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The electronic band structures of two-dimensional materials are significantly different from those of their
bulk counterparts due to quantum confinement and strong modifications of electronic screening. An accurate
determination of electronic states is a prerequisite to design electronic or optoelectronic applications of two-
dimensional materials; however, most of the theoretical methods we have available to compute band gaps are
either inaccurate, computationally expensive, or only applicable to bulk systems. Here we show that reliable
band structures of nanostructured systems can now be efficiently calculated using density-functional theory with
the local modified Becke-Johnson exchange-correlation functional that we recently proposed. After reoptimizing
the parameters of this functional specifically for two-dimensional materials, we show, for a test set of almost 300
systems, that the obtained band gaps are of comparable quality as those obtained using the best hybrid functionals
but at a very reduced computational cost. These results open the way for accurate, high-throughput studies of
band structures of two-dimensional materials and for the study of van der Waals heterostructures with large unit

cells.
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I. INTRODUCTION

Since the discovery of graphene [1], we have witnessed
a huge interest in two-dimensional (2D) materials. This is
motivated not only by the many potential applications of these
nanostructured systems [2—-6], but also by the many funda-
mental physics questions pertaining electronic excitations in
low dimensionality [7,8]. Many different 2D materials have
been synthesized, and many more have been predicted and
theoretically investigated for the past years [9-12]. In fact,
the current availability of supercomputers and modern tools
based on density functional theory [13,14] (DFT) has allowed
thorough investigations of a myriad of hypothetical 2D crys-
tals. This strategy of computationally accelerated discovery
of new materials has emerged as the most powerful and cost-
effective research paradigm within materials science [15].
Predicted 2D materials can then be characterized, again using
computational methods, selected based on their properties
and then proposed for specific technological applications.
The results of these high-throughput calculations are usually
accessible from online databases. The most prominent for
2D materials are the JARVIS-DFT database [9,16] (1356
materials), the computational 2D materials database [10,17]
(~4000 materials), 2DMatPedia [11,18] («~~6000 materials),
and the Materials Cloud Archive [12,19] («~1000 materials).

Some of the most exciting prospective applications for
2D materials reside currently in the fields of electronics
and optoelectronics [20]. In fact, several 2D semiconducting
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materials with large band gaps and high carrier mobilities
have recently attracted tremendous attention. This includes
not only graphene and transition-metal dichalcogenides, but
also monolayers like black phosphorus [21], that exhibit hole
mobilities as large as 1000 cm? V~! s~!. Furthermore,
a big advantage of novel 2D semiconductors is that their
electronic and transport properties [22] can be engineered by
modifying their thickness or applying external fields, leading
to unprecedented physical properties that are not observed in
bulk semiconductors (for example, the tunability of carriers
[23] or controllable valley physics [24]). Devices can be easily
built by stacking mono- or few-layer semiconductors and
metals to obtain van der Waals heterostructures [25].

The key physical property to evaluate electronic and opto-
electronic applications is the band structure, and in particular,
the band gap. Of course, for the high-throughput calculations
mentioned above to be meaningful, our theoretical methods
have to be able to provide an accurate estimation of such prop-
erties. These methods should, moreover, be computationally
efficient to allow for a time-effective screening of large classes
of materials.

DFT is often the method of choice to calculate the fun-
damental band gaps in both three-dimensional (3D) and 2D
worlds. Unfortunately, the quality of the results obtained with
DFT depends strongly on the choice of the approximation to
the exchange-correlation (XC) functional, unavoidable in any
practical implementation of the theory. Hundreds of approx-
imate XC functionals have been proposed in the literature
[26,27], and the reliability of some of them for band-gap
calculations was evaluated in several studies for 3D materials
[28-35]. The modified Becke-Johnson (MBJ) [36], the 2006
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hybrid from Heyd-Scuseria-Ernzerhof (HSE06) [37,38], and
the high local exchange (HLE16) [39] XC functionals were
identified as those with the smallest error for band gaps. In
particular, the MBJ combined the best performance overall
with a computational effort orders of magnitude smaller than
hybrid functionals [35]. Note that even though all of the three
functionals clearly outperform the Perdew-Burke-Ernzerhof
(PBE) functional [40], the latter is still largely used in standard
calculations of band structures.

