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We derive a canonical form for 2-group gauge theory in 3+1D which shows that it is equivalent either
to Dijkgraaf-Witten theory or to the so-called “EF1” topological order of Lan and Wen. According to that
classification, recently argued from a different point of view by Johnson-Freyd, this amounts to a very large class
of all 3+1D topological quantum field theories (TQFTs). We use this canonical form to compute all possible
anomalies of 2-group gauge theory which may occur without spontaneous symmetry breaking, providing a
converse of the recent symmetry-enforced-gaplessness constraints of Córdova and Ohmori and also uncovering
some possible new examples. On the other hand, in cases where the anomaly is matched by a TQFT, we try to
provide the simplest possible such TQFT. For example, with anomalies involving time reversal, Z2 gauge theory
almost always works.

DOI: 10.1103/PhysRevB.101.245160

I. INTRODUCTION

In recent years there has been much activity using anomaly
matching to probe the infrared physics of gauge theories
[1–4]. Of particular interest is the role of 1-form symmetries,
whose spontaneous breaking implies deconfined gauge de-
grees of freedom in the IR. In the presence of a nontrivial
’t Hooft anomaly, spontaneous symmetry breaking (SSB) is
a typical outcome. The question arises, can we match an
anomalous 1-form symmetry with a gapped phase, i.e., a
topological quantum field theory (TQFT), without SSB? What
about more general combinations of 0-form, 1-form, and
gravitational anomalies? Or time-reversal symmetry?

These are important questions also for probing the phase
diagram of lattice systems with a Lieb-Schultz-Mattis (LSM)
constraint [5–7], which implies a ’t Hooft anomaly in the IR
[8,9]. Such theorems have been used to search for candidate
spin liquids [10] by attempting to rule out SSB states such as
magnetic order. Our method produces the simplest possible
gapped spin liquid states in 3+1D consistent with a given
LSM anomaly (which may be computed as a group coho-
mology class using the methods of [11]), when there is no
symmetry breaking.

Perturbative, or local, anomalies such as the chiral anomaly
give nontrivial constraints on the correlation functions of local
operators, so these cannot be matched by a gapped phase (and
SSB implies the existence of gapless Goldstone modes). For
global anomalies, on the other hand, it seems some may be
matched by a gapped phase without SSB, while others cannot.
Recently some interesting general constraints on the anomaly
have been derived assuming only topological invariance and
the lack of SSB [12,13]. The general phenomenon of an
anomaly which is not realizable by any gapped phase without
SSB we refer to as “symmetry-protected gaplessness.”

In this note, we start with 3+1D Crane-Yetter/2-group
gauge theory1 and compute all possible anomalies which can

1We do not need to consider 3-group gauge theory, because the
3-form field can always be dualized to a local order parameter. That

be realized without SSB, using the group cohomology and
cobordism classification of anomalies [14,15]. The results of
our calculations are consistent with the constraints of [12,13]
and in most cases we find a converse to their results—that
is, all anomalies not ruled out by [12,13] are realized by a
2-group gauge theory without SSB. There is only one case
where an anomaly is missing from known 3+1D TQFTs, but
is not known to be ruled out by [12,13], which we discuss in
Sec. III C 4.

It has also been argued in [16] that bosonic unitary 3+1D
TQFTs are highly constrained, admitting a certain canonical
gapped boundary condition where all bosonic quasiparticles
are confined. To facilitate the calculation of the anomaly,
we show a reduction of a general 2-group gauge theory to
a canonical form, essentially a 1-form gauge theory, which
matches this conjecture, and generalizes the dualities in [17].
We find that 2-group gauge theories realize all “EF1” topolog-
ical orders, according to the notation of [16]. There are some
known topological orders which are outside this class, so until
it is known how to compute anomalies of these more general
theories, we cannot yet give a full computational rederivation
of [12,13], even assuming the conclusions of [16]. However,
this larger class “EF2” differs from EF1 only by certain Z2

extensions [18], while our “missing” anomalies are typically
of odd order, so we expect these anomalies are also not
realized by EF2 topological orders.

Throughout, whenever possible, we attempt to construct
the simplest gapped realization of each anomaly. For instance,
most time-reversal anomalies are realized by Z2 gauge theory
(also known as the 3D toric code), the simplest 3+1D TQFT.
Recently a mathematical justification for Lan and Wen’s con-
jectured classification was given in [19]. This suggests that the
TQFTs we find in this note are indeed the simplest possible
which can match each anomaly.

is, 3-group gauge theory always describes a spontaneous-symmetry-
breaking phase.
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TABLE I. Global anomalies realized by 3+1D finite gauge theory.

Type All Realized? Section Comments

(i, j, k) in classification (8):
(6, 0, −1) pure 0-form no III C 1 mixed finite/connected terms not realized
(3, 3, −1) mixed 0/1-form yes III C 2
(1, 5, −1) mixed 0/1-form no III C 3 1

2 A ∪ B ∪ B realized
(0, 6, −1) pure 1-form no III C 4 (1/4)B ∪ dB realized
(2,0,3) mixed 0-form/gravity no III C 5 (1/2)A ∪ w2(T X ) ∪ w2(T X ) realized
(0,0,5) pure gravity yes III C 6
(i, j, k) in classification (42):
(0,0,5) pure time-reversal symmetry yes realized by Z2 gauge theory
(2,0,3) TRS/0-form yes realized by Z2 gauge theory
(0,2,3) TRS/1-form yes realized by Z2 gauge theory
(3,0,2) TRS/0-form yes realized by Z2 gauge theory
(1,2,2) TRS/0-form/1-form yes realized by Z2 gauge theory
(0,3,2) TRS/1-form yes realized by Z2 gauge theory
(2,2,1) TRS/0-form/1-form yes realized by Z2 gauge theory
(4,0,1) TRS/0-form yes
(0,4,1) TRS/1-form no none are realized

We summarize our anomaly calculations in Table I.

II. SYMMETRY BREAKING AND FRACTIONALIZATION

Ordinary global symmetries in field theory of d + 1 space-
time dimensions are associated with extended topological
operators of dimension d . Such an operator inserted along a
spatial slice indicates an application of the global symmetry
operator on the Hilbert space associated with the slice, while
an insertion transverse to the slice introduces symmetry-
twisted boundary conditions for the fields describing that
Hilbert space.

The program of higher symmetry is to understand the
symmetry principles behind general topological operators,
including ones of smaller dimension [17,20] and without
inverse [21–23]. A k-form symmetry is by definition associated
with a topological operator of dimension d − k. It is so called
because in the case of a continuous symmetry, the global
parameter is a (closed) differential k-form.

For example, a typical 1-form symmetry is a symmetry of
a gauge theory which acts by shifting the gauge field by a
closed 1-form, or more generally a flat connection. In adjoint
QCD, if this flat connection has holonomy in the center of
the gauge group, it defines a symmetry. For some interesting
consequences of this fact, see [1].

