constructed as a product of vertex
operators, it is natural to choose a phase factor as a product
χn = ∏

i χi(ni ), where χi(ni ) depends only on the occupation
of site i. Under such an assumption, the quantities we calculate
in this section (particle density, correlation function, entangle-
ment entropy) do not depend on the particular choice of χi(ni ),
thus we set χi(ni ) = 1 without loss of generality.

Substituting the explicit expression for γi(ni ), and disre-
garding some factors influencing only the normalization or
the overall phase, we obtain the following wave function
coefficients:

ψ (n) = δn

∏
i< j

(zi − z j )
qnin j

∏
i �= j

(zi − z j )
−niη j (5)

and δn = δ(qM − Nφ ), where M = ∑N
i=1 ni is the total num-

ber of particles, and Nφ = ∑N
i=1 ηi is the number of magnetic

flux quanta passing through the system. Thus, δn enforces the
charge neutrality (the background charge is included in the
vertex operators describing sites, in contrast to the continuum
case, where an additional vertex operator for the background
charge has to be added [78]). Because in general Nφ �= N ,
the wave function (5) can be characterized by two filling
factors—the “Laughlin filling” ν = M/Nφ = 1/q, defined as
the number of particles per magnetic flux quantum, determin-
ing the topological class of the wave function, and the “lattice
filling” νlat = M/N , defined as the number of particles per site,
controlled by ηi. By tuning ηi one can interpolate between
continuum and lattice states [81], with the last term of (5)
becoming the exponential term of the usual Laughlin function
for infinite systems in the continuum limit ηi → 0. We note
that for certain values of γ and η, one can use CFT to derive
a Hamiltonian for which (5) is an exact ground state [80,81].

FIG. 1. The interface considered in this work. Blue and red
colors correspond to two Laughlin fillings νL = 1/qL , νR = 1/qR,
respectively, with spheres denoting the lattice sites. The green rhom-
bus denotes the unit cell of the kagome lattice. The black plane is
an example of the entanglement cut, dividing the cylinder into two
cylindrical subsystems A and B.

In the following we will work in the cylinder geometry
rather than the planar one. Throughout this work we will
assume that the direction y is a periodic one. Let L be the
circumference of the cylinder. Given a set of coordinates
{ζ1, ζ2, . . . , ζN } on a cylinder, we relate them to the plane
coordinates as zi = e2π iζi/L. By substituting the resulting zi

into (4), one obtains a wave function on a cylinder (see, e.g.,
Ref. [81]).

B. Model wave function for the interface

We proceed to describing an interface between two Laugh-
lin states with different Laughlin filling factors νI = 1/qI ,
where qI ∈ N+ and I ∈ {L, R} denotes the left and right sides
of the interface, respectively. Such interfaces were studied
within the top-down approach. More precisely, these works
concentrated on a subset of such systems, namely the gapped
interfaces. At filling factors fulfilling

qLa2 = qRb2, (6)

with a, b ∈ N+, such an interface can be gapped by certain
types of interactions breaking particle number conservation
(which can in principle be realized by coupling to a su-
perconductor) [3,17,22,25]. In such a case, the tunneling of
the anyons through the interface is restricted (in a simplest
case b = 1, a right-type anyons should tunnel at the same
time), which gives rise to nontrivial properties such as anyonic
Andreev reflection [20], correction to entanglement entropy
scaling [17,21], or parafermionic modes [20].

Here we construct microscopic model wave functions for
Laughlin-Laughlin interfaces by generalizing the CFT con-
struction from Sec. II A. We consider a system where the L
and R parts contain NL, NR sites, respectively (see Fig. 1). The
total number of sites is denoted by N = NL + NR. We denote
the coordinates of the sites as zi = zi;L for i = 1, . . . , NL and
zi = zi−NL ;R for i = NL + 1, . . . , N (analogous indices will be
used for their occupation numbers). We are going to construct
the wave function as a correlator of the vertex operators
describing the two Laughlin states at fillings νI = 1/qI , I ∈
{L, R}. Each vertex operator corresponds to a site of part I .
We note that the lattice nature of our wave functions is crucial
to our construction—since the vertex operators describe sites,
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they can be easily divided into two sets based on their position.
In the continuum, the vertex operators correspond to particles
and such a division is less straightforward.

In general, a correlator of the vertex operators belonging
to two different CFTs cannot be evaluated. This imposes a
restriction on possible filling factors on both sides of the
interface [8,9]. Only when (6) is fulfilled, both CFTs can
be embedded in a third CFT with compactification radius
a
√

qL = b
√

qR, thus the construction (5) is still valid in such
a case. Note that this does not mean that the interface is nec-
essarily gapped—this depends on the interaction generating
our wave function. We focus on a particular choice b = 1, in
which the left CFT can be embedded in the right one. We note
that while our approach describes a certain type of interface
at certain filling factors, in reality one can put two Laughlin
states with any filling factors next to each other. Thus, to
obtain a complete understanding of all possible Laughlin-
Laughlin interfaces, our method should be complemented
with other methods, such as exact diagonalization or DMRG.

We choose the vertex operators in such a way that the first
NL of them describe a Laughlin state with filling νL = 1/qL

and constant ηi = ηL, while the next NR correspond to a
similar state with filling νR = 1/qR and constant ηi = ηR. That
is, they have the form (3), with

γi(ni ) =
⎧⎨
⎩

qLni;L−ηL√
qL

for i = 1, . . . , NL,

qRni−NL ;R−ηR√
qR

for i = NL + 1, . . . , N.
(7)

The result is the following expression for the wave function
coefficients:

ψ (n) ∝ δnL,nRψL(nL )ψR(nR)ψLR(n), (8)

where ψL(nL ), ψR(nR) are the Laughlin wave functions (5) at
the respective side of the interface (disregarding the charge
neutrality),

ψL(nL ) =
∏
i< j

(zi;L − z j;L )qLni;Ln j;L
∏
i �= j

(zi;L − z j;L )−ni;LηL , (9)

ψR(nR) =
∏
i< j

(zi;R − z j;R)qRni;Rn j;R
∏
i �= j

(zi;R − z j;R)−ni;RηR , (10)

while ψLR(n) describes the cross factors

ψLR(n) =
∏
i, j

(zi;L − z j;R)aqLni;Ln j;R

×
∏
i, j

(zi;L − z j;R)−ni;LηR/a−ni;RηLa. (11)

Note that the mutual statistics of the particles on the two
sides of the interface is controlled by aqL which is always an
integer, therefore they are always bosonic or fermionic.