In spite of all its qualities, the MBJ potential is unsuitable
for being used for 2D systems. The problem resides in an
integral that enters in the definition of the exchange potential
and that is only defined for 3D bulk systems. Recently we
proposed an improvement of the MBJ potential, the local MBJ
(LMBJ) potential [41], that resolves this weakness. In this
work, we aim at the following two goals: (i) reoptimizing the
two new parameters of the LMBJ (i.e., beside the parameters
already present in the MBJ potential) to minimize the error for
band gaps of 2D materials; and (ii) evaluating the performance
of the LMBIJ potential for a large data set of 2D systems.
In this way we verify if the local version of the of the MBJ
potential preserves the good description of band gaps also for
lower-dimensional and heterogeneous systems.

In benchmark studies it is common to evaluate errors of
theoretical calculations with respect to known experimental
data. Unfortunately, accurate experimental data on band gaps
of 2D materials are still scarce. Therefore we chose to measure
the error of our band-gap calculations with respect to the
best accessible theoretical data. These are results of many-
body GoW, calculations, which are stored for hundreds of
2D materials in the C2DB database [10,17]. We filtered out
298 stable, nonmagnetic materials with known GoW, band
gaps. This is enough data to fit the parameters of the LMBJ
potential and to evaluate its performance. We should note,
however, that GoW, band gaps have a non-negligible error
[42] when compared to experimental data, and that it is well
known that this approximation can catastrophically fail for d-
electron systems [43—45]. This means that it is not uncommon
for 3D materials that the MBJ gap from Kohn-Sham DFT
calculations is closer to experiment than the GoW;, band gap.
This fact will, of course, be kept in mind when discussing our
results.

II. METHODS

A. Local modified Becke-Johnson potential

The original Becke-Johnson (BJ) potential [46] is a semilo-
cal meta-generalized gradient approximation potential for the
exchange part of the exchange-correlation potential, and it
was modified by Tran and Blaha to obtain electronic band
gaps of 3D semiconductors very close to experimental values
[36]. It has the form

VW) = cvBR(r) + Bc — 2)1\/3,/M .
xV 12\ p(r)

with electronic density p(r) = va [;(r)|?, kinetic energy
density ¢(r) = va Vi - Vi, and the Becke-Russel (BR)

exchange potential [47]
1 1
vBR(r) = 50 [1 — e — Ex(r)ex(r)i|. )

x(r) is calculated from p(r) and its spatial gradient and
Laplacian, and b(r) = /x3e¢=* /(87 p(r)). The crucial part of
the MBJ potential is the ¢ parameter, which is calculated
self-consistently as

c=a+ Bg, 3)
with
_ 1 IVp(r)]
=— | &r—=. )
& Vcell /ce]l ,O(I‘)

o and B are fitted parameters obtained by minimizing the
average error of band gaps calculated for a set of semicon-
ductors using the MBJ potential with respect to experimental
values. In our work we will use the parameters o = 0.488
and B = 0.5 bohr together with € = 1 obtained during a later
reoptimization of the potential [48]. Tran and Blaha defined
the full XC potential by adding to Eq. (1) a correlation term in
the local-density approximation: this has become the standard
procedure to build the XC MBJ potential, and we adopted this
strategy also for the local version.

The fact that g(r) = |Vo(r)|/p(r) is averaged in the unit
cell hinders the application of the MBJ potential to systems
with reduced dimensionality (such as surfaces, mono- and few
layers, or molecules), as the value of ¢ becomes dependent
on the fraction of vacuum in the supercell. Moreover, g(r)
can become extremely large in inhomogeneous regions with
strong charge density variations, which leads to unphysically
large potential values. Still, attempts to use the MBJ potential
for 2D systems can be found in the literature [49-53]. While
some of these works do not specify how the MBJ potential
was implemented to treat the lower-dimensional system, the
solution is usually to fix the mixing parameter ¢ non-self-
consistently, e.g., by setting it to the value of the parent
3D bulk material, or by finding a ¢ which reproduces the
experimental band gap in a series of calculations. While the
justification of the former approach is questionable and its
performance would have to be evaluated in a separate study,
the latter approach is not predictive and it involves a large
number of individual calculations. The functional is for the
same reason inadequate to study heterostructures or other
strongly inhomogeneous systems. To address this problem, we
have recently introduced the LMBJ potential [41], a general-
ization of the MBJ exchange potential [36] that is identical
to the parent functional for bulk crystals, but it can also
be meaningfully used for inhomogeneous and nanostructured
materials. In fact, the mixing parameter of LMBJ potential,

