
PHYSICAL REVIEW B 101, 245161 (2020)

Intermediate phase in interacting Dirac fermions with staggered potential
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By performing exact quantum Monte Carlo simulations of a model of interacting Dirac Fermions with
staggered potential, we reveal a novel intermediate phase where the electronic correlations drive a band insulator
metallic, and at a larger interaction, drive the metal-to-Mott insulator. We also show that the Mott insulating
phase is antiferromagnetic. A complete phase diagram is achieved by studying the phase transitions at large
staggered potential and interaction strengths, which shows that the intermediate state is robust and occupies a
large part of the phase diagram and that it should be more feasible to be detected experimentally.
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I. INTRODUCTION

Since the discovery of graphene [1,2] and topological
insulators [3], Dirac fermions described by a honeycomb
lattice have enriched our knowledge of physics beyond
Landau’s symmetry breaking theory [4–6]. Landau’s theory
of the Fermi liquid describes the interacting electrons of a
typical metal as an ideal gas of noninteracting quasiparticles.
This description is expected to fail for Dirac fermions due
to their linearly dispersing bands and minimally screened
Coulomb interactions [2]. Half-filled graphene hosts a Dirac
fluid governed by relativistic hydrodynamics [7]. Inspired by
recent experiments on twisted bilayer graphene [8–10], a fast-
growing frontier of research has focused on the novel physics
induced by correlation effects in interacting Dirac fermions.

Correlation effects play an essential role in many intriguing
physical properties of modern science, touching upon top-
ics ranging from unconventional superconductivity [11,12],
fractional quantum Hall effect [13,14], quantum spin liq-
uid [15–17], to metal-insulator phase transitions [18,19].
Those phenomena are all relevant to the ionic Hubbard
model [20], which contains the on-site Coulomb interac-
tions and staggered potentials on bipartite lattices. Generally
speaking, in a bipartite lattice like the honeycomb lattice,
a broken inversion symmetry caused by an energy offset
between the two sublattices leads to a trivial band insulator
at half filling, and the Coulomb interaction slows down the
electrons or even localizes them in a Mott insulating phase,
characterized by a spectral gap that opens [21]. Studies on
the competition between the on-site Coulomb interactions
and staggered potentials have witnessed extraordinary growth
about the possible exotic intermediate states between two or
more competing phases.
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This issue was very actively debated over more than a
decade [20–29] before finally being settled [30,31]. The sem-
inal work of dynamical mean-field theory (DMFT) studies
on a square lattice [32] suggests that an interaction-induced
metallic phase exists in the intermediate coupling region.
Subsequently, cellular DMFT simulations found a bond or-
der phase [27] in this region, while determinant quantum
Monte Carlo (DQMC) calculations of conductivity indicate
a metallic phase [19,33]. In addition to metallic and bond
order insulating phases, various other phases depending on
the lattice geometry have been proposed on other bipartite
lattices, such as the charge-density-wave insulator [27], super-
fluid [25,26], semimetal [28], and half-metal [29]. Recently,
exciting progress on ultracold atom experiments has been
made, and the ionic Hubbard model was realized in an opti-
cal honeycomb lattice [30,31]. Unfortunately, only the band
insulating phase and Mott insulating phase were observed.
Therefore, determining the existence of an intermediate phase
or the nature of the intermediate phase is a subtle and largely
open problem. Stimulated by the controversy and to motivate
further experiments, in this paper, we focus on the ionic
Hubbard model on a honeycomb lattice, which is a minimal
model that includes both interactions and staggered potentials
in a two-dimensional (2D) Dirac system. This model can not
only be implemented in cold-atom systems but also can be
realized on hydrogen graphene [34]; moreover, the new family
of 2D layered nitride materials LixMNCl (M = Hf, Zr) may be
another candidate [35].