The charge neutrality is enforced by

δnL,nR = δ[qL(ML + aMR) − Nφ;L − Nφ;R/a], (12)

where MI = ∑
i ni;I , Nφ;I = NIηI , I ∈ {L, R}. This means that

the particle number is not conserved, as destroying one par-
ticle on the right means creating a particles on the left (this
rule is illustrated in Fig. 2, along with an analogous one
for quasiholes, which will be derived in Sec. III A). Such a
behavior may be counterintuitive, but not unexpected—the

FIG. 2. Charge conservation in our system. A single R-type
particle (red filled circle) has the same charge as a L-type particles
(blue filled circles). On the other hand, an L-type quasihole (blue
empty circle) has the same charge as, e.g., a R-type quasiholes with
the same p or one R type quasihole with a times larger p. In the latter
case the two kinds of quasiholes are exactly the same object, which is
signified by the “=” sign. Note that while the particles are confined
to their “parent” part, the quasiholes can be located anywhere. This
is emphasized in the figure by placing the circles representing the
particles, but not the quasiholes, on the background of the respective
color.

top-down works predict that precisely this kind of particle
number conservation breaking is necessary to gap out the
interface (but not sufficient—it also depends on the interaction
Hamiltonian at the interface) [17,20]. As stated in Ref. [20],
this can be interpreted either by assigning the same charge
to all the particles, and breaking the charge conservation by
coupling the interface to a superconductor, or by assuming
that the R particles have a times more charge than the L
ones, and retaining the charge conservation. Since the second
interpretation would be more convenient later when studying
the quasiholes, we fix the charge of L, R particles to 1 and a,
respectively.

The charge neutrality rule (12) makes the physical real-
ization of our interface challenging. If we consider a real-
ization in solid state (e.g., moiré superlattices [60]), then the
interaction at the interface has to be mediated by Cooper
pairs, i.e., coupling to a superconductor is required (this was
already mentioned in Refs. [17,20]), and fermions on both
sides (odd a and qL) need to be considered. The most plausible
fermionic case is qL = 1, a = 3, which would require νR =
1/9, impossible to realize in an ordinary 2D electron gas.
Nevertheless, since the interaction in moiré superlattices does
not mimic exactly the one in the continuum Landau level, we
do not rule out the possibility of observing a 1/9 FQH state
there.

Otherwise, we may consider, e.g., optical lattices [61–69],
where one can realize both bosons and fermions. If the optical
lattice is interpreted as a spin system, then, in the simplest case
a = 2, one can avoid breaking Sz conservation by representing
the L side with S = 1/2 sites and the R side with S = 1 sites
with strong penalty on Sz = 0 preventing the spins from being
in this state, i.e., ni = 0, 1 states would be represented by S =
±1/2 on the left and S = ±1 on the right.

In general, the wave function coefficients (8) are not in-
variant under the scaling of coordinates z → bz, b ∈ C, in
contrast to the Laughlin wave function (5), where the scale
is arbitrary. This invariance can be restored by setting the
lattice filling to be νlat = 1/2 on both sides, which can be
done by adjusting ηI = qI/2. We will enforce this condition
throughout this work. We note that it is especially suited for
spin systems, as then qI ni−ηI√

qI
= √

qI si, with si = ±1.
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In this work we focus only on the wave function, without
considering the Hamiltonian generating it. However, as we
noted before, one can derive the parent Hamiltonians for
single lattice Laughlin states for certain values of q and η.
Under the η = q/2 condition, it is possible to derive q =
1, q = 2, and q = 4 Hamiltonians, therefore in the special
case qL = 1, a = 2 we can generate the parent Hamiltonians
for both sides of the interface separately [80,81]. However,
because the two Hamiltonians are derived using slightly
different methods, they cannot be easily generalized to an
interface Hamiltonian. Another way of making connection
between our wave function and the Hamiltonian may be to
look at a general short-range Hamiltonian and optimize the
overlap of its ground state with our wave function. This was
a successful approach for some single lattice quantum Hall
states [69,92], although we note that due to the size limitations
and the shape of the kagome lattice (which we have to choose
to ensure correct topological properties, see Sec. II C), making
the system prone to edge effects, the exact diagonalization
can have limited applicability. However, for relatively thin
cylinders, it may be also possible to replace it with DMRG
[93].

C. Single Laughlin wave functions: Numerical calculations

At η = q/2 and low filling (q > 4), the lattice Laughlin
states on the square lattice develop long-range antiferromag-
netic correlations which destroy the topological order [81]. To
prevent this from happening, we need to work on a frustrated
lattice, on which a Néel ordering is impossible. We choose
the kagome lattice, which, according to Ref. [81], has shorter
correlation length than the triangular lattice, and thus smaller
finite-size effects. Unless noted otherwise, throughout this
work we consider systems on a cylinder, with (NxL + NxR) ×
Ny unit cells, as shown in Fig. 1. For concreteness, we set the
lattice constant (i.e., the length of one of the edges of the green
rhombus in Fig. 1) to 1, i.e., the nearest-neighbor distance
to 0.5, although the wave function would not change if the
coordinates are rescaled.

To show that we have a topological state on both sides, we
first study single Laughlin states (qL = qR = q, NxL + NxR =
Nx) before proceeding to the interfaces. We focus on the
cases q = 1, 2, 4, 8, necessary for two examples of a = 2
interfaces with qL = 1 and qL = 2. The expectation value of
any operator Ô that is diagonal in the occupation number basis
Ô = ∑

n On |n〉 〈n| can be written as

〈Ô〉 =
∑

n On|ψ (n)|2∑
n |ψ (n)|2 . (13)

It can be sampled using Metropolis Monte Carlo, treating
|ψ (n)|2 as the probability distribution. In such a way we
can evaluate the particle density 〈ni〉 and the density-density
correlation function

Ci j = 〈nin j〉 − 〈ni〉〈n j〉. (14)

The resulting Ci j is shown in Fig. 3(a). Although the cor-
relation shows some antiferromagneticlike behavior at short
distances, its absolute value is decaying exponentially, show-
ing the lack of antiferromagnetic ordering.

FIG. 3. Properties of the single Laughlin states considered in
this work. (a) The absolute value of the correlation function at
constant x in an Nx × Ny = 8 × 8 cylinder. The inset shows the
spatial profile of the correlation function close to site i (brown circle
at the center) for the q = 8 case. The main plot shows the results
for the column of sites between the dashed gray lines. The values
for two sites in the same distance to site i (above and below) are
averaged in the main plot. (b) The Rényi entropy S(2)

A as a function
of the cylinder circumference Ny, with the cut at the middle of the
sample. The corresponding cylinder length is Nx = 2	Ny/2
, with 	 

denoting the ceiling function. Lines denote linear fits. Only the data
points denoted by filled symbols are taken into account in the fitting
procedure, because the data points at small Ny are more strongly
affected by finite size effects. The regression is weighted based on the
Monte Carlo uncertainties. The colorful ticks on the y axis denote the
theoretical values ln(q)/2 of the topological entanglement entropy

If exponential decay is assumed, the correlation length may
be estimated by the quantity [81]

dq = 1

2(ln |Ci j | − ln |Ci,k|) , (15)

where i, j, k have the same x coordinate, and |yi − y j | = 1/2,
|yi − yk| = 1 (note that we set the nearest-neighbor distance to
0.5, which generates the factor of 2 in the denominator). We
obtain d1 = 0.07 ± 0.03, d2 = 0.264 ± 0.004, d4 = 0.383 ±
0.008, d8 = 0.464 ± 0.006.