c(r) = a + Bgr), ©)
is a local function of r, since g becomes a coordinate-
dependent, locally averaged function

'

1
8(r) = oty / d’r' gy e = (6)

The smearing parameter o in Eq. (6) has a clear physical
meaning, as it controls the localized volume over which g(r) is
averaged. To guarantee a proper treatment of vacuum regions
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TABLE L. Weights of the BR potential vER () [approximating the
Slater potential vf'(r)] and the correction term in the BJ, MBJ, and
LMBJ exchange potentials.

BR () A 1,5 1 /5 /a0
v (r) R vl (r) =V 12y 20

BJ 1 1
MBJ c 3¢ -2
LMBJ c(r) 3c¢(r)—2

in the unit cell, i.e., to impose the correct asymptotic limit to
the XC potential for large values of r, we further modified
g(r), introducing the threshold density py:

o) = l-«a |:1 —erf (P("))] N [Vo(r) orf <,0(")).
B Pth o(r) Pth
(7

The threshold density py, defines the value of the electronic
density below which the LMBJ potential must be equal to the
correct asymptotic limit in vacuum.

In Table I we summarize the steps leading from the BJ
potential over the MBJ potential to the LMBJ potential. Since
both MBJ and LMBJ potentials only modify the weights of
the BR potential and the correction o(t/p)"* in the original
BJ potential, they inherit many of its properties [46]. Most
importantly, the potentials recover the exchange potential of
the 3D uniform electron gas, and their asymptotical behavior
is ~1/r + C as r — oo, with a material-dependent constant
C. On the other hand, they are not gauge-invariant [54] and
they are not density functionals of any exchange energy. Thus
they cannot be used for total energy calculations.

Note that the authors of Ref. [54] propose a different
correction term in the BJ potential more suitable for 2D
materials than the MBJ potential. Their exchange potential
ensures gauge invariance, the correct limit for a 2D uniform
electron gas, and the !/- asymptotic behavior. Unfortunately,
band gaps of bulk materials calculated with this potential are
considerably worse than with the original MBJ potential [35].

Here we follow a different strategy. We start with the
formulation of the MBJ potential for 3D materials, modify it
to make it applicable to systems of arbitrary dimensionality,
and finally, evaluate its accuracy for a given property, which
is here the electronic band gap. Nevertheless, the 2D-specific
modifications to the BJ potential introduced in Ref. [54] com-
bined with the local mixing of Ref. [41] might be a promising
way for further improvements of the LMBJ potential.

In Ref. [41] the two additional parameters of the LMBJ
potential were fixed using physical arguments, and it was
shown that for o = 3.78 bohr = 2 A and the threshold
Wigner-Seitz radius rt = (3/47 py,)!/*) = 5 bohr, the LMBJ
potential yields band-gap values of 3D materials almost iden-
tical to those of the MBJ potential. It is reasonable to expect
that this remains true for o > 3.78 bohr, as increasing the
integration volume in Eq. (6) makes us approach the definition
of the MBJ potential. We also tested that r§h € (3.0,7.0)
bohr is a safe range for the threshold Wigner-Seitz radius.
Given these ranges, the first aim of this work is to fit the
two parameters to optimal values so that we minimize the

error in the calculation of band gaps of 2D semiconductors.
Keeping the good quality of the original MBJ potential for 3D
semiconductors is the obvious constraint to impose during this
minimization procedure.