Our simulations were completed by the DQMC method
on a half-filled case. By varying the on-site interaction U ,
staggered potential �, lattice size, and temperature, the bulk
conductivity σdc is calculated to determine either a metallic
or an insulating phase, and finite-size scaling is implemented
to detect the long-range antiferromagnetic (AFM) order in the
thermodynamic limit. Our results reveal that an intermediate
metallic state exists between the band and Mott insulators,
and the AFM order appears after the second metal-insulator
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FIG. 1. The phase diagram of the ionic Hubbard model on a
L = 12 honeycomb lattice. The phase boundaries are decided based
on the temperature dependence of the conductivity σdc and the
finite-size scaling of the AFM structure factor. Above the dark red
solid line is where AFM order appears. The area covered with dark
red dots above the dark red solid line is the Mott insulating phase
with AFM order. The dark red dashed line represents transitions
between Mott insulator and metal, and the dark green dashed line
indicates the phase boundary between metal and band insulator.
Those three colored areas distributed alongside the two transition
lines indicate different phases (green: band insulator, blue: metal,
pink: Mott insulator). The white colored area indicates indistinct
phases due to calculating errors.

transition with increasing U . The exact numerical method that
we are using successfully captures all the phase transitions at
large-enough staggered potential and interaction strength, and
a complete phase diagram is achieved and shown in Fig. 1,
which has several key differences relative to previous models.
First, the intermediate state that we found is more robust and
occupies a larger part of the phase diagram. For example,
at small �, the intermediate phase disappears quickly as U
increases in the ionic Hubbard model on a square lattice [19],
while here, the intermediate state is robust up to Uc = 3.9.
Second, the critical Uc is in a reasonable range for experimen-
tal detection. The intermediate insulator state in the square
lattice vanishes around U = 11 [27] while it continues in the
Haldane-Hubbard model [36]. Furthermore, beyond previous
results, we show a complete phase diagram where for large �,
the intermediate state disappears, and the system transitions
from band insulator to Mott insulator directly.

II. MODEL AND METHOD

The Hamiltonian for interacting Dirac Fermions with stag-
gered potential is

Ĥ = − t
∑

i∈A,j∈B,σ

(ĉ†
iσ ĉjσ + H.c.) + U

∑
i

n̂i↑n̂i↓

+�
∑

i∈A,σ

n̂iσ − �
∑

i∈B,σ

n̂iσ − μ
∑

iσ

n̂iσ , (1)

where t , U , and μ represent the nearest-neighbor electron
hopping amplitude, on-site Coulomb repulsion, and chemical
potential. The electron density of the system is characterized
by the chemical potential μ. ĉ†

iσ (ĉiσ ) is the operator that

creates (annihilates) an electron with spin σ at site i, and
n̂iσ =ĉ†

iσ ĉiσ . Specifically, � is the staggered one-body poten-
tial between sites in A and B sublattices with opposite signs.
It is also called the ionic potential. The band gap, 2�, has a
nonzero value as a result of breaking the symmetry between
sublattices A and B. We set t = 1 as the default energy scale.

We adopt the exact DQMC method [37] to study the phase
transitions in the model defined by Eq. (1). DQMC is a
powerful and reliable tool to investigate strongly correlated
electron systems. In the DQMC method, the partition function
Z = Tr exp(−βH ) is expressed as a path integral over the
discretized inverse temperature β over a set of random aux-
iliary fields. Then, the integration is accomplished by Monte
Carlo techniques. The on-site interaction is decoupled by a
Hubbard-Stratonovich (HS) transformation, which leads to a
sum over the discrete HS field and leaves the Hamiltonian
in a quadratic form in the fermion operators. The resulting
quadratic form can be integrated analytically and becomes the
Boltzmann weight, expressed as the product of the determi-
nants of two matrices that depend on the HS spin variables. In
the half-filled ionic Hubbard model on the honeycomb lattice,
the system is sign-problem free on account of the particle-hole
symmetry, which allows us to achieve large β simulations to
converge to the ground state.

With the aim of exploring the phase transitions of the sys-
tem, we computed the T -dependent DC conductivity, which
is calculated from the wave vector q and the imaginary
time τ -dependent current-current correlation function [38,39]
�xx(q, τ ):

σdc(T ) = β2

π
�xx

(
q = 0, τ = β

2

)
, (2)

where �xx(q, τ )=〈 ĵx(q, τ ) ĵx(−q, 0)〉, β=1/T , ĵx(q, τ ) is the
(q, τ )-dependent current operator in the x direction. Equa-
tion (2) was employed for metal-insulator transitions in the
Hubbard model in many works [18,39,40]. A further way
is to extract the spectral function by inverting the Laplace
transform as follows:

G(q = 0, τ ) =
∫

dω
e−ωτ

1 + e−βωA(ω)
, (3)

in which G(q = 0, τ ) can be achieved from the spatial Fourier
transform of G(R, τ ) = 〈cr+Rσ (τ )crσ (0)〉, and A(ω) is solved
by performing with a method of analytic continuation.