Next, we study the entanglement entropy. We divide the
system into two subsystems A, B with a cut along the periodic
direction of the cylinder (see Fig. 1 and consider a special
case with just one type of Laughlin states). We choose the
Rényi entropy of order 2, S(2)

A = − ln [Tr(ρ2
A)], where ρA is the

reduced density matrix of subsystem A. It can be calculated
using the Monte Carlo method and the replica trick [94,95].
We consider two copies of the system and write

Tr(ρ2
A) =

∑
m,n

|ψ (mA, mB)|2|ψ (nA, nB)|2

× ψ (mA, nB)ψ (nA, mB)

ψ (mA, mB)ψ (nA, nB)
, (16)

where mA, mB denote the occupation numbers within the
respective subsystems for the first copy of the system, and
nA, nB, analogically, for the second copy. If the total charge
changes after swapping mB → nB, nB → mB, then the charge
neutrality enforces ψ (mA, nB) = ψ (nA, mB) = 0. Equation
(16) can be evaluated numerically using the Metropolis
Monte Carlo method, treating |ψ (mA, mB)|2|ψ (nA, nB)|2 as
the probability distribution in the importance sampling.
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In two-dimensional gapped systems with a single topolog-
ical phase, the entanglement entropy for a spatial bipartition
has a linear scaling (area law) with a constant term,

S(2)
A (Ny) = ANy − γ , (17)

where A is a nonuniversal coefficient, while the constant term
γ has the interpretation of topological entanglement entropy,
characterizing the given topological order [96,97]. For our
lattice Laughlin states, the entanglement entropy as a function
of the cylinder circumference is shown in Fig. 3(b). The
results, in general, show the adherence to the area law (17).
To obtain γ , we perform a linear fit with weights based on the
Monte Carlo errors. For q = 1, 2, 4, after excluding several
data points for low circumferences, which are influenced
by finite-size effects, we obtain γ close to the theoretical
prediction ln(q)/2. From the fits we get γ = 0.001 ± 0.007,
γ = 0.334 ± 0.005, γ = 0.70 ± 0.03, close to ln(1)/2 = 0,
ln(2)/2 ≈ 0.346, ln(4)/2 ≈ 0.69 for q = 1, 2, 4, respectively
(the errors here are the uncertainties of the fit only). For
q = 8 the situation is more complicated. The fit presented in
Fig. 3(b) yields γ = 1.10 ± 0.07, a relatively good match with
the theoretical value ln(8)/2 ≈ 1.04. However, the data points
from the Monte Carlo calculation exhibit some oscillations
around the linear trend. This leads to a strong dependence of
the fitted γ on the included data points. For example, using
only Ny > 3 we obtain γ = 0.81 ± 0.05, which is further
away from the expected value. This can be explained by com-
paring Ny to the correlation length. The largest investigated
system has circumference larger than 100 correlation lengths
in the q = 1 case and less than 22 correlation lengths in the
q = 8 case. Therefore we can estimate that each dimension of
the system needs to be 5 times larger in the q = 8 case than
in the q = 1 case to obtain the same strength of finite-size
effects (which is difficult to achieve within our Monte Carlo
approach). Nevertheless, even though for q = 8 we cannot
determine the value of γ accurately, the obtained values
indicate that it is nonzero, and thus that the state is topological.

D. Correlation function at the interface

Next, we study the whole interface wave function. We
consider two examples, qL = 1 and qL = 2, both with a = 2.
The former describes an interface between a fermionic integer
quantum Hall state and a bosonic ν = 1/4 Laughlin state,
the latter corresponds to an interface between two bosonic
Laughlin states at ν = 1/2, ν = 1/8. In both cases, the Monte
Carlo evaluation of the particle density yields 〈ni〉 ≈ 1/2 in
the entire system, which agrees with the fact that ηI = qI/2
correspond to lattice half-filling.

We would also like to determine if the interface is gapped
or gapless. This is impossible if we do not put any restriction
on the possible parent Hamiltonians (note that lattice parent
Hamiltonians generated from CFTs are long range [80,81]),
as it is always possible to write the Hamiltonian as a sum of
projections on its eigenstates |i〉, H = ∑

i Ei |i〉 〈i|. Knowing
only the ground state |0〉, we can choose the energies Ei and
other eigenstates |i〉, i > 0 arbitrarily (up to the condition that
they should be orthogonal to |0〉 and each other). Nevertheless,
for short-range Hamiltonians some indication of the existence
of the gap can be obtained from the correlation function—for

FIG. 4. Correlation functions for (4 + 4) × 8 systems with an
interface [(a) and (c)] compared to superimposed results for the
respective single Laughlin states in 8 × 8 systems [(b) and (d)]. The
upper row refers to the case qL = 1, a = 2 while the lower one
contains results for the case qL = 2, a = 2. The correlation functions
are computed along the y direction, each curve corresponding to a
different, fixed x coordinate. In (a) and (c) the red and blue colors
denote the bulks of the L and R parts, in (b) and (d) the bulks of the
respective single Laughlin states. The solid and dashed lines denote
the even and odd columns of sites. The former contain 2Ny sites while
the latter only Ny sites. In (a) and (c) the green and black correspond
to the edges and interface (two closest columns of sites), respectively,
while in (b) and (d) these colors denote the corresponding edges.

nondegenerate ground states of gapped short-range Hamilto-
nians it typically vanishes exponentially.

For our system we evaluate the correlation function as
a function of distance between sites in the y direction for
different x positions, see Fig. 4. In Fig. 4(a), showing results
for a qL = 1, a = 2 system, it can be seen that in the left
and right bulks (blue and red, respectively), the correlation
function decays exponentially, until the relative Monte Carlo
error gets large. However, on the edges (green lines), it does
not, it achieves an approximately constant nonzero value at
large enough distances. This is consistent with the fact that
the edges of Laughlin states are gapless.

A similar behavior is seen on the rightmost sites of the
part L (black dashed line), i.e., next to the interface. We can
compare this to a case of two separate quantum Hall states
[Fig. 4(b)], in which we simply superimpose the result for
single Laughlin states with ν = 1/qL and ν = 1/qR. We can
see that on the rightmost sites of the L part the behavior of
the correlation function is similar in the two cases, although
its minimum value is smaller for the interface. As for the
leftmost sites of the R part, in the interface case the correlation

245164-6



MODEL WAVE FUNCTIONS FOR INTERFACES BETWEEN … PHYSICAL REVIEW B 101, 245164 (2020)

function seems to fall exponentially, while for single Laughlin
states it does not. Thus, the correlation function suggests that
if the interface can be generated by a short-range Hamiltonian,
it is probably gapless, in contrast to the cases studied in
Refs. [17,20–22,25]. A similar conclusion can be drawn for
qL = 2, a = 2 [Fig. 4(c), the results for corresponding single
Laughlin states are plotted in Fig. 4(d)]. Therefore, we expect
that, despite some similarity to the constructions presented
in these references, our system does not have to fulfill the
top-down predictions, made for gapped interfaces.

We note that even if the interface is indeed gapless, there is
no contradiction here. The charge conservation rule (12) does
not imply that the interface must be gapped. It merely makes
the presence of gapping interactions possible. Since we do not
have a Hamiltonian, we do not have information on which
interactions generate our wave functions and cannot compare
them with Refs. [17,20–22,25].