Most generally, a k-form symmetry associated with a
topological operator S acts on all operators O of dimension
�k by wrapping O with S. We say that this symmetry is
spontaneously broken if there is a k-dimensional operator O
which is S-charged and has long-range order, in the sense that
〈O〉 decays as the area of O rather than the volume of a region
filling it in [24]. For k = 0, the ordinary symmetry case, this
says that 〈O〉 �= 0, so O is an order parameter implying a
ground-state degeneracy on a sphere. For k = 1, this says that
〈O〉 obeys the perimeter law, which is the usual Wilson–’t
Hooft criterion for confinement [25]; i.e., the broken phase
is the one where O is a deconfined line operator.

Another important concept is symmetry fractionalization.
This occurs when the junctions of topological operators act

nontrivially on some observables [26]. For instance, ordinary
symmetry operators corresponding to group elements g1, g2,
g1g2 ∈ G form a three-way junction of dimension d − 1 (see
Fig. 1). A line operator may have a nontrivial linking phase
with this junction. When it does, it means that the line
operator ferries a particle with a projective (or fractional) G
charge. Symmetry fractionalization is key for TQFTs to have
nontrivial 0-form anomalies [27,28].

A simple way to encode symmetry fractionalization is
to think in terms of symmetry-protected topological (SPT)
states. Indeed, a k-form symmetry is fractionalized on some

FIG. 1. A typical symmetry fractionalization pattern where a
3-fold junction of 0-form symmetry defects corresponding to the
group elements g1, g2, g1g2 (blue lines) acts on a line operator W .
In the case that W is a Wilson line, we understand this in terms of the
global symmetry being nontrivially extended by the gauge symmetry.
In some situations, the line W changes type as it passes through
the symmetry defects. This complicates the description of symmetry
fractionalization [26,29]. However, in 3+1D gauge theory, such
“anyon-permuting” symmetries are highly constrained, and amount
to an action of the global symmetry on the gauge symmetry by group
automorphisms.
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extended l-dimensional object, l > k, if that object carries
an l-dimensional SPT for that symmetry. In the case l = k,
k-dimensional SPT classes are just symmetry charges, so this
is the familiar data of the symmetry action.

The assignments of these SPTs are constrained by the
fusion rules of the objects. This can lead to a simplification
of the symmetry fractionalization. For example, in finite G
gauge theory in space dimension d � 2, a 0-form symme-
try K may be fractionalized on codimension 2 (spacetime
dimension d − 1) ’t Hooft operators (also known as gauge
fluxes). The data may be summarized by a single class in
α ∈ Hd−1(BK, G∗), where G∗ = Hom(G,U (1)).2 A ’t Hooft
operator corresponding to an element g ∈ G carries the K-
SPT α(g) ∈ Hd−1(BK,U (1)). This may be straightforwardly
modified to include “beyond cohomology” symmetry frac-
tionalization, as we will also consider below.

We will see how these symmetry fractionalization classes
are captured by nonminimal coupling terms in the gauged
action—terms which are higher order in the background
gauge field than the usual jμAμ.

Nontrivial d − 1-form symmetries of TQFTs in d + 1
dimensions are always spontaneously broken. The reason is
that the line operators which generate these symmetries can-
not fractionalize, since their junctions are local operators in
spacetime, and TQFTs have no nontrivial local operators. (For
the same reason, 0-form symmetries of TQFTs are always
unbroken.)

In 2+1D, this follows from the results of [29], which imply
that nontrivial 1-form symmetries are in one-to-one corre-
spondence with the Abelian anyons. By modularity, every
Abelian anyon has a dual anyon in the TQFT it braids with.
This dual anyon is deconfined by definition, so any nontrivial
1-form symmetry is spontaneously broken. For this reason,
3+1D is the most interesting dimension to find symmetry-
protected gaplessness.

III. ANOMALIES

In this section, we compute all possible anomalies of 3+1D
finite gauge theory, the results of which are summarized in
the table. We freely use the cocycle theory of discrete gauge
fields, which we review in Appendix A. In each case that the
anomaly is realized by a TQFT, we will try to determine the
“simplest” such theory. It seems likely that every anomaly
considered here has been realized somewhere in the literature,
but as far as I know they have not all appeared together in the
same place before.

We argue below the most general 3+1D finite gauge theory
consists of a 1-form G gauge field a ∈ Z1(X, G) (G possibly
non-Abelian) and possibly also a Z2 2-form gauge field b
(in the presence of which we have fermionic quasiparticles;

2We include cases where K acts nontrivially on G∗, in which case
these cohomology groups are understood using twisted coefficients.
These data are exhaustive for d � 3, but for d = 2 the symmetry can
mix Wilson and ’t Hooft operators. A full description requires the
machinery of [26,29] and leads to some very interesting realization
of anomalies; see, e.g., [30].

otherwise they are all bosons) which satisfies

db = β(a) + sw3(T X ), (1)

where β ∈ Z3(G,Z2) is the Postnikov class [17], w3(T X )
is the third Stiefel-Whitney class [31], and s ∈ Z2 describes
whether the b Wilson string is fermionic [32] (in this case
we have the gravitational anomaly in Sec. III C 6). The most
general action is

S0 = ω(a) + 1
2 [γ (a) + b] ∪ b, (2)

where ω is a Dijkgraaf-Witten-like topological term [33], and
γ describes stringlike a-defects which are charged under b.
The consistency conditions are described around (105). In the
absence of b, we simply have dω = 0.

In the remainder of this section, we will describe how to
couple this normal form theory to background gauge fields for
our global symmetries and when this results in SSB. Then we
will describe the classification of possible anomalies. Finally,
we will go through the terms in the classification one by one
and see if they are realized b.

A. Symmetry actions

Global symmetry actions are captured by coupling to back-
ground gauge fields. We will use A (resp. B) to denote a
background 1-form (resp. 2-form) gauge field which couples
to a 0-form K0 (resp. 1-form K1) global symmetry. The most
basic sort of coupling is the minimal coupling of the form
j1 ∪ A or j2 ∪ B, where j1 (resp. j2) is a d (resp. d − 1)
cocycle, a “discrete current” made from the dynamical fields,
and represents the density of charged particles (resp. strings).
Charge conservation is equivalent to d j1 = 0 (resp. d j2 = 0).

For example, with K1 = Z2 we could have the minimal
coupling

1
2 B ∪ b. (3)

This 1-form symmetry is generated by the b Wilson surfaces.
It is spontaneously broken because the b ’t Hooft lines are
deconfined. On the other hand, a coupling such as

B ∪ η(a), (4)

where η(a) ∈ H2(BG, K∗
1 ), describes 1-form charges of

stringlike intersection of the a domain walls. This does not
imply SSB; rather it is a form of symmetry fractionalization.
There are also nonminimal couplings of the form

θ (B) ∪ a, (5)

where θ ∈ H3(B2K1, G∗) describes how the 1-form symmetry
is fractionalized on a ’t Hooft surfaces.