B. The computational 2D materials database

The computational 2D materials database (C2DB) [10]
collects various physical properties of more than 4000 2D ma-
terials calculated by DFT and many-body perturbation theory
in the GoW, approximation [55]. Since accurate experimental
band gaps of 2D materials are so far unavailable, the currently
best way to optimize and evaluate the predictive power of the
LMBJ potential is to compare the LMBJ band gaps with those
obtained by the most reliable theoretical method. Despite the
issues with dielectric screening in 2D materials [56-58], the
state-of-the-art method for this class of systems is currently
the GoW, approximation [59,60].

C. Data set

Starting from the assumption that GoW, band gaps are
currently the most reliable ones, we extracted from the C2DB
the set of 2D materials that is stable (according to the stability
criteria stated in the C2DB), nonmagnetic, and for which
the band gap has been calculated using GoW,. In this way
we obtained 298 2D materials distributed among 12 different
space groups. Out of these materials we chose 22 to be used
for the optimization of the parameters o and r, according
to the following criteria: (i) two materials were chosen from
each space group (if possible); (ii) as many chemical elements

TABLE II. Set of 22 2D materials chosen for the parameter opti-
mization of the LMBJ potential. Band gaps are given in electronvolts
as stored in the C2DB [10]. The column labeled “spg” is the space
group of the crystal structure.

spg Material PBE band gap HSEO06 band gap GoW, band gap

5 S,Tl, 0.62 1.11 1.59
5 S,Sn, 1.94 2.56 3.25
6 Pb,S, 1.20 1.81 2.23
6 Cu,S, 0.62 1.31 1.58
8 Te,Tis 0.11 0.15 0.27
8  SesZn, 1.61 2.64 3.46
10 AwO, 0.18 0.87 0.97
12 TesZrs 0.21 0.25 0.45
31 Ge,Se, 1.12 1.56 1.86
31 S1» 1.42 2.14 2.88
53 Asq 0.83 1.32 1.80
53 P, 0.90 1.51 2.03
115 CaF, 6.45 8.63 11.37
115 CdBr, 2.93 4.09 6.20
129 Cu,Br, 1.50 3.48 3.32
129 Cu,Cl, 1.45 3.66 3.45
156 ISSb 1.22 1.78 2.26
156  CrSTe 0.26 0.82 0.70
164 PtS, 1.69 2.49 2.95
164  HfS, 1.22 2.15 2.94
187 BN 4.67 5.68 7.12
187 MoTe, 0.93 1.37 1.56
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FIG. 1. Frequency of elements in the evaluation data set. Elements indicated by gray boxes are not present in the data set.

as possible should be represented in the chosen subset; (iii)
materials with a large range of band gaps should be included;
and finally (iv) experimentally known materials were given
priority. The 22 2D materials selected according to these
criteria are listed in Table II.

The remaining 276 materials were used for the evaluation
of the quality of the band gaps calculated by the LMBJ
potential with the optimized parameters. The distribution of
the individual elements among these 276 materials is shown in
Fig. 1. Most of the periodic table is represented in the data set,
but some parts are still missing, most prominently, group-IA
elements (except hydrogen), noble gases, and lanthanides, and
actinides. On the contrary, the most represented elements are
the nonmetals, in particular, sulfur, selenium, and the halides.

The distribution of the GoW, band gaps in the data set is the
following: we find band gaps up to 10.85 eV, with the majority
of them lying in the interval between 1 and 4 eV. See Fig. 1 of
the Supplemental Material [61] for the full distribution of the
GoW, band gaps. Out of the 276 materials, 161 are of sp type,
containing only elements from groups IA, ITA, and ITA-VIIIA,
and 115 are of d type, containing at least one transition metal.
We will evaluate our results according to this subdivision of
the data set, and we denote the different sets “all materials,”
“sp materials,” and “d materials.”

D. Computational details

We performed all calculations using a custom version of
the Vienna ab initio simulation package (VASP) code [62] with
the projector-augmented-waves (PAW) method [63], where
we implemented the LMBIJ potential as described in the
Supplemental Material of Ref. [41]. Spin-orbit coupling was
included self-consistently in all calculations.