E. Entanglement at the interface

The entanglement in the presence of an interface was stud-
ied by several authors [9,17,21,22,26–28]. In such a case, one
can consider different entanglement cuts. For example, certain
cuts crossing the interface allow us to study the properties
of gapless interface modes by comparing the entanglement
entropy with the predictions for a one-dimensional (1D) con-
formal field theory [26,27] (the validity of such an approach
was confirmed analytically for the case of a single integer
quantum Hall edge [98]). Alternatively, a cut may be coincid-
ing with the interface. For some gapless interfaces, numerical
computations show the existence of an entanglement area law
for such a cut [26,27]. The top-down works have also shown
analytically that the area law exists in the case of gapped
interfaces between Abelian states [17,21,22]. In such a case,
the constant term in the linear scaling depends not only on
the phases involved, but also on the interaction across the
interface. This is a result of restrictions on the anyon motion,
which lower the entanglement between the two parts of the
system and thus increase the constant term γLR at the interface
[17]. In particular, for the b = 1 case, the constant term γLR =
γR, where γR is the topological entanglement entropy of the
R Laughlin state (i.e., there is a correction to the constant
term only with respect to the L topological entanglement en-
tropy γL). Such a correction can be interpreted as originating
from a symmetry-protected topological phase living at the
entanglement cut (i.e., the interface) [21,99], and thus it is
connected with the existence of parafermionic modes [20].
We note that the constant terms γL, γR for the bulks of the
two respective topological phases have the interpretation of
topological entanglement entropy, as they are defined in a
way independent from smooth deformation of the cut [96,97].
However, for γLR such a definition does not exist, as moving
the cut slightly from the interface can change γLR.

Let us now compare predictions from Refs. [17,21,22] to
Monte Carlo results for our interface wave function (which,
as we noted in Sec. II D, is not necessarily gapped, so it may
behave differently). We start from the qL = 1, a = 2 case. We
again cut the system parallel to the y direction and investigate
the scaling of the Rényi entropy for different x positions of
the cut. The results for specific positions of the cut are shown

FIG. 5. Scaling of the Rényi entropy S(2)
A as a function of the

cylinder circumference for two considered types of systems: (a)
qL = 1, a = 2 and (b) qL = 2, a = 2. The red and blue markers refer
to the middle of the L and R part, respectively. The black points
show the scaling precisely at the interface, while the brown points
refer to the cut located slightly to the right of the interface, in
which the A subsystem contains the whole L part and the leftmost
column of sites (2Ny sites) from the R part. The fits are performed
for the NxL = NxR = 8 case, with the Monte Carlo errors included
in the weights. The points included in the fit are denoted by filled
markers. The theoretical values of −γL , −γR are indicated by blue
and red ticks on the y axis, respectively. The plots contain also
the entropies for smaller NxL = NxR, denoted by weaker colors and
different marker shapes. Note that in (b) the largest possible Ny

decreases as we increase NxL = NxR. The insets show the fitted values
of γ for NxL = NxR = 4, 6, 8. In (a), all the fits are performed using
the same sets of Ny values as in the main (a) subfigure. For (b), the
details of the fits are presented in Appendix A.

in Fig. 5(a). We focus on systems with NxL = NxR = 8, shown
in Fig. 5(a) using markers with strong colors. Performing the
linear fit (17) for the cuts in the middle of the L and R parts
(red and blue straight lines, respectively), we can see that
the entropy behaves similarly to the case of single Laughlin
states (Fig. 3). The fitted γL, γR are close to theoretical values
γI = ln(qI )/2 for single Laughlin states. This indicates that
our wave function reproduces the topological orders of the
L and R parts correctly. We note that in general the error in
the entropy increases with the entropy itself. In Fig. 5 we
neglected the points with high error at large Ny, and thus there
are less data points for the R part than for the L part.

At the interface [black markers in Fig. 5(a)] the situation
is more complicated. The scaling looks linear at first glance.
However, there are some deviations from the exact linear
dependence. If we perform the fit using only the five largest
values of Ny [i.e., Ny > 10; the black line in Fig. 5(a)] then
we obtain γLR = −0.73 ± 0.04, which is close to γR. This is
consistent with the γLR = γR prediction from Refs. [17,21,22].
However, one can see that the data points for low Ny, in
particular Ny = 3 and Ny = 4, lie beneath the fit line. Thus,
including the data points with lower Ny would increase the
fitted value of γLR. We cannot guarantee that such departures
from linear scaling do not occur above Ny = 15, but if they
do not, then our interface has similar scaling of entanglement
entropy as the gapped interface from Refs. [17,21,22].
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To check whether the investigated scaling of the interface
entropy is influenced by finite-size effects related to the finite
extent of the system in the x direction, we investigate systems
of different x size. The results for these systems are shown
in Fig. 5(a) using weaker colors and different marker shapes.
For the middle of the L and the R parts, as well as for the
interface, these data points are almost indistinguishable from
the NxL = NxR = 8, showing that these effects are negligible.
To further confirm this, we perform the linear fit for Ny > 10
and NxL = NxR = 4, 6 (for odd values Ny can be only even, so
we do not obtain enough Ny > 10 data points). The results are
shown in the inset of Fig. 5(a). The solid red and black curves,
corresponding to γR and γLR, both lie close to the dashed red
line, which denotes the theoretical value of γR.

If we move our cut from the interface to the next avail-
able position on the left [so that the A subsystem contains
Ny(3NxL − 1) sites], we obtain a scaling similar to the one
in the bulk of the L region. On the other hand, if we move
it to the next available position on the right of the interface,
we get a result different both from the R bulk and the interface
[brown markers and line in Fig. 5(a)]. In this case, the constant
term γ ′

LR of the entropy scaling varies with NxL = NxR [see the
brown markers in Fig. 5(a)]. For NxL = NxR = 6, γ ′

LR is close
to γR, although with a large fit error. For NxL = NxR = 4, 8,
γ ′

LR is visibly larger than γR. Based on our data, we are unable
to determine whether this increase of γ next to the interface is
a finite-size effect, or will persist in the thermodynamic limit.
Moving the cut further to the right results in a bulklike scaling
of entanglement entropy.

Similar results are obtained for qL = 2, a = 2, however the
picture is more distorted due to the larger correlation lengths,
as well as larger values of entropy which limit the maximum
available Ny. Here we also obtain γLR close to γR, although
slightly larger. On the other hand, γ ′

LR is visibly larger than
γR for all NxL = NxR. However, the values of these terms in
general depend on the points included in the fit, which shows
that the finite size effects are quite pronounced for this type of
the interface. More details on the qL = 2, a = 2 entanglement
entropy calculations can be found in Appendix A.

In summary, our results hint at the presence of entangle-
ment area law at the interface and in its vicinity, as predicted in
Refs. [17,21,22] for gapped interfaces and shown numerically
in Refs. [26,27] for a gapless one. Even though the correlation
function suggests gaplessness of our interface, the results
regarding the entanglement entropy can be interpreted con-
sistently with the γLR = γR predictions from Refs. [17,21,22].
However, due to the limited size of the system and the
presence of finite-size effects, we cannot guarantee that the
area law holds for larger system sizes, and that γLR = γR in
the thermodynamic limit. Also, our results indicate that next to
the interface, on its right side, the constant term in the entropy
scaling is larger than on the interface itself.

III. ANYONIC EXCITATIONS

Since both sides of the interface are topologically ordered,
they have fractionalized excitations. The bottom-up approach
allows us to perform detailed studies of the anyons, regarding
both the universal and nonuniversal quantities. For single
FQH states, such methods were employed to calculate the size

of the anyons, their density profile, as well as to explicitly
simulate their braiding [82,84,88,89,91,100–109]. However,
microscopic studies of localized bulk anyonic excitations
were not performed for FQH interfaces (even though it is
technically possible in the MPS approach [84,88,89]). Here
we fill in this gap by constructing the model wave functions
for such excitations (Sec. III A), studying their charge and
density profile as they cross the interface (Sec. III B), and
evaluating their statistics (Sec. III C).