We are also concerned about the magnetic properties of the
system by studying the AFM spin structure factor [15]

SAFM = 1

Nc

〈(∑
r∈A

Ŝz
r −

∑
r∈B

Ŝz
r

)2
〉
, (4)

where Nc represents the unit cell number of the lattice, Ŝz
r

is the z component of the spin structure factor operator, and
the angle brackets 〈· · · 〉 signify Monte Carlo simulations. To
further study the nature of different stages of the system, we
calculated the local moment m by [41]

m = 1

Nc

∑
i

〈(
Ŝz

i

)2〉 = 1 − 2

Nc

∑
i

〈n̂i↑n̂i↓〉. (5)
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FIG. 2. The conductivity σdc is shown as a function of temper-
ature at half-filling with increasing interaction U for different �,
(a) and (b).

III. RESULTS AND DISCUSSION

We first calculated the temperature dependence of conduc-
tivity σdc with increasing interaction U for a fixed value � =
0.3. Basically, dσdc/dT > 0 at low T indicates an insulating
phase, while dσdc/dT < 0 at low T corresponds to a metallic
phase. In Fig. 2(a), we can see that at U = 0.0 and U = 1.0,
the σdc curve shows a concave down tendency and approaches
the origin as the temperature decreases. This kind of low T
behavior suggests that the system exhibits insulating behavior.
Interestingly, the behavior becomes metallic as the on-site
interaction increases to U = 1.8. A further increase in the
interaction to U = 2.5 reinforces the metallic behavior, but
the advance to U = 4.5 destroys the metallic state thoroughly
and changes the system into a Mott insulator phase. When
the staggered potential increases to � = 0.6 for U = 2.5, the
increase in � suppresses the metallic behavior and insulating
state develops, which also implies that the value of U = 2.5 is
not strong enough to drive the metallic phase for � = 0.6.

We present more data in Fig. 2(b) to emphasize the contrast
and highlight the effect of the staggered potential. For � =
0, at U = 1.0 and U = 3.5, σdc increases as T is lowered.
When we calculate larger U values (U = 4.0 and U = 4.5),
σdc decreases as T is lowered, which shows insulator behavior
when the staggered potential is absent. For the U = 4.0 case,
the insulating phase at � = 0 is displaced by a metallic phase
when � = 0.6.

Figure 2 reveals the interesting phenomenon that the elec-
tronic correlation may drive a band insulator metallic, and
at a larger interaction, there is a second transition from the
metal to a Mott insulator. To further explore this issue, we
plotted Fig. 3. Figure 3(a) shows that the transition from
metal to Mott insulator is restored at Uc = 3.9 for fixed � =
0.0. In Fig. 3(b), the curves intersect at two points, Uc1 =
1.4 and Uc2 = 4.2. In the range of 0 < U < Uc1 and Uc2 <

U < 5.0, the conductivity σdc values at higher temperature
exceeds those of lower temperature for the same U . The
system maintains an insulating phase. The opposite situation
emerges within the range of Uc1 < U < Uc2. The conductivity
increases as the temperature decreases, which demonstrates
the metallic phase. The largest conductivity value for different
T values remains near Up = 3.0 at � = 0.3. The two cross-
points represent the transitions from band insulator to metal
to Mott insulator. Figure 3(c) confirms these transitions with

FIG. 3. The conductivity σdc at half-filling versus the interaction
U for different temperatures for (a) � = 0.0, (b) � = 0.3, and
(c) � = 0.5. (d) The conductivity σdc versus the interaction U
for different � at β = 12 shows that the position of the largest
conductivity moves to larger U as � increases.

different Uc1 = 2.6 and Uc2 = 4.3 at � = 0.5, and the largest
conductivity occurs at approximately Up = 3.5.