All LMBJ calculations started from a converged calcula-
tion using the PBE functional [40], and we always enforced
nonmagnetic solutions. The plane-wave cutoffs were taken
from the values specified in the pseudopotentials distributed
with VASP. All geometries were taken from the C2DB for
consistency, and two periodic 2D replicas were separated by
15 A of vacuum. The densities of the k-point meshes were
dependent on the size of the Brillouin zone, and we set them

t0 8.0 / A~ for all materials. Even though LMBJ calculations
required a large number of iterations to reach convergence,
as is known also from the MBJ implementation in VASP, all
calculations converged for the 2D materials in the data sets.

III. RESULTS AND DISCUSSION

A. Optimization of the parameters

In the first step we optimized the parameters o and rh of
the LMBJ potential. For the selected set of 22 semiconduc-
tors we calculated the electronic band gaps using the LMBJ
potential with o = {2.0, 3.0, 4.0, 5.0, 6.0, 7.0} A and r§1 =
{3.0, 5.0, 7.0} bohr . These values were chosen as they allow
us to recover the expected MBJ results for 3D materials.

For the optimization data set, our PBE results agree with
those of the C2DB, and the mean absolute percentage error
(MAPE) is in both cases larger than 50%. For all the tested
values, for the additional parameters of the LMBJ potential
we observe a large improvement over the PBE calculations,

all materials
12 >

. HSEO06 (C2DB) pras
107 . PBE (this work) e

LMB]J (this work)

Ecaic (V)

0 2 4 6 8 10 12
EG.w, (eV)

FIG. 2. Calculated band gaps as a function of GoW, (C2DB) band
gaps. Full lines are linear fits (y = ax + b) to the respective data, with
a and b given in Tabl III.
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TABLE III. Statistical measures for calculations of band gaps of 2D materials with HSE06 (from C2DB), PBE, and LMBJ potentials for

9 <

the data sets “all materials,

sp materials,” and “d materials.” All errors are calculated with respect to the GoW;, band gaps from C2DB. The

statistical measures are, in order, the number of false metals, mean error (ME, in eV), mean absolute error (MAE, in eV), mean percentage error
(MPE), mean absolute percentage error (MAPE), standard deviation (o, in eV), interquartile range (IQR, in eV), and linear fit (y = ax + b)

coefficients.

Set XC No. False met. ME MAE MPE MAPE o IQR a b
All HSEO06 (C2DB) 276 0 0.73 0.79 0.14 0.30 0.68 0.59 0.72 0.15
All PBE 276 0 1.48 1.48 0.42 0.53 0.96 0.93 0.57 —0.11
All LMBJ 276 3 0.81 0.86 0.16 0.38 0.63 0.50 0.77 —0.09
sp HSEO06 (C2DB) 161 0 0.90 0.90 0.25 0.25 0.60 0.56 0.73 0.05
sp PBE 161 0 1.58 1.58 0.46 0.46 0.94 0.85 0.58 —-0.10
sp LMBJ 161 0 0.87 0.89 0.23 0.26 0.62 0.56 0.75 0.02
d HSEO06 (C2DB) 115 0 0.48 0.63 —-0.01 0.36 0.70 0.67 0.74 0.23
d PBE 115 0 1.33 1.34 0.37 0.64 0.98 1.10 0.55 —0.11
d LMBJ 115 3 0.72 0.81 0.06 0.56 0.63 0.38 0.81 -0.20

as the MAPE stays between 25% and 35%. See Fig. 2 of
the Supplemental Material [61] for full results. The setting
that gives the lowest MAPE (o =4 A and r = 7 bohr )
predicts one false metal. Therefore we choose for the LMBJ
parameters the values o = 4 A and r = 5 bohr, with the
second-best MAPE = 25% and no false metals predicted.

B. Evaluation using the control set

Having identified the optimal values of the LMBJ param-
eters, o0 =4 A and r;h = 5 bohr, we used them to calcu-
late the band gaps of all 276 materials in the control data
set. We present the graphical comparison of the results in
Fig. 2 and give various statistical quantities such as the
mean error [ME = Z;’(yi — yi.cw)/n], mean absolute error
[MAE = Zl" |vi — yi,cw|/nl, mean percentage error [MPE =
Z:’ (vi — yi.cw)/nyiew], mean absolute percentage error
[MAPE = Y7 |yi — yi.ow|/nyi.cw], standard deviation [0 =
\/ Z;’(y,- —yi.ow — ME)?/n], interquartile range (IQR), and
the linear fit (y = ax + b) coefficients in Table III, as well as
in Fig. 3.