According to Refs. [17,21,22], there is a connection be-
tween the properties of anyons and the interface entanglement
entropy scaling. For the cases studied in these papers, the
motion of certain anyons through the interface is restricted,
which resulted in lowering of the entanglement between the L
and R parts and the increase of γ at the interface (leading to
γLR = γR in the gapped Laughlin case). In Sec. III C we show
that an analogous restriction happens in our case: statistics
of some anyons become ill defined when they cross the
interface. Thus, by analogy with Refs. [17,21,22], we regard
the restriction of anyon motion as a possible explanation of
γLR ≈ γR suggested by our results.

We also note that the connection between γ and anyonic
properties is different at the interface than in a single topologi-
cal phase. In the latter case, γ can be interpreted as topological
entanglement entropy, related to the quantum dimension of
the anyons. However, in the case of the interfaces, such an
interpretation is not possible, since the arguments for the
topological nature of this term require deformations of the cut
[96,97], which are not possible, since the interface is a 1D
object. Reference [17] specifically states that the effective K
matrix they use to derive the entanglement correction does not
describe the properties of anyons.

A. Wave function with quasiholes

The model states for systems with quasiholes can be
achieved by inserting further vertex operators into the corre-
lator (2), each one corresponding to one quasihole [78,81].
Here there will be two types of such operators, corresponding
to two types of quasiholes: the left and right ones. The wave
function coefficients are given by the following correlator:

|ψ (n)|2 ∝ 〈0|
QL∏
i=1

VaL(pi;L,wi;L, w̄i;L )

×
QR∏
i=1

VaR(pi;R,wi;R, w̄i;R)
N∏

i=1

V (ni, zi, z̄i ) |0〉 ,

(18)

where QI is the number of quasiholes of the given type (I ∈
{L, R}), V (ni, zi, z̄i ) is of the same form as in Sec. II B, and

VaI (pi;I ,wi;I , w̄i;I ) = : exp

(
i

pi;I√
qI

φ(wi;I , w̄i;I )

)
: (19)

are the quasihole vertex operators, with wi;I being the po-
sitions of quasiholes and pi;I being integers describing their
charges (in analogy to a single Laughlin state, we expect that
the quasihole charge is pi;I/qI times the charge of an I-type
particle). The quasihole coordinates wi;I are external param-
eters of the wave function. The quasiholes can be located
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anywhere on the plane, but in this work we will put them in
the middle of the smallest triangles of the kagome lattice.

Since the new vertex operators have a form analogous to
(3) (only with quasihole positions instead of particle ones), we
can repeat the reasoning from Sec. II A, and obtain the wave
function

ψ (n) ∝ δnL,nRψL(nL, wL )ψR(nR, wR)ψLR(n, w), (20)

where w is the collective label for all quasihole positions, and
wI , I ∈ {L, R}, contains all the positions of the quasiholes of
a given type. The wave function parts are given by

ψL(nL, wL ) =
∏
i, j

(wi;L − z j;L )pi;Ln j;L
∏
i< j

(zi;L − z j;L )qLni;Ln j;L

×
∏
i �= j

(zi;L − z j;L )−ni;LηL ,

(21)

ψR(nR, wR) =
∏
i, j

(wi;R − z j;R)pi;Rn j;R
∏
i< j

(zi;R − z j;R)qRni;Rn j;R

×
∏
i �= j

(zi;R − z j;R)−ni;RηR , (22)

ψLR(n, w) =
∏
i, j

(wi;L − z j;R)pi;Ln j;Ra
∏
i, j

(wi;R − z j;L )pi;Rn j;L/a

×
∏
i, j

(zi;L − z j;R)aqLni;Ln j;R

×
∏
i, j

(zi;L − z j;R)−ni;LηR/a−ni;RηLa, (23)

δnL,nR = δ

(
qL(ML + aMR)

+
QL∑
i=1

pi;L +
QR∑
i=1

pi;R/a − Nφ,L − Nφ,R/a

)
, (24)

where all the terms not dependent on the particle positions
were absorbed into the normalization. When constructing
this wave function, we chose the phase factors χi(ni ) to be
independent from quasihole positions. Then, the calculation
of quasihole statistics presented in Sec. III C does not depend
on χi(ni ) and thus we can set χi(ni ) = 1 for simplicity.

We note that similarly to the particles, the different types
of quasiholes have different charges: an L-type quasihole can
be replaced for example by a R-type quasiholes with the same
p or one R-type quasihole with a times larger p. In fact, a
pi;R R-type quasihole is fully equivalent to a p j;L = pi,R/a L-
type quasihole provided that pi;R is divisible by a (one can
verify that both are described by the same vertex operator).
The relations between the quasiholes of different types are
illustrated in Fig. 2.

The positions of the quasiholes are not restricted to the L/R
part of the system. However, if an R-type quasihole is not a
valid topological excitation for the Laughlin filling ν = 1/qL,
its statistics will become ill defined within the L part, as we
will show in Sec. III C.

FIG. 6. The density profile and charge of a p1;R = 2 R-type
quasihole for a qL = 1, a = 2 interface in a system of size (6 + 5) ×
5. The rows correspond to different positions of the quasihole: in
the R part (top), at the interface (middle), or in the L part (bottom).
The columns show different quantities: the deviation of the density
distribution 〈ni〉 from half-filling (left) and the excess charge Q1;R

as a function of distance r from the quasihole position (right). The
horizontal dashed lines are located at Q1;R = −1. Note that the
distance between nearest neighbors is r = 0.5.

B. Density profile and charge of the quasiholes

In the presence of a finite correlation length indicated by
Fig. 3(a), the quasiholes should be well localized. The Monte
Carlo calculations of the particle density show that this is
indeed the case. As an example, let us consider a p1;R = 2 R-
type quasihole in a qL = 1, a = 2 system. First, we place the
quasihole in its “parent” part of the system, i.e., to the right
of the interface [Fig. 6(a)]. The deviation from 〈ni〉 = 1/2 is
significant only near the quasihole position, as expected for a
single FQH state. We define the excess charge within radius r
from the kth I-type quasihole as

Qk;I (r) =
∑

j

(
〈n j;L〉 − 1

2

)
θ (r − |z j;L − wk,I |)

+ a
∑

j

(
〈n j;R〉 − 1

2

)
θ (r − |z j;R − wk,I |), (25)

where θ is the Heaviside step function. Here we used the fact
that particles in part L have unit charge, and R-type particles
have charge a. The plot of the excess charge as a function of
r for the considered situation is shown in Fig. 6(b). For large
r it approaches −1, i.e., its modulus is half the charge of an R
particle, as expected.
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The quasihole is well localized also when it crosses the
interface, or even when it is located precisely at the border, as
seen in Figs. 6(c) and 6(e). The corresponding excess charge
plots [Figs. 6(d) and 6(f)] show that while the density pro-
file of the quasihole changes, its total charge stays the same.
Note that we can also interpret the charge −1 as a lack of
one L-type particle, i.e., a p1;L = 1 L-type hole, in accordance
with the charge conservation rule (24).