Interestingly, however, the position of the largest conduc-
tivity moves to larger U as � increases, roughly following
the law of Up(�) = 2.5 + 2�, as that shown in Fig. 3(d).
This result is quite different from that of the ionic Hubbard
model on a square lattice, where the largest conductivity
remains near Up(�) = 2�, as one might expect from the t =
0 analysis [19]. In the Hubbard model on a square lattice, the
charge density wave and local moments are perfectly balanced
on the special U = 2� line at t = 0, and hence, the system is
most likely to be metallic. At t = 1, the AFM point also lies
on that line, which is Uc = 0 at � = 0, but for a honeycomb
lattice, the AFM point lies much higher above the line due to
its Dirac fermion behavior at half filling. Therefore, perhaps
the AFM point “pulls” the largest σdc point up from U = 2�,
and this “pull,” also leaves a larger region of intermediate
phase for interacting Dirac fermions with staggered potential.

To further support our analysis of the intermediate phases
shown in Figs. 1 to 3, we calculated the spectral functions
A(ω) for � = 0.5 and for three values of U corresponding
to the three phases. As shown in Fig. 4, for U = 0.5 and
U = 5.0, corresponding to the band insulating and Mott insu-
lating phases, respectively, A(ω) shows a gap around ω = 0,
thus indicating an insulator. In contrast, A(ω) for U = 3.5 is
nonvanishing and shows a quasiparticle peak at ω = 0, thus
indicating a metallic phase. The results of spectral functions
are consistent with the measurements of conductivity, as
U gets larger for � = 0.5, the spectral function shows an
interaction-induced closing of a band gap and a subsequent
opening of a Mott gap.

245161-3



WANG, ZHANG, MA, CHEN, LIANG, AND MA PHYSICAL REVIEW B 101, 245161 (2020)

FIG. 4. Spectral function A(ω) for different values of the on-site
interaction strength U with � = 0.5 and L = 6 at β = 12.0. The
black solid line and the blue dotted line exhibit band and Mott
insulators, respectively, both of which show clear gaps at ω = 0. The
red short-dashed line exhibits a metallic behavior as A(ω) is nonzero
at ω = 0.

Figure 5 provides the finite-size scaling results of the AFM
structure factor on lattices of size L = 3, 6, 9, 12, 15. By
extrapolating the data to the thermodynamic limit, we estimate
that the critical point for U is U = 4.0 ∼ 4.3 when the band
gap � = 0, which is consistent with the previous studies of
AFM order [15]. As we can see, � suppresses the AFM

FIG. 5. The AFM spin structure factor SAF in the thermodynamic
limit, which is plotted as a function of 1/L for different staggered
potential values at fixed (a) U = 4.0, (b) U = 4.3, (c) U = 4.5, and
(d) U = 5.0 at β = 12.0. The scattered symbols are our AFM calcu-
lation results. The curves represent the results of cubic polynomial
data fitting. A finite y-axis intercept in the L → ∞ limit indicates
that the long-range AFM order exists.

FIG. 6. (a) First derivative of the local moment m with respect to
U as a function of U for fixed different values of �, ∂m/∂U , shows
a local maximum value at the transition point from metal-to-Mott
insulator state for small �. (b) First derivative of m with respect to
�, ∂m/∂�, as a function of � for fixed different U .

structure factor, while U plays an opposite role. An increase
in the on-site interaction to U = 4.5 AFM order for � = 0.3,
and a further increase to U = 5.0 enables all calculated �

values to exhibit AFM order.
Local moment formation has been reported to happen dis-

continuously for the onset of Mott insulator behavior [41–43].
Figure 6(a) shows ∂m/∂U on U for a range of fixed values
of � for L = 12 and β = 12. We find that the Mott metal-
insulator transition is associated with a maximum value in
∂m/∂U . The value of U where the maximum in ∂m/∂U
appears is very close to the Uc characterized by the con-
ductivity shown in Fig. 1. Although the error bars make the
U value of ∂m/∂U transition point somewhat uncertain, the
discontinuity of ∂m/∂U is an indicator of the phase transi-
tions. The behavior of ∂m/∂� versus � is given in Fig. 6(b).
At small interaction (U = 2.0, 3.0) the system undergoes a
very robust metallic phase, then immediately changes into
a band insulator phase as � gets larger, thus distinguishing
the corresponding ∂m/∂� lines from the large U ones, as at
large U the phase transition of the system falls near the Mott
metal-insulator boundary.