Looking directly at the data set of “all materials,” we
immediately see that the LMBJ potential performs much
better than PBE, and it gives results of essentially the same
quality as HSE06. While the absolute error of PBE is 1.48 eV
(53%), for LMBJ it is only 0.86 eV (38%), close to HSE06

HSEO6 MPE PBE

MAPE MAE/2 MAPE

ME/2 o

l1-a

with 0.79 eV (30%). The deviation of the errors from the
mean value (o and IQR) is in the case of LMBJ slightly
better than with HSE06, and -~30% better than with PBE.
Finally, performing a linear fit of the data leads to very similar
parameters a and b for LMBJ and HSEO6 (slightly better
for LMBIJ), both much closer to the ideal values @ = 1 and
b = 0 than PBE. These results can also be easily understood
by viewing the radar charts in Fig. 3, where the different
statistical quantities are plotted on different radial axes. The
blue area can be understood as a simple measure of the quality
of the given XC potential, the smaller area signifying better
overall performance.

We obtain additional insight by observing the results for
the two smaller sets “sp materials” and “d materials” (see
Table III as well as Fig. 3 of the Supplemental Material [61]).
As expected, the MAPE is in the case of sp materials smaller
than in the case of d materials for all three XC potentials.
Remarkably, for sp materials, LMBJ performs equally well
as HSE06 with MAPE(LMBJ) = 26% and MAPE(HSE06) =
25%, while PBE gives much larger errors (MAPE = 46%).
In the case of d materials, the quality of LMBJ (MAPE =
56%) lies between HSE06 (MAPE = 36%) and PBE (MAPE
= 64%). Here, we note a different behavior for d materials
with Egw, € (0,3) eV and Eg,w, € (0,3) eV, as shown in
Fig. 4 of the Supplemental Material [61]. In the former case,
LMBJ (MAPE = 68%) does not improve over PBE (MAPE =

LMB]J MPE

MAE/2 MAPE MAE/2

ME/2 o ME/2

1-a l1—-a

FIG. 3. Radar charts of the statistical quantities in Table III for HSE06 (C2DB), PBE, and LMBJ.

245163-5



RAUCH, MARQUES, AND BOTTI

PHYSICAL REVIEW B 101, 245163 (2020)

69%) and remains much worse than HSE06 (MAPE = 40%),
while in the latter, LMBJ is again as good as HSE06 (MAPE
= 22% for both), reducing the error of PBE by more than
50% (MAPE = 88%). Note, however, that part of this error
might also be related to the difficulty of standard GoyW, to
describe d-electron systems. A larger set of experimental data
is therefore necessary to draw definitive conclusions.

IV. CONCLUSIONS

In summary, we extracted a set of 298 stable 2D nonmag-
netic materials from the C2DB database for which GoW,, band
gaps are given. We chose 22 of the materials distributed as
evenly as possible over space groups, chemical compositions,
and the band gaps. We then used this subset to optimize the
parameters o and " of the LMBJ XC potential, obtaining
4 A and 5 bohr, respectively. We used the GoW, band gaps
as a target quantity due to the lack of sufficiently reliable
experimental data for 2D materials.

We then evaluated the quality of the LMBJ XC potential for
2D materials by calculating the band gaps of the remaining

276 2D materials in the data set. Overall, the performance
of the LMBJ potential is very close to that of the HSE06
hybrid functional. More precisely, LMBIJ performs as well as
HSEO06 in the case of sp materials, while being slightly worse
for d materials. Furthermore, it consistently outperforms the
standard PBE XC functional in both cases. We emphasize,
however, that the LMBIJ calculations are orders of magnitude
faster than HSEO6 (and than GoW;). Therefore LMBIJ can be
used for band-gap calculations of 2D materials, especially
for systems where the HSEO06 or GyW, are computationally
too demanding, almost without loss of accuracy compared to
HSEOQ6. This makes accurate band-gap calculations possible
also for large 2D materials with many atoms in the unit cell.
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