We observe similar behavior for quasiholes of different
types and with different p. In principle, we can also place
quasiholes in the part of the system where they are not valid
topological excitations of a corresponding Laughlin state (an
example is shown in Appendix B). In such cases, we also
observe that the charge concentrated in the vicinity of the
quasihole position matches our expectation for the quasihole
charge.

In some cases, moving a quasihole from the L to the R
part or vice versa generates fluctuations of charge near the
interface. This happens both for quasiholes being valid and
invalid topological excitations of the given part. However, this
is a finite-size effect whose strength decreases with increasing
circumference of the cylinder and is expected to vanish for
wide cylinders. We discuss it in Appendix B.

C. Statistics of quasiholes

Under the assumption that the quasiholes are localized,
which is supported by the numerical calculations of Sec. III B,
we can obtain their statistics following the approach from
Ref. [82]. We start from the wave function (20) and fix the
normalization constant to be real,

C =
√∑

n

ψ (n)ψ (n). (26)

The total phase in the braiding process consists of two con-
tributions: the monodromy and the Berry phase. Let us focus
on the monodromy first. Since the wave function contains no
terms depending on the positions of two quasiholes, the only
term that matters is (wi;R − z j;L )pi;Rn j;L/a, for which the way
the root is taken has to be defined consistently if the exponent
is fractional. For a braiding process of two quasiholes in
the R part, wi;R never encircles any L site (unless it goes
around the cylinder—we discuss the peculiarities of braiding
particles or quasiholes in such a way in Appendix C). Thus,
in such a case (wi;R − z j;L )pi;Rn j;L/a stays in the same branch
and no phase arises from this term. On the other hand, if the
braiding path contains some L sites, then the contribution of
(wi;R − z j;L )pi;Rn j;L/a vanishes only when pi;R is divisible by a,
i.e., if the R-type quasihole is a valid Laughlin anyon of the L
side. If not, this term yields a nonzero phase when encircling
a filled L site and 0 when encircling an empty one (which
suggests that the mutual statistics between L particles and
basic R quasiholes is fractional). As a consequence, the phase
depends on the number of encircled L particles, which is not
fixed. The statistics are hence not well defined.

Let us now proceed to the Berry phase. For concreteness
let us first assume that we move an L-type quasihole, whose
position is denoted by w1;L, around another quasihole, which
can be of any type. The total Berry phase in the braiding

process is given by

θ = i
∮

P
〈ψ | ∂

∂w1;L
ψ〉 dw1;L + c.c., (27)

where P denotes the path. After inserting the wave function
(1) with coefficients (20), these integrals can be expressed
solely in terms of the normalization constant

θ = i

2C2

∮
P

∂C2

∂w1;L
dw1;L + c.c. (28)

By evaluating the derivative explicitly, it can be shown that
the Berry phase is given by

θ = i

2

∮
P

∑
k

p1;L〈nk;L〉
w1;L − zk;L

dw1;L

+ i

2

∮
P

∑
k

ap1;L〈nk;R〉
w1;L − zk;R

dw1;L + c.c. (29)

To get rid of the Aharonov-Bohm phase, we subtract
the phase θout, obtained when a second quasihole is outside
the path of the first one, from the phase θin, obtained when the
second quasihole is enclosed by the path,

θbr = θin − θout

= i

2

∮
P

∑
k

p1;L(〈nk;L〉in − 〈nk;L〉out )

w1;L − zk;L
dw1;L

+ i

2

∮
P

∑
k

ap1;L(〈nk;R〉in − 〈nk;R〉out )

w1;L − zk;R
dw1;L + c.c. (30)

When the quasiholes are well separated, and when there is no
charge accumulation on the interface, the density difference
occurs only near the two positions of the second quasihole.
Moreover, it does not depend on w1;L, so it can be taken out
of the integral. Applying the residue theorem, we get

θbr = −2π p1;L

∑
k∈WL

(〈nk;L〉in − 〈nk;L〉out )

− 2πap1;L

∑
k∈WR

(〈nk;R〉in − 〈nk;R〉out ), (31)

where WI is the set of all I-type sites enclosed by the braiding
path. Thus, the statistical Berry phase depends on the charge
of the encircled quasihole, which, as we have shown in
Sec. III B, is constant and quantized.

For two L-type quasiholes, we obtain θbr = 2π p1;L p2;L/qL,
as for a single Laughlin state. For L and R quasiholes, the
statistical Berry phase is θbr = 2π p1;L p1;R/(aqL ). If we repeat
the derivation for moving an R-type quasihole, we obtain
θbr = 2π p1;R p2;R/qR for encircling another R-type quasihole
and again θbr = 2π p1;L p1;R/(aqL ) for encircling an L-type
quasihole. Those values are the total statistical phases as long
as both quasiholes are valid Laughlin anyons of the parts
through which they move. If this condition is not fulfilled, the
monodromy part makes the statistics ill defined. This means
that the basic R quasiholes cease to be anyons as they cross the
interface—which may be interpreted as impermeability of the
interface to these excitations. We also note that if the interface
is gapless, the braiding whose path crosses the interface can-
not be realized in an adiabatic way. Nevertheless, the mutual
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statistics of L and R quasiholes are still meaningful, as we can
consider braiding around the cylinder (see Appendix C). Or,
in planar geometry, we can envision, e.g., encircling an island
with filling νL = 1/qL embedded within a νR = 1/qR system.

We conclude that our interface wave function correctly
reproduces the Laughlin quasihole statistics on each side,
while introducing nontrivial statistics between the different
types of quasiholes. Note that the statistics do not change
when the anyons cross the interface, provided that they are
well defined on both sides. Furthermore, the obtained phases
are another signature of the nontrivial mutual statistics of
R-type anyons with respect to L-type particles. An L-type
quasihole of charge pi;I = qI is equivalent to the absence of
a single L-type particle (i.e., a hole). Thus, the statistics of
an R-type anyon with respect to an L-type hole is given by
θbr = −2π p1;L/a, which can be fractional (provided that it is
well defined, i.e., both objects are located in the R part). This
is a further example of the nontriviality of our interface.

IV. CONCLUSIONS

In this work we have presented a class of model wave
functions for interfaces between lattice Laughlin states. Our
work is similar in spirit to Refs. [26,27,83], which derived
wave functions for the interfaces between continuum Laugh-
lin and Halperin or Pfaffian states, with the same starting
point (conformal field theory) but a different method (matrix
product states). We obtained a closed-form solution similar
to Laughlin’s original expression [75], which allowed us to
calculate the properties of the system using Monte Carlo
methods, sometimes aided with analytical calculations. Our
work focuses on both the ground state and the localized bulk
anyonic excitations.

The study of our wave function yields new insights on
the physics of Laughlin-Laughlin interfaces. First of all, we
note that, up to our knowledge, no microscopic ansatz for
the wave function for a Laughlin-Laughlin interface was
proposed before. Our model correctly captures the topological
properties of the Laughlin states on both sides, therefore it
clearly describes some type of a Laughlin-Laughlin interface
(although other types can exist too).