The local moment is related with the double occupancy d
of m = 1 − 2d , and the evolution of d may explain the phase
transitions of the system to some extent. At T = U = 0 and
� > 0, the system is an insulator with some double occupancy
because of the gap. If U is increased, the charges would rear-
range to reduce the double occupancy. If increased enough,
eventually there is an elimination of double occupancy, one
spin 1/2 occupies each site, and the model has long-range
AFM order.

We also compared our results to those of an experimental
study [30], in which their Mott insulator (MI) correlation
image lies in our MI phase and CDW ordered phase lies in
our band insulating (BI) phase. Their noise correlation image
of the metal phase is a bit outside our metallic phase (which
ends at Uc = 3.9). However, our value for Uc, based on the
conductivity, is consistent with the very precise simulations of
Otsuka et al. [15] which finds Uc = 3.9 based on the magnetic
structure factor. Beyond this consistency, we obtain a phase
diagram with numerically exact phase boundaries, making our
results surpass the experimental work.

To make a more direct comparison to the experiments [30],
the double occupancy d as a function of the on-site interaction
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FIG. 7. The double occupancy d as a function of the on-site
interaction U for various values of � for L = 6 at β = 12.

U for various values of � is shown in Fig. 7. For strong
attractive interactions, a large fraction of doubly occupied
sites is observed and it continuously decreases as U increases.
In the weak repulsive interactions where � 
 U , the double
occupancy continues to be large, as is that expected for the
band insulator. For the strong interaction region of U 
 �,
the double occupancy tends to vanish for the largest U ,
consistent with a Mott insulating phase. These trend and
physical characteristics of double occupancy basically match
the experimental results shown in Fig. 2 of Ref. [30].

IV. CONCLUSION

Between the band insulating phase and Mott insulating
phase, we find a metallic phase in the ionic Hubbard model on
a honeycomb lattice. On a square lattice [19,32,33], Coulomb
interactions produce an AFM insulating phase at infinitesimal
U , and the competition with the staggered potential induces a
metallic phase [33]. By contrast, on the honeycomb lattice,
a Mott insulator transition occurs at finite U even without
staggered potential, and a rather wide region of U and � for
the metallic phase is found.

In summary, we studied the ionic Hubbard model on a
honeycomb lattice by a determinant quantum Monte Carlo
method. We found that the intermediate phase between the
two insulating phases was metallic. The staggered potentials
drive the metallic phase to the band insulating phase, while
the effect of the Coulomb repulsion was quite different.
The Coulomb repulsion first drives the metallic phase into a
nonmagnetic Mott insulating phase and then to the antiferro-
magnetic Mott insulating phase. As the Coulomb repulsion
U increases, the critical value of the staggered potential �c

increases, suggesting competition between the two energy
scales. However, along the Mott metal-insulator transition
line, the effect of the staggered potential is weak as the
electrons are localized in the Mott insulating phase. Compared
to previous theoretical proposals on some other models, our
extensive numerical studies succeed in achieving a complete
phase diagram, where the intermediate state is robust and
occupies a large part of the phase diagram, and thus it should
be more feasible to be detected experimentally.
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APPENDIX A: FINTIE-SIZE EFFECT

To make the phase diagram more accurate and convincing,
order parameters computed on finite-size lattices must be
extrapolated to the thermodynamic limit. The finite-size effect
on the spin structure factor SAFM was carefully examined
in the paper. Here we discuss the size effect of the DC
conductivity.

In Fig. 8, we plot the conductivity σdc as a function of
the temperature for lattices up to L = 15 at metallic states
(a) and insulating states (b). Both Figs. 8(a) and 8(b) (U =
1.0) indicate that the lattice size has a distinct influence
on the conductivity for U � 3.0. This result is predictable
because the finite-size effects have remarkable impact on
weak coupling. At U = 3.0 and � = 0.3, there is an increase
in σdc with decreasing T for the lattices that we studied.
Additionally, the metallic behavior weakens as the lattice
size is increased. Although σdc decreases with increasing
lattice sizes, the signature of metallic behavior dσdc/dT < 0
is unchanged. At U = 1.0 and � = 0.3, the system shows an
insulating behavior at low temperature, and results on larger
lattice sizes reconfirm this behavior. At larger interaction
strength as U = 4.5 for the insulating states, the conductivity
is almost independent of the lattice size.