We denote these sorts of symmetries as magnetic, since
magnetic operators, such as ’t Hooft surfaces, are charged
(or symmetry fractionalized) while electric operators, such as
Wilson lines, have trivial symmetry action. Such symmetries
are always anomaly free, because the coupling terms that we
have added are manifestly gauge-invariant under all transfor-
mations.

There are also electric symmetries, which act on the Wil-
son operators. The coupling of such symmetries to the back-
ground gauge fields are by modifying the cocycle constraints
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of the gauge fields. For a 0-form symmetry, the general form
is

dαa = μ(A),

db = β(a) + sw3(T X ) + ν(A) (6)

where μ ∈ H2(BK0, G), ν ∈ H3(BK0,Z2), w3(T X ) is the
third Stiefel-Whitney class (see Sec. IV E and elsewhere
below), and dα denotes the twisted differential, defined by
an action α of K0 on G (all coefficients are understood with
respect to this action). ν has the interpretation of a projective
K0 action on the G Wilson lines, while ν(A) is a form of K0

symmetry fractionalization on the b Wilson surfaces. Neither
of these couplings leads to symmetry breaking.

Meanwhile, the most general electric symmetry coupling
for a 1-form symmetry is

da = g(B),

db = β(a) + sw3(T X ) + κ (B), (7)

where g : K1 → G determines the 1-form charge of a Wilson
lines (leading to SSB) and κ ∈ H3(B2K1,Z2) defines the 1-
form symmetry fractionalization of b Wilson surfaces.

B. Classifying anomalies

The total group of anomaly polynomials for a product
0-form K0 and 1-form K1 global symmetry of a d + 1 dimen-
sional theory can be written in cohomology as⎡

⎣ ⊕
i+ j+k=d+2

Hi(BK0, H j
(
B2K1,


k
SO

))
⎤
⎦/

∼, (8)

where BK0 is the classifying space for the 1-form gauge field,
B2K1 is the classifying space for the 2-form gauge field, 
k

SO
are the Anderson duals of the oriented bordism groups [34],
which contain Stiefel-Whitney classes as well as gravitational
Chern-Simons terms [15,35], and the quotient indicates iden-
tification of classes by the Wu formulas. Note that we do not
assume finite K1 or K0, although the former must be Abelian,
and we do assume compactness. The relevant groups for us
are


−1
SO = Z,


2
SO = Zw2

2 ,


3
SO = Zp1 ,


5
SO = Zw2w3

2 . (9)

In Appendix B, we describe how to use this data to com-
pute (8). The k = −1 piece corresponds to nongravitational
anomalies. The k = 2 piece always reduces to a mod 2 k =
−1 term by a Wu formula. Each factor in (8) is zero or can be
reduced to one of the six (i, j, k)’s listed in the table.

C. Realizing anomalies

1. Pure 0-form anomalies

0-form symmetries are always unbroken in finite gauge
theory, since they lack local operators. 0-form anomalies of
finite gauge theories has been well studied [27,28,36–38]. Let
us review some of the results.

There are two ways of realizing pure 0-form anomalies
in G gauge theory. One is to mix magnetic and electric
couplings, e.g.,

a ∪ ζ (A),

da = μ(A), (10)

where ζ ∈ H3(BK0, G∗) describes symmetry fractionalization
on ’t Hooft surfaces and μ ∈ H2(BK0, G) describes symmetry
fractionalization on Wilson lines. In the absence of extra cou-
plings or pure topological terms for a, the anomaly is simply
computed by taking the differential of the first coupling above,
using the second coupling (see [28] for explanations of this
fact). It is

μ(A) ∪ ζ (A). (11)

Any anomaly polynomial which may be decomposed as such
a product can be realized this way.

Another way is to have just the second coupling above,
but to also have a pure topological term for a. In this case,
μ defines a (possibly noncentral) group extension

G → Ĝ → K0, (12)

and to find the anomaly we must study the extension problem
for this topological term to Ĝ [27]. This was done in [28]
using the Serre spectral sequence (see also [32,37,38]). The
results of [37] (Sec. 2.7) imply that for finite K0, we can find
such an extension and a G topological term which realizes the
anomaly. Note that certain K0 (such as the exceptional binary
polyhedral groups) lack any nontrivial central extensions. In
these cases it is necessary that K0 act on G, i.e., be an anyon-
permuting symmetry, to realize the anomaly.3

On the other hand, simply connected Lie groups have no
central extensions and cannot act nontrivially on any finite
G, so they are natural candidates for a global K0 anomaly
with symmetry-protected gaplessness. Reference [40] con-
tains results to rule out SU (n), Sp(n), Spin(n), G2, and F4.
Meanwhile, the classifying spaces of E6, E7, and E8 are well
approximated by B4Z in low degrees (at least up to their
8-skeleton) and can be ruled out this way [41].

Non-simply-connected (but still connected) Lie groups do
have global anomalies in 3+1D [such as 1

2w2w3 for SO(n)],
but by taking the extension (12) so that Ĝ is the universal
cover of K0 [e.g., Spin(n)], by the above analysis in the simply
connected case we can always match the anomaly with just
symmetry fractionalization.

However, certain mixed anomalies between simply con-
nected Lie groups and finite groups appear to have symmetry-
protected gaplessness—indeed, like G be a non-Abelian sim-
ply connected compact Lie group. Then H4(BG,Z) = Z,
while lower cohomology groups are zero. Let c2(Acont ) denote
this generator [it generalizes the second Chern class for G =

3Note that the spectral sequence of the group extension (12) can
have nontrivial differentials even in the semidirect product case, that
is, without symmetry fractionalization. See [39] for examples. It
would be interesting to see whether this happens in any physically
relevant situations.

245160-4



TOPOLOGICAL QUANTUM FIELD THEORY, SYMMETRY … PHYSICAL REVIEW B 101, 245160 (2020)

SU (m)]. Then, there is a mixed anomaly for G × Zn of the
form

1

n
An ∪ c2(Acont ), (13)

where An is the Zn gauge field. Evidently this anomaly is not
realized by any finite gauge theory. When the Zn gauge field
is extended to U (1), it is a local anomaly of Chern-Simons
type F1 ∧ F2 ∧ F2. When the Zn gauge field is thought of as a
spin structure, and G = SU (2), this represents Witten’s global
SU (2) anomaly [42].

The fact that this anomaly cannot be realized by any 3+1D
TQFT follows from the results of Córdova and Ohmori [12].
They showed that if the anomaly polynomial is nontrivial on
any background on S1 × S2 × S2, then it cannot be realized
by a TQFT without SSB. Indeed, we can construct a G bundle
on S2 × S2 of instanton number 1 using the “collapse map”4

S2 × S2 → S4 and the fact that π3G = Z. Then, we place the
An holonomy along S1 to obtain a nontrivial background for
(13) on S1 × S2 × S2.

2. Mixed 0-form/1-form anomalies of signature (3, 3, −1)

Mixed anomalies between 0-form and 1-form symmetries
come in two kinds, of signature (3, 3,−1) and (1, 5,−1). We
first consider the former. These again split into two types,
according to the decomposition K1 = T × U (1)r , where T is a
finite Abelian group (see Appendix B). These two cases do not
have any nontrivial mixing, so we can first assume K1 = U (1).
A general anomaly for this group may be written

B ∪ λ(A), (14)

where λ ∈ H3(BK0,Z) describes linelike defects of the K0

gauge field where K1-charged strings are created. For compact
groups, H3(BK0,Z) is torsion, so there is some n and some
ξ ∈ H2(BK0,Zn) such that

λ = 1

n
dξ . (15)

We can thus integrate the above by parts to obtain the equiva-
lent anomaly

1

n
dB ∪ ξ (A). (16)

This anomaly is realized in G = Zn gauge theory without
SSB by ξ (A) fractionalizing K0 on Wilson lines and dB/n
fractionalizing the U (1) part of K1 on ’t Hooft surfaces via
the coupling

1

n
dB ∪ a. (17)

Now we assume K1 is finite. The general anomaly may be
written

B ∪ λ(A), (18)

4This map is constructed by considering S2 × S2 as a quotient of
D2 × D2 = B4 along its boundary. Then the map S2 × S2 → S4 is
obtained by collapsing the entire boundary to a point.

where λ(A) ∈ H3(BK0, K∗
1 ) has the same interpretation as

above. It is easy to realize this anomaly in G = K1 gauge
theory with SSB by giving the Wilson lines K1 charges and
fractionalizing K0 on ’t Hooft surfaces according to λ(A).

However, to realize the anomaly in G gauge theory without
SSB, we need to mimic the above strategy. That is, we must
find some j2 ∈ H2(BG, K∗

1 ) and have the coupling

B ∪ j2(a), (19)

as well as some class β ∈ H2(BK0, G) which fractionalizes
the K0 symmetry on the G Wilson lines, so that dβ = λ.

This mathematical problem is the same kind as the one we
studied for realizing the pure 0-form anomalies. Indeed, the
arguments in Sec. 2.7 of [37] can be easily adapted for K∗

1
coefficients to find such a pair ( j2, β ), as long as K0 is finite.
For infinite K0 we can use the fact that simply connected Lie
groups have their first nonzero group cohomology group in
degree 4. In either case, we can realize any mixed anomaly by
this method.

3. Mixed 0-form/1-form anomalies of signature (1, 5, −1)

The other type of mixed 0-form/1-form anomaly takes the
form

1

n
f (A) ∪ P(B), (20)

where P ∈ H4(B2K1,U (1)) is order n, and f : K0 → Zn is
a homomorphism. An anomaly of this form is realized for
example by SU (2) adjoint QCD [43], and possible gapped
realizations of that anomaly are discussed in [44]. Note that
the continuous component of K1 does not contribute to P, so
we may assume K1 is finite. In this case, P = Pq is defined by
a quadratic form

q : K1 → U (1) (21)

using the Pontryagin square (see Sec. IV F).
In cases with even-torsion, even-degree generators Pq can-

not be written as a product of two 2-cocycles, so we cannot
apply the strategy of the previous section. In this case, it ap-
pears we must break the 0-form symmetry, such that domain
walls between different vacua have the anomaly Pq [45]. See
[46] for some examples of this anomaly.

Other elements are sums of terms

Pq(B) = 1

n
Bi ∪ Bj, (22)

where Bi, j are obtained from B by splitting K1 into its finite
cyclic factors (in the expression above, n is the gcd of the
orders of Bi and Bj). These anomalies can be satisfied by
just breaking the 1-form symmetry, using a Zn gauge theory,
where the 1-form symmetry acts on Wilson lines (leading to
SSB) via the coupling

da = Bj, (23)

while we must also have mixed 0-form/1-form fractionaliza-
tion on ’t Hooft surfaces via the topological term

1

n
a ∪ f (A) ∪ Bi. (24)
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There is one set of anomalies which may be realized with-
out any symmetry breaking, and that is the order-2 anomaly

1
2 f (A) ∪ B ∪ B, (25)

where we take K1 = Z2 and f : K0 → Z2. This anomaly is
realized in a TQFT with a fermionic quasiparticle, represented
by a dynamical Z2 2-cocycle b, with the action

S = 1
2 b ∪ b. (26)

We couple this theory to the background fields A and B such
that these symmetries fractionalize on the b Wilson surface:

db = f (A) ∪ B. (27)

We find after some computation (and up to adding a countert-
erm; see the end of Sec. IV F for details)

dS = 1
2 Sq2( f (A) ∪ B), (28)

where Sq2 is the second Steenrod square [47]. This expression
is equivalent to (25).

We can again make contact with the results of Córdova
and Ohmori [12]. Indeed, all except those of the form (25)
anomalies have a nontrivial partition function on S1 × S2 ×
S2, where we place the A background around the S1, Bi around
the first S2, and Bj around the second. In the case of an
even-degree anomaly which does not factorize as a product,
a diagonal background B on S2 × S2 of highest possible even
degree will do. The reason (25) does not have a nontrivial
partition function on S1 × S2 × S2 is because the cup square
of any 2-cocycle on S2 × S2 is always even.

4. Pure 1-form anomalies

As we have discussed in Sec. III C 2, the only non-SSB
coupling of G gauge theory to a 1-form symmetry is by the
term

B ∪ j2(A). (29)

Thus, G gauge theory has no pure 1-form anomalies without
SSB.

However, if we have a fermionic quasiparticle, as in (2),
then there are certain mod 2 pure 1-form anomalies, as follows
(these are analogous to those found in the previous section).
We take G = 1 so there is only a dynamical Z2 2-form field b,
with the action

S = 1
2 b ∪ b. (30)

We couple the theory to a background 2-form B by

db = θ (B), (31)

where θ ∈ H3(B2K1,Z2) describes how the 1-form symmetry
fractionalizes on b Wilson surfaces. We find

dS = 1
2 Sq2θ (B), (32)

where Sq2 is the second Steenrod square [47] (compare the
previous section and see the end of Sec. IV F for details).
For example, if K1 = Z2 and θ (B) = dB/2, then by the Adem

relations we have the anomaly5

dS = 1

2
B ∪ dB

2
. (33)

Using the Wu formula, this anomaly is the same as

1
2w2(T X ) ∪ θ (B), (34)

where w2(T X ) is the second Stiefel-Whitney class [31]. It
has the interpretation as a fractionalization anomaly: the b
’t Hooft line describes a fermionic quasiparticle, and the
fractionalization db = dB/2 means that two B ’t Hooft lines
fuse to a b ’t Hooft line, but it is impossible to fractionalize a
fermion in 3+1D this way.

It is clear that coupling b to a G gauge field cannot produce
more anomalies since we cannot modify the cocycle condition
for a using B without breaking the 1-form symmetry by giving
a Wilson lines nontrivial charges.

This appears to be consistent with the results of Córdova
and Ohmori [12], but proving no 3+1D TQFT can realize
these other anomalies without SSB seems to be beyond
their methods. To see this, we take K1 = Zn, without loss
of generality, so θ (B) = kdB/n for some k. We must study
backgrounds B on mapping tori of the form (S1 × S3) � f S1

or (S2 × S2) � f S1, where f is a diffeomorphism of S1 × S3

or S2 × S2, respectively. The former case cannot support a
nontrivial enough background to define a constraint since S3

is 2-connected. In the latter case, simply taking a product is
not enough because in this case we always have θ (B) = 0;
we need to choose a nontrivial diffeomorphism f . Then, to
study backgrounds B on the mapping torus, we use the Serre
spectral sequence. We find that H2((S2 × S2) � f S1, K1) are
in correspondence with f -invariant 2-cocycles on S2 × S2.

It appears that the mapping class group of S2 × S2 is not
known (although see [49] for some recent progress in this
direction). However, we can certainly cook up some elements.
One is the diffeomorphism which acts antipodally on each S2.
A Zn 2-cocycle is f -invariant iff its exponentiated integrals
are ±1 over each S2. We find that if B has integral n/2 over
one of the S2’s, then dB/n is Poincaré dual to n/2 times that
S2. This means that the anomaly polynomials are all trivial on
these backgrounds and we obtain no constraints.

Another is the swapping diffeomorphism which exchanges
the two spheres. A Zn 2-cocycle B is f -invariant if it has
the same integral over each sphere. In this case, it admits an
f -invariant integer lift, so θ (B) = 0 and we again obtain no
constraints.

The lack of understanding of the mapping class group of
S2 × S2 is a significant obstruction to applying the framework
of [12]. Perhaps there is a diffeomorphism which forbids
symmetry-preserving gapped phases with pure 1-form anoma-
lies of degree >2 (although I find this doubtful in view of
[49]), perhaps this symmetry-protected gaplessness can be
shown by other methods, or perhaps there is even some yet-
unknown TQFT which can realize this anomaly without SSB.
We leave this interesting question to future work.

5Appendix C.1 of [48] contains the relevant generator in degree 6
and other useful calculations.
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5. Mixed 0-form/gravity anomalies

There are several ways to couple G gauge theory to gravity.
We give a full treatment in Sec. IV E. We have noted above
that mixed 0-form/gravity anomalies of signature (3,0,2) are
equivalent to pure 0-form anomalies by the Wu formula.
It thus suffices to study those of signature (2,0,3). These
are Chern-Simons-like terms descending from the integer 6-
cocycle

α(A) ∪ p1(T X ), (35)

where p1(T X ) ∈ H4(X,Z) is the first Pontryagin class and
α ∈ H2(BK0,Z). In the case K0 = U (1), this becomes a
mixed Chern-Simons term of type F ∧ R ∧ R which implies
a gapless chiral mode on the flux string, and thus cannot be
realized in a gapped theory without SSB. In all other compact
cases, α is torsion, so there exist some n and a homomorphism
f : K0 → Zn such that

α(A) = df (A)

n
. (36)

In this case (35) may be rewritten as a 5-cocycle with U (1)
coefficients:

1

n
f (A) ∪ p1(T X ). (37)

This makes it clear that the anomaly only depends on p1(T X )
mod n. Further, by the methods of [45], its form implies that
if we introduce two real order parameters transforming in the
2π/n rotation representation associated with f : K0 → Zn,
then we can realize the anomaly in an SSB phase with a c = 8
chiral mode on the domain wall (the boundary mode of the
gravitational Chern-Simons term with the smallest allowed
level in a bosonic system).

If n = 2, we obtain a simplification using the formula

p1(T X ) = w2(T X ) ∪ w2(T X ) mod 2. (38)

Such 2-torsion anomalies may be realized in a gapped phase
without SSB as follows. We need to use a theory with a
fermionic quasiparticle, i.e., a Z2 2-form b with topological
term as in (2). Then, we want the symmetry fractionalization
pattern

db = f (A) ∪ w2(T X ). (39)

This exotic symmetry fractionalization pattern means that
where the b ’t Hooft string intersects a k ∈ K0 symmetry wall
with f (k) = 1 mod 2, the intersection point, a particle-like
object, is a fermion.

However, if n > 2, by the results of [13], this anomaly
cannot be realized by any gapped phase (without SSB). For
other discussions of realizing this and related anomalies in
gapped phases, see [50,51].

6. Pure gravitational anomalies

There is one pure gravitational anomaly in 3+1D, associ-
ated with the anomaly polynomial

1
2w2(T X ) ∪ w3(T X ). (40)

This may be detected, for example, on the mapping torus
of the complex conjugation diffeomorphism of CP 2 [52]. It

was realized by an “all fermion” topological order in [32]. In
particular, if we take s = 1 in (1), meaning

db = w3(T X ), (41)

which turns the b Wilson string into a fermion, we find this
anomaly by computing the differential of the b ∪ b term. See
Sec. IV F for details on the calculation.

D. Anomalies involving time reversal

Our methods can be easily extended to the case involving
time-reversal symmetry (TRS). One needs only to replace
the oriented bordism groups 
k

SO in (8) with the unoriented
bordism groups 
k

O:⎡
⎣ ⊕

i+ j+k=d+2

Hi(BK0, H j
(
B2K1,


k
O

))
⎤
⎦/

∼ . (42)

The calculations actually simplify quite a bit, since these
groups are all 2-torsion, generated by polynomials in the
Stiefel-Whitney classes; see Appendix B.

Let us just briefly summarize some results in this setting.
First of all, because of the overall 2-torsion in (42), most of
the possible topological terms factorize into a product of terms
of degree � 3, at least one of which is a degree-2 term made
from w1(T X ) and A which we can use a fractionalization class
for a Z2 gauge field a. This allows us to use the techniques of
Sec. III C 2 to construct Z2 gauge theories with the appropriate
anomaly and no SSB.

For example, there is a pure time-reversal anomaly [signa-
ture (0,0,5)]

1
2w1(T X )5, (43)

which may be realized in Z2 gauge theory by combining a
topological term

1
2w1(T X )3 ∪ a, (44)

which fractionalizes TRS on ’t Hooft surfaces, with a fraction-
alization

da = w1(T X )2, (45)

which makes the Wilson line carry a Kramers doublet [32].
Another class, those of signature (2,0,3), are of the form

1
2 c(A) ∪ w1(T X )3, (46)

where c ∈ H2(BK0,Z2). These can be realized in Z2 gauge
theory by fractionalizing K0 on Wilson lines via

da = c(A) (47)

and TRS on ’t Hooft surfaces via (44). Alternatively, we can
use (45) so that the Wilson lines are Kramers doublets, and
add the topological term

1
2 a ∪ w1(T X ) ∪ c(A),

which describes a kind of K0 × T fractionalization on ’t Hooft
surfaces.

There are essentially only two interesting cases: signatures
(4,0,1) and (0,4,1). Let us first consider the former. These
mixed TRS/0-form anomalies may be written

1
2w1(T X ) ∪ P(A), (48)
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where P ∈ H4(BK0,Z2). By the Wu formula, any of these
where P(A) has an integer lift, e.g., terms depending only
on the continuous part of K0, should be considered trivial.
That leaves the continuous part of K0 to enter through mixed
terms with the discrete part. All such anomalies decompose
into terms of degree �3 and so we can find a Z2 gauge theory
and a fractionalization pattern to realize this anomaly without
SSB. Thus we may assume without loss of generality that K0

is finite.
Then, using arguments similar to those in Sec. III C 1, for

finite K0 we can realize this anomaly in some G gauge theory
with a topological term

1
2w1(T X ) ∪ Q(a), (49)

where Q ∈ H3(BG,Z2), by choosing an appropriate exten-
sion of K0 by G.

Now we turn to mixed TRS/1-form anomalies of signature
(0,4,1). They have a form similar to that above:

1
2w1(T X ) ∪ P(B). (50)

First, if we allow TRS to be spontaneously broken, then 1
2 P(B)

describes the K1 anomaly on the TRS domain wall [45,53].
As above, terms only depending on the continuous part

of K1 are zero. Further, there are no mixed terms between
different cyclic or U (1) factors of K1, since H∗(B2U (1), A)
begins in degree 3. Also, cyclic factors of odd order cannot
contribute anything.

The only possibilities are pure or mixed terms among even
cyclic factors, i.e.,

1
2w1(T X ) ∪ Bi ∪ Bj, (51)

where Bi, j are components of B along two (possibly the
same) cyclic factors. An anomaly of this form is realized for
K1 = Z2 by the center symmetry of SU (2) adjoint QCD at
θ = π [1]. See also [54,55]. Note that by the Wu formula, this
anomaly is only nontrivial if one of Bi, j represents a Z2 1-form
symmetry (as opposed to a Z2k 1-form symmetry, k > 1).
Without loss of generality we take Bi to be this Z2 2-cocycle.

We can realize this anomaly in Z2 gauge theory by partially
breaking the 1-form symmetry via a coupling

da = Bj (52)

if we also include the topological term

1
2w1(T X ) ∪ Bi ∪ a, (53)

which fractionalizes TRS and the 1-form symmetry on a ’t
Hooft surfaces. However, there is no finite gauge theory which
can realize this anomaly without SSB.

Indeed, this anomaly polynomial has a nontrivial partition
function on (S2 × S2) � f S1, where f acts as an antipodal
map on one of the S2’s. We take Bi to have integral 1 around
that S2 (here it is important that Bi is not required by the group
structure of K1 to have a Z2k lift, for any k > 1, since we will
not be able to extend such a lift to the whole mapping torus)
and Bj to have integral 1 around the other S2. See Sec. 3.5 of
[12].

IV. DUALITIES OF TOPOLOGICAL GAUGE THEORIES
IN 3+1D

In [17], several 2-group TQFTs in 3+1D were shown to
be equivalent to ordinary Dijkgraaf-Witten theory. We will
try to generalize those arguments and make contact with the
conjecture of Lan and Wen [16].

Basic mathematical definitions can be found in
Appendix A.

A. Partition function duality

First we will show that the partition function of 2-form
gauge theory with gauge group �2 is equivalent to that of a
1-form gauge theory with gauge group �∗

2.6

Indeed, suppose we have a theory of a 2-form gauge field
B ∈ C2(X,�2). The cocycle condition

dB = 0 (54)

may be imposed by introducing a Lagrange multiplier field
λ ∈ C1(X ∨,�∗

2 ), where X ∨ indicates the Poincaré dual cellu-
lation of X and

�∗
2 = Hom(�2,U (1)) (55)

the Pontryagin dual group of �2. The cocycle condition is
imposed by the action

S(B, λ) =
∫

X
〈dB, λ〉, (56)

where the integral is a sum over all pairs of 3-simplices and
dual 1-simplices, weighted by the pairing of the value of dB
on the 3-simplex and the value of λ on the dual 1-simplex.7

We see that if dB �= 0, there is some λ which pairs nontrivially
and so summing over λ,

∑
λ∈C1(X ∨,�∗

2 )

eiS(B,λ) =
{

0, dB �= 0,

|C1(X ∨,�∗
2 )|, dB = 0.

(57)

Thus, by inserting this factor into any correlation function
involving a sum over the 2-form gauge field B, we can relax
the cocycle constraint and let B ∈ C2(X,�2) be a local degree
of freedom.

The derivation of the duality now proceeds by summing
over B, using the identity

S(B, λ) = −
∫

X
〈B, dλ〉. (58)

In the absence of other terms in the action or operator inser-
tions, we obtain the constraint

dλ = 0, (59)

hence an equivalent description of the partition function to
that of a 1-form gauge theory with gauge group �∗

2.

6These groups are isomorphic but not naturally so. We will see
below that it is useful to keep them distinguished.

7If one forgoes the dual cellulation, instead using the cup product
action λ ∪ dB, one finds zero energy configurations with dB �= 0
whose counting depends on the details of the triangulation [56]. This
is related to Chern-Simons zero modes on the lattice [57].
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B. Operator duality

The basic duality can also be defined in the presence of
operator insertions. For example, a Wilson surface operator∫

�

χ (B), (60)

where � is a simplicial 2-cycle in X and χ ∈ �∗
2 is a character

of �2, can be rewritten using Poincaré duality as∫
�

χ (B) =
∫

X
〈χδ�, B〉, (61)

where δ� ∈ C2(X ∨,Z), χδ� ∈ C2(X ∨,�∗
2 ). Thus, we can

combine the Wilson surface operator with the action and find
that integrating out B yields the modified constraint

dλ = χδ�, (62)

which represents a ’t Hooft surface for λ. This is the essence
of electric-magnetic duality. Likewise, a ’t Hooft loop for B of
charge g ∈ �2 is supported along a 1-cycle γ in X ∨, and may
be written in terms of the modified constraint

dB = gδγ . (63)

To impose this constraint using the Lagrange multiplier λ we
use the modified action

S =
∫

X
〈λdB − gδγ , λ〉. (64)

We see that the second term becomes the Wilson line insertion

−
∫

X
〈gδγ , λ〉 = −

∫
γ

λ(g), (65)

where λ(g) ∈ C1(X ∨,U (1)) is obtained by pairing λ ∈
C1(X ∨,�∗

2 ) with g ∈ �2.

C. Including a 2-form component

We can now extend the duality to the case of a 2-group
(�1,�2, α, β ). In particular, the Postnikov class β(A) ∈
C3(X,�2) modifies the cocycle constraint for B to

dαB = β(A), (66)

equivalent to inserting ’t Hooft lines for B along 1-cycles
dual to β(A). When we include the Lagrange multiplier λ ∈
C1(X ∨,�∗

2 ), we obtain a coupling of A to λ by

S =
∫

X
〈dαB − β(A), λ〉, (67)

where we have also included the twisted differential dαB. The
action α of �1 on �2 defines a dual action of �1 on �∗

2, and
we have the identity∫

X
〈dαB, λ〉 = −

∫
X
〈B, dαλ〉. (68)

Thus, in the absence of operator insertions or other terms in
the action, integrating out B yields the constraint

dαλ = 0. (69)

Combining with the constraint dA = 0, the pair (A, λ) defines
a 1-form gauge field for the semidirect product group �∗

2 �

�1. The Postnikov class becomes a topological term

−
∫

X
〈β(A), λ〉. (70)

D. Topological terms

A general discrete gauge field in 3+1D is specified
by a 2-group G = (�1,�2, α, β ) as well as a twist ω ∈
H4(BG,U (1)). One can think of ω as a natural functional of
the 2-group gauge field (A, B) which must satisfy

dω(A, B) = 0 (71)

whenever A, B satisfy the cocycle constraints above. This
simple-looking equation is actually equivalent to gauge invari-
ance of ω (up to boundary terms) under the gauge transforma-
tions above [28].

The Serre spectral sequence allows us to understand the
general topological terms beginning with those for the product
2-group with trivial α and β, which has a Künneth formula.
This means that topological terms for the product 2-group are
classified by

4⊕
j=0

H j (B�1, H4− j (B2�2,U (1))). (72)

Topological terms for the general 2-group with nontrivial α

and β but the same �1,�2 are generated by a subset of these
terms which satisfy some extra consistency conditions coming
from (71), which we will see below. The group above is only
nonzero for j = 0 (pure 2-form terms), j = 2 (mixed terms),
and j = 4 (pure 1-form terms). Clearly the pure 1-form terms
( j = 4) are innocuous for the duality. Let us consider the
mixed terms ( j = 2). These have the form∫

X
B ∪ η(A) + · · · , (73)

where η(A) ∈ C2(X,�∗
2 ) comes from η ∈ H2(B�1,�

∗,α
2 )

(the superscript indicates the dual action of �1 on �∗
2 defined

by α) and · · · are terms depending only on A which ensure
gauge invariance by

β(A) ∪ η(A) + d (· · · ) = 0. (74)

We can define a dual cocycle η(A)∨ ∈ C2(X ∨,�∗
2 ) such

that ∫
X

B ∪ η(A) =
∫

X
〈B, η(A)∨〉. (75)

We see therefore that when we sum over B in favor of the
Lagrange multiplier, we find the modified cocycle constraint

dαλ = η(A)∨. (76)

This implies that the gauge group for (A, λ) is a (possibly
noncentral) extension

�∗
2 → Ĝ → �1 (77)

with extension class η ∈ H2(B�1,�
∗,α
2 ).

E. Coupling to gravity

There are also gravitational topological terms involving
characteristics of the tangent bundle. For finite groups, the
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only ones that enter are the Stiefel-Whitney classes w j (T X ) ∈
H j (X,Z2) [15]. See [31,32] for a review. For an oriented
spacetime, w1(T X ) = 0, w3(T X ) = 1

2 dw2(T X ). Thus, by in-
tegrating by parts, the most general gravitational topological
term is

1
2w2(T X ) ∪ [α(A) + β(B)], (78)

where α ∈ H2(B�1,Z2), β : �2 → Z2. However, by the Wu
formulas

w3(T X ) ∪ a = da

2
∪ da

2
= 0 mod 2,

w2(T X ) ∪ b = b ∪ b mod 2
(79)

[all equations in H4(X,Z2) where X is an oriented 4-
manifold], this is the same as

1
2α(A) ∪ α(A) + 1

2β(B) ∪ β(B), (80)

so the gravitational terms are already captured by the ones we
discussed.

There can also be coupling to gravity through the cocycle
equations for A and B. In general we have

dA = f w2(T X ),

dαB = β(A) + sw3(T X ),
(81)

where f ∈ �1 and s ∈ �2 are either the identity or an element
of order 2. The interpretation of these modifications is that A
Wilson lines which pair with f and B Wilson surfaces that pair
with s are fermionic in the sense of [32].

Let us argue that f is in the center of G. Indeed, under a
change of the vertex ordering of X , w2(T X ) may shift by an
arbitrary exact cocycle

w2(T X ) �→ w2(T X ) + dh, (82)

h ∈ C1(X,Z2) [56]. This should be thought of as a large grav-
itational gauge transformation, h being valued in π1SO(D)
[32]. To preserve the cocycle conditions (81), A must trans-
form as well. If f is in the center of G, then the action is

A(i j) �→ A(i j) f h(i j). (83)

However, if f is not in the center, then there is no simple
formula for this transformation, and worse, �1 gauge trans-
formations would have to act on the right-hand side of (81),
so f would not be gauge-invariant.

For similar reasons, f must also act trivially on the 2-form
component B by α. Otherwise, B would have to transform
under the gauge transformation (82) to preserve (81). Finally,
we also need

β(A + h) − β(A) (84)

to be exact, which implies β is the pullback of a 3-cocycle for
the group G/Z f

2 .
All this implies that the Z f

2 component of A may be
dualized to a 2-form B′ with topological term 1

2 B′ ∪ w2(T X ),
which we noted above is equivalent to 1

2 (B′)2. Thus, without
loss of generality we may assume f = 1.

We must keep s possibly nontrivial, however. When we
dualize B to a 1-form λ (in the absence of a pure 2-form

topological term), analogously to (70) we find the modified
topological term

−
∫

X
〈β(A) + sw3(T X ), λ〉, (85)

of which the mixed gravitational/λ part may be reduced to a
pure λ term using the Wu formula (79).

On the other hand, for gauge invariance of the pure 2-form
topological term, we must have s ∈ Kq, so we may restrict s
to order-2 elements in Kq such that q(s) = −1. We will see it
reappear in the canonical form below, where it is reduced to a
single Z2-invariant s = 0 or 1, such that in the case s = 1, we
have the pure gravitational anomaly of Sec. III C 6. See also
below.

F. General duality

So far, we have shown that the gauge theory for an arbitrary
2-group (�1,�2, α, β ), with a topological term involving no
pure 2-form [ j = 0 in (72)] part, is dual to a 1-form gauge
theory, whose gauge group is an extension (77) determined
by the action of �1 on �∗

2 (Pontryagin dual to α) and the
mixed topological term [ j = 2 in (72)]. The Postnikov class β

defines a topological term for this 1-form gauge field which
mixes the �1 and �∗

2 components. All this was already
derived in [17].

Now we consider the most general topological terms. The
pure 2-form part is known as the Pontryagin square, and is
associated with a U (1)-valued quadratic form

q : �2 → U (1). (86)

We may write it as Pq(B) ∈ C4(X,�2). It satisfies

Pq(B + B′) = Pq(B) + 〈B, B′〉q + Pq(B′), (87)

where we have defined a pairing on cochains using the cup
product and the associated bilinear form

〈x, y〉q = q(x + y) − q(x) − q(y). (88)

(A quadratic form is by definition a function q such that the
above expression is bilinear.) We also define the associated
map

φq : �2 → �∗
2,

φq(x) = 〈x,−〉q,
(89)

and the kernel Kq of this map.
The action α and Postnikov class β put constraints on the

quadratic form q. It must be α-invariant. Further, under a 0-
form gauge transformation of B, we have

Pq(B) �→ Pq(B) + 〈B, β1(A, g)〉q + Pq(β1(A, g)). (90)

The second term must be canceled by a counterterm

〈B, ζ (A)〉q, (91)

where dζ (A) = β(A) modulo elements of Kq. That is, by a
redefinition of β we can assume β is valued in Kq. Meanwhile,
the third term involves only A and may be canceled by a gauge
variation of the pure 1-form part [ j = 4 in (72)]; see (105)
below. Likewise, by studying (82), we find that the fermionic
Wilson string parity s ∈ �2 is in the subgroup Kq.
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We can uniquely decompose �2 into products of factors
Zpn for primes p. There is an important subtlety involving p =
2. Indeed, the group Z2 has four U (1)-valued quadratic forms
determined by the value of the generator x (the value of the
identity is zero):

q(x) = k/4, k ∈ Z4. (92)

For k = ±1, we find the associated bilinear form is the unique
nondegenerate one, while for k = 2, although the quadratic
form is nontrivial, it is associated with the trivial quadratic
form. Let us therefore define the subgroup K0

q < Kq of ele-
ments for which q is identically zero. We find

Kq/K0
q = Zr

2, (93)

where r is the number of Z2n factors in Kq. For odd-order
elements, being in the kernel of q is the same as being in the
kernel of φq.

An important caveat is that while the Postnikov class is
valued in Kq, we cannot guarantee it to be valued in K0

q . This
modifies the cocycle conditions for the mixed and pure 1-form
parts of the twist. We return to this point below.

We consider the sequence

Kq → �2 → �2/Kq =: Dq. (94)

(Dq is known as the discriminant group of q [58,59].) There
is an extension class θ ∈ H3(B2Dq, Kq ) associated with this
sequence. We can express B as a pair B0 ∈ C2(X, Kq ), Bq ∈
C2(X, Dq ) satisfying

dBq = 0,

dB0 = θ (Bq) + β(A) + sw3(T X ). (95)

(Recall the Postnikov class and s are valued in Kq.) By
definition, B0 only appears in the action as mixed terms plus

1
2 f j (B0) ∪ f j (B0), (96)

where f j are the components of the quotient map Kq →
Kq/K0

q = Zr
2 in the basis associated with the cyclic decom-

position of Kq. By changing the basis to f = f1 + · · · + fr ,
f1 + f2, f2 + f3, . . . , fr−1 + fr , we find we can reduce the
quadratic piece to a single term

1
2 f (B0) ∪ f (B0), (97)

where f : Kq → Z2 is the sum of the f j . The reason this works
is that, despite its appearance, this quadratic term is actually a
linear function of B0. In particular, if we introduce the second
Stiefel-Whitney class w2(T X ), then by the Wu formula (79),

1
2 f (B0) ∪ f (B0) = 1

2w2(T X ) ∪ f (B0). (98)

With the substitution of the quadratic term for this grav-
itational term, B0 only occurs in linear terms in the action.
It is therefore safe to dualize it to a 1-form gauge field
λ ∈ C1(X, K∗

q ), where K∗
q = Hom(Kq,U (1)). As we have dis-

cussed, the mixed topological terms for B0 and A will lead
to a nontrivial group extension of �1 by K∗

q by modifying
the cocycle constraint for λ. The gravitational term further
modifies this constraint to

dλ = f

2
w2(T X ) + η(A), (99)

where f : Kq → Z2 is regarded as an order-2 element of K∗
q

and η ∈ H2(B�1, K∗
q ) comes from the mixed term 〈B0, η(A)〉

and represents the group extension of �1 by K∗
q . The first

term has the interpretation that λ Wilson lines which pair
nontrivially with f must be treated with a framing, which
turns them into fermions [32]. f ∈ K∗

q may be regarded as an
emergent fermion parity.

The B0 cocycle constraint (95) becomes the topological
term

−
∫

X
〈θ (Bq), λ〉 + 〈β(A), λ〉 + 〈sw2(T X ), λ〉, (100)

the first term of which can be placed into the form of a
mixed topological term between Bq and λ, the second of which
couples λ and A, and the third term can be written as a pure-λ
term using (79). By construction, the induced quadratic form
on Bq is nondegenerate, which means that by completing the
square (shifting the sum variable for Bq), we can eliminate any
mixed couplings between Bq and λ or A. After doing this, Bq

is completely decoupled from the other degrees of freedom,
either by cocycle constraints or topological terms. We can
therefore perform the partition sum over Bq. Amazingly, since
the induced quadratic form is nondegenerate, this simply
introduces an invertible factor, which only depends on the
signature of X [60,61]:

1

N

∑
Bq∈H2(X,Dq )

ei
∫

X Pq (Bq ) = e2π iσ (X )σ (q)/8, (101)

where σ (X ) is the signature of X , σ (q) is the signature of
q, and N = √|H2(X, Dq )|. These invertible pieces do not
contribute to the anomaly, so we discard them in Sec. III.

Thus, we have finally reduced the general 2-group theory
all the way to a theory of a (possibly fermionic) 1-form gauge
field, up to an invertible piece depending only on the signature
of spacetime (a gravitational theta angle). In the fermionic
case, by dualizing the Z2 subgroup generated by the emergent
fermion parity f ∈ K∗

q (cf. Sec. IV E), we obtain a convenient
canonical form for the fermionic 2-group gauge theory:

S = ω(a) + 1
2 [γ (a) + b] ∪ b, (102)

where a ∈ C1(X, G), b ∈ C2(X,Z2) satisfy

da = 0,

db = β(a) + sw3(Y X ), (103)

where β ∈ H3(BG,Z2) is the Postnikov class and s ∈ Z2

indicates whether the b Wilson string is fermionic (we have
reintroduced it from Sec. IV E). The solution of the gauge
invariance conditions for ω and γ proceeds as in [28]. We find
that after adding the counterterm

δS = 1
2β(a) ∪1 b, (104)

the gauge invariance conditions for the topological terms are
simplified to equations involving only cochains on BG:

dγ (a) = 0,

dω(a) = 1
2γ (a) ∪ β(a) + 1

2β(a) ∪