Second, our system bears some similarity to the interfaces
described in the top-down works and provides a microscopic
realization of some of the phenomena described there. We
have seen that the correct embedding of conformal field theo-
ries describing the two Laughlin states imposes a restriction
on the possible filling factors [8]. Our system realizes the
charge conservation rule needed to gap out the interface
[17,20–22,25]. In addition to determining the charges of par-
ticles and anyons on both sides, we performed a microscopic
simulation of an anyon crossing the interface, which was not
done before. The anyon density profiles obtained from this
simulation are not a topological property, but still they may
yield some intuition on the anyon behavior in the general case,
as for the single Laughlin state these profiles follow the same
pattern in various lattice models [101].

The entanglement entropy scaling at the interface can be
interpreted in a way consistent with the top-down results for
gapped Laughlin states [17,21,22], i.e., with the presence of
area law with a constant term γLR = γR. It is possible that this

behavior is connected with the properties of topological exci-
tations [17,21]—the calculation of quasihole statistics shows
that some of them lose their anyonic character when they cross
the interface, which can be interpreted as the impermeability
of the interface to these anyons. The wave function gives
us additional insight on the origin of this impermeability—it
arises from the monodromy and the nontrivial mutual statis-
tics of L particles and R quasiholes.

Finally, despite similarities to gapped interfaces studied in
Refs. [17,20–22,25], the correlation function suggests that, if
our interface can be generated with a short-range Hamiltonian,
it is gapless, and thus it may be a different, less studied
kind of interface. Reconciling the K-matrix methods from
Refs. [3,17,20–22,25] with our approach would be of great
interest, as it would provide additional insights on the differ-
ence between these two kinds of interfaces.

The approach taken by us has potential for further de-
velopment. First, our wave function can be defined in more
complicated geometries, such as, e.g., many disconnected “L”
islands within the “R” state. Defining the interface on a torus
should also be possible [110]. Second, the quasihole wave
function can be easily generalized to quasielectrons [82].
Third, similar wave functions can be created for interfaces
between Laughlin and Moore-Read states. The latter states
are non-Abelian, therefore the anyon behavior is more com-
plex. Their discretized versions have already been constructed
[108]. Next, one may try to generate approximate parent
Hamiltonians by optimizing ground state overlaps with our
wave functions, as it was done for single lattice quantum
Hall states [69,92]. Finally, one may think about studying
further exotic properties of the interface. The top-down works
predict parafermionic zero modes at the ends of the gapped
Laughlin-Laughlin interfaces [20,21]. One can wonder if such
a phenomenon can be realized in our interface, and how the
possible gaplessness of our interface interferes with it.
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APPENDIX A: DETAILS OF THE qL = 2, a = 2
ENTANGLEMENT ENTROPY CALCULATIONS

Since the calculations of the entanglement entropy in the
qL = 2, a = 2 case are affected by finite-size effects, here we
provide additional data on these systems. In Fig. 7 we plot the
entanglement entropy vs Ny for three different system sizes
in the x direction. The lines with strong colors correspond
to the fits used in the inset of Fig. 5(b), with the filled
markers indicating the points included in the fit. We com-
pare them to alternative fits including points from the range
(Ny,min, Ny,max). For each NxL = NxR and each cut position,
we use a fixed Ny,max (equal to the maximum Ny in Fig. 7)
and vary Ny,min from 3 to Ny,max − 3 (except from the cut
precisely at the interface, where the Ny = 3 data point visibly
departs from any linear dependence, so we neglect it and start
from Ny,min = 4).

It can be seen that for all of the cuts except from the
middle of the L region, the value of γ depends significantly
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FIG. 7. The entanglement entropy scaling for three different
system sizes in the x direction as a function of Ny. The blue and
red markers correspond to the cut in the middle of the L and R
parts, respectively. The black markers show the scaling precisely
at the interface, while the brown points refer to the cut located
slightly to the right of the interface, in which the A subsystem
contains the whole L part and the leftmost column of sites (2Ny sites)
from the R part. The lines with strong colors correspond to fits used
in the inset of Fig. 5(b). Only the data points with filled markers
were included in the fit. The lines with weaker colors are alternative
fits, corresponding to different numbers of points included (see the
main text). The blue and red bars on the y axis denote the theoretical
values of the bulk L and R topological entanglement entropy. The
insets show the magnification of the region near Ny = 0.

on the data points included in the fit. In general, both γLR and
γ ′

LR are larger than γR. However, while γLR remain relatively
close to γR (which can be interpreted as being consistent with
the γLR = γR prediction, although other interpretations are
possible), γ ′

LR is visibly larger. Based on the data we have,
we are unable to determine whether this is a finite-size effect,
or γ ′

LR > γR persists in the thermodynamic limit (or even,
whether or not the scaling is linear for large Ny).

APPENDIX B: FINITE-SIZE EFFECTS FROM ANYONS
CROSSING THE INTERFACE

In some cases, fluctuations of charge density occur near the
interface after a quasihole is moved across it, provided that
the circumference of the cylinder is small. An example for
qL = 1, a = 2 is shown in Fig. 8. In Fig. 8(a) two pk;R = 1 R-
type quasiholes (each having half the charge of a basic L-type
hole) are placed in the R part, while in Fig. 8(b) one of them is
moved to the L part. Although these quasiholes are not valid
topological excitations of the L part, the charge concentrated
near their positions is close to −0.5, regardless of which
part of the system they are placed in [see Figs. 8(c) and
8(d)]. Nevertheless, the anyons cannot be regarded as fully
localized, because a deviation from 〈ni〉 = 1/2 is seen also
near the interface. We stress that this does not mean that the
quasihole “leaves behind” some of its charge at the interface
when crossing it (as was predicted for gapped interfaces, e.g.,
in Ref. [5]), because a correct quasihole charge is observed
in the vicinity of quasihole positions in Fig. 8(b). Instead, the
charge buildup probably comes from the fact that placing the
quasihole to the left of the interface results in pushing some
of the charge from the L part towards the R part, and some of

FIG. 8. Two pk;R = 1 R-type quasiholes in the qL = 1, a = 2
case. (a) and (b) The deviation of 〈ni〉 from 1/2 for an (8 + 7) × 3
system: (a) for both quasiholes on the R side and (b) with one
quasihole at each side of the interface. (c) and (d) The excess charge
of the quasiholes from (b), located in the L and R parts of the system,
respectively.

this charge does not cross the interface. Note that the sum of
charges accumulated on both sides of the interface vanishes.