These findings are consistent with the consensus that in
a gapped system, one expects finite-size effects to be much
smaller than in a metallic one. Because our focus is to discern
the insulating phase, the data suggest that the L = 12 lattice is
large enough to be simulated for σdc, and we could ascertain
the insulating phase at low T .

APPENDIX B: ZERO-TEMPERATURE LIMIT

The numerical method we employ, the finite temperature
determinant quantum Monte Carlo (DQMC) method, can
only calculate results at finite temperature. But we ensured

FIG. 8. The conductivity σdc is shown as a function of tem-
perature at half-filling for various lattice sizes with � = 0.3 of
(a) metallic and (b) insulating states.
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FIG. 9. Temperature (β = 1/T ) dependence of the AFM spin
structure factor SAFM. At sufficiently low temperatures, SAFM satu-
rates and becomes temperature independent within acceptable statis-
tical errors.

that the numerical results are converged at sufficiently low
temperature, low enough to be regarded as the ground-state
properties (zero temperature). Figure 9 is the detailed ex-
ample. In Fig. 9, we plot the AFM spin structure factor
SAFM as a function of the inverse temperatures β = 1/T
under circumstances of different lattice sizes and staggered
potentials.

The figure shows that the AFM order increases as the tem-
perature is lowered. When T drops below a lattice-dependent
temperature, SAFM saturates and gradually level off, barely
no β dependence within acceptable statistical errors. So we
reasonably conclude that the physical observable has reached
the T = 0 ground state if its value is convergent below some
β0 � 10. In this work, we evaluated the limit to be β0 � 12 for
the spin structure factor. All the data presented in our paper
were acquired at temperatures lower than β0. Therefore, the
results we obtained can be regarded as the T = 0 ground-state
properties under the corresponding conditions. Considering
this, we can do the 1/L → 0 size scaling.

APPENDIX C: DC CONDUCTIVITY FORMULA

In our work, the low temperature behavior of DC conduc-
tivity σdc is used to distinguish metallic or insulating phases.
We implemented the approach proposed in the work by
Trivedi et al. [38], which is based on the following argument.
From the fluctuation-dissipation theorem

�xx(q, τ ) = 1

π

∫
dω

e−ωτ

1 − e−βω
Im�xx(q, ω), (C1)

where �xx is the current-current correlation function. While
Im�xx(q, ω) could be computed by a numerical analytic
continuation of �xx(q, τ ) data, we instead here assume that
Im�xx ∼ ωσdc below some energy scale ω < ω∗. Provided
the temperature T is sufficiently lower than ω∗, the above
equation simplifies to

�xx

(
q = 0, τ = β

2

)
= π

β2
σdc, (C2)

which is Eq. (2) in the main text.
It has been noted that this approach may not be valid

for a Fermi liquid [38]. In this situation, the characteristic
energy scale is set by ω∗ ∼ N (0)T 2. The requirement T < ω∗
will never be satisfied. However, in the system we study, the
energy scale is set by the temperature-independent staggered
potential strength ω∗ ∼ � so that Eq. (C2) is valid at low
temperatures.

It is worth mentioning that the authors of Refs. [18,38] that
used the DC conductivity formula were simulating disordered
systems, whereas it still applies to a system without disorder.
In Eq. (C1), if we set τ to its largest value, τ = β/2, where
β is large, then the e−ωτ = e−ωβ/2 factor dies off rapidly and
only small ω values contribute to the integral. More specifi-
cally, we expect a low frequency behavior where Im� ∼ ωσdc

are important, and we can substitute this in and do the ω

integration. This yields the approximate formula Eq. (C2).
Notice that for a Fermi liquid, 
 ∼ 1/τe−e ∼ N (0)T 2 so it is
impossible to satisfy T  
. Hence we cannot use Eq. (C2).
We are only safe if there is another scale (scattering mecha-
nism), like disorder, which sets 
. For example, if we have
disorder of strength V and 
 ∼ V we can reduce T to the
point where T  
 and use Eq. (C2).

Now, even though we do not have disorder, we do have
an energy scale V associated with the staggered potential
V (−1)l nl . If we Fourier transform this, it does scatter the
fermions but only between q and q + π , whereas a random
potential mixes all q.
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