This fluctuation of charge does not depend on the length of
the system. This can be seen in Fig. 8(e) depicting the average
particle density at given x coordinate,

〈n(x)〉 =
∑

i δ(x − xi )〈ni〉∑
i δ(x − xi )

, (B1)

for systems of different sizes. We set x = 0 precisely at the
interface, halfway between the rightmost column of L sites
and leftmost column of R sites. The colors denote different
Nys, while the line styles refer to different NxL, NxR. We
focus on the density variation on the sites closest to the
interface (the fluctuations occurring further from the inter-
face are due to the presence of a quasihole at each end of the
cylinder). We can observe that the density maximum on the
left of the interface has similar height for different systems
with the same Ny. The same is true for a minimum on the right
of the interface (with the exception of the NxL = 2, NxR = 1,
where a quasihole is too close to the interface and distorts
the picture). Nevertheless, we observe that these fluctuations
decrease with increasing Ny. This is not only an effect of
averaging over more sites, as can be seen in Fig. 9(b), showing
the excess charge as a function of x,

Q(x) =
NL∑
i=1

(
〈ni;L〉 − 1

2

)
δ(x − xi )

+ a
NR∑
i=1

(
〈ni;R〉 − 1

2

)
δ(x − xi ), (B2)

whose variation near the interface also decreases with in-
creasing Ny. Both the average density and excess charge
near the interface seem to tend to their bulk values for wide
cylinders [Figs. 9(c) and 9(d)]. Moreover, the total excess
charge accumulated on each side of the interface seems to
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FIG. 9. The accumulation of the charge at the interface in the
qL = 1, a = 2 case in systems of different size. In each case, there
is a pk;R = 1 R-type quasihole placed near each end of the cylinder.
(a) The average density as a function of the x position. (b) The excess
charge at a given x as a function of x. (c) The average density at
the rightmost sites of the L part, as a function of Ny. (d) The charge
accumulated at the rightmost sites of the L part, as a function of Ny.
(e) The total excess charge on each side of the interface as a function
of Ny. In (a) and (b), different values of Ny are denoted by different
colors, and different sizes in the x direction by different line styles
(see the legend in the middle). In (c)–(e), the different x sizes are
denoted by colors (see the bottom legend).

converge to the charges of the quasiholes located in these
regions [Fig. 9(e)], which means that the only excess charge
is concentrated near the quasihole positions. Figures 9(c)–9(e)
provide a further support for independence of this effect on
the x size of the system, as the results are very similar for all
NxL, NxR except of NxL = 2, NxR = 1.

Although this example above considers an R-type quasi-
hole which is not a valid anyon at ν = 1/qL, this is not a rule.
For qL = 2, the charge fluctuation may occur when we move
an L-type quasihole to the right of the interface (while all the L
quasiholes are valid topological excitations of the R part). The
example is shown in Fig. 10. The accumulated charge decays
in a way similar to the qL = 1 case, although more slowly,
and larger size in the x direction is required to separate the
quasihole from the interface.

Investigating several systems of different sizes and with
different quasihole positions, we observed that no charge
buildup appeared when the two sides of the interface fulfilled
the charge neutrality rules of the respective Laughlin states
separately, as well as all the cases which can be achieved from
this one by moving an equivalent of one L-type particle across
the interface (as in Fig. 6, where the quasihole has minus
the charge of one L-type particle). In all the other cases we
studied, charge fluctuations occurred at the interface if Ny was
small.

FIG. 10. The accumulation of the charge at the interface in the
qL = 2, a = 2 case in systems of different size. In each case, there is
a p1;L = 1 L-type quasihole placed near the right end of the cylinder.
(a) The average density as a function of the x position. (b) The excess
charge at a given x as a function of x. (c) The average density at
the rightmost sites of the L part, as a function of Ny. (d) The charge
accumulated at the rightmost sites of the L part, as a function of Ny.
(e) The total excess charge on each side of the interface as a function
of Ny. In (a) and (b), different values of Ny are denoted by different
colors, and different sizes in the x direction by different line styles
(see the legend in the middle). In (c)-(e), the different x sizes are
denoted by colors (see the bottom legend). Note that the (7 + 8) × 3
system is not taken into account, as we were not able to conduct the
calculation due to large differences in the order of magnitude for the
site coordinates after mapping to the complex plane.

APPENDIX C: BRAIDING PATH AROUND THE CYLINDER

The behavior of the (wi;R − z j;L )pi;Rn j;L/a term was covered
in Sec. III C for the paths not going around the cylinder. What
happens if they do? Let us consider moving a p1;R = 1 R-type
quasihole along a closed path which winds around the cylinder
once, staying in the R part throughout the process. After
mapping the cylinder to the complex plane, the path looks like
the solid line in Fig. 11(a)—it encircles the whole L region.
The term in question yields a phase 2π/a for each encircled
filled L site, i.e., 2πML/a in total. Now, while ML is not well
defined as the particles can be exchanged with the R part,
the exchange can only add or remove a multiple of a L-type
particles. Thus, the phase is in fact well defined and equal
to 2π

a (ML mod a). It does not depend on the position of the
quasiholes, and thus does not contribute to statistics.

There is also another potential problem raised by fractional
mutual statistics of L particles and R quasiholes: the parti-
cle gains a nontrivial phase when encircling the quasihole,
which can influence the boundary conditions for particles.
In Eqs. (21)–(23) there are three terms which involve an L
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FIG. 11. Two ways of mapping the cylinder to the com-
plex plane. The circles with arrows are the paths considered in
Appendix C: the solid one is the path of the R quasihole, while the
dashed one is the path of the L particle.

particle and allow for a fractional exponent (note that ηL, ηR

can be half-integer),∏
i, j

(wi;R − z j;L )pi;Rn j;L/a,
∏
i �= j

(zi;L − z j;L )−ni;LηL ,

∏
i, j

(zi;L − z j;R)−ni;LηR/a. (C1)

The first one is the term considered so far, describing the
statistical phase of an L particle and an R quasihole, the
other two describe the Aharonov-Bohm phase of an L particle
generated by L and R sites, respectively. All these terms
influence the boundary conditions for the L particles.

In the geometry considered so far [Fig. 11(a)], the particle-
quasihole term does not raise any problems, as a path fully
contained within the L part (dashed line) does not encircle
the R part. On the other hand, we can flip the L and R parts
before mapping the cylinder to a complex plane, which results
in the geometry shown in Fig. 11(b). Then, an L particle can
encircle the R part (see the dashed line). If we consider only
the

∏
i, j (wi;R − z j;L )pi;Rn j;L/a term, the boundary conditions for

the L particles seem to depend on the number of R quasiholes.

However, the two geometries from Fig. 11 describe physically
equivalent systems, so if such a dependence does not exist for
(a), it should not exist for (b).

To show that this is indeed the case, we have to carefully
examine all the terms generating a phase for particles (C1).
We consider a path corresponding to the dashed line in
Fig. 11(b), encircling the whole R part, as well as k L sites. We
again assume that all the R quasiholes with pi;R not divisible
by a are confined in the R part, so that they have well-defined
statistics, and hence the boundary condition for the L particles
is independent of the positions of these quasiholes. The total
phase of the L particle on the considered path is

φ = 2π

a

(
QR∑
i=1

pi;R − Nφ;R

)
− 2πkηL. (C2)

Using the charge neutrality relation (24), we obtain

φ = −2π

(
qL(ML + aMR) +

QL∑
i=1

pi;L

)
+ 2πηL(NL − k).

(C3)
All the quantities in this expression except from ηL are inte-
gers by definition, so the first term does not contribute to the
phase and we are left with

φ = 2πηL(NL − k). (C4)

Thus, the total phase has two interpretations: either a
combination of the statistical phase of the particle with respect
to the R quasiholes combined with the Aharonov-Bohm phase
due to the encircled R sites and k L sites, or the Aharonov-
Bohm phase due to the remaining NL − k sites, which are
encircled when we flip the cylinder again [the dashed line in
Fig. 11(a); the difference in sign of the Aharonov-Bohm term
in these two cases reflects the fact that the direction of the
braiding changes when we do the flip]. In other words, the
boundary condition phase of the L particles can be expressed
using only the quantities describing the L part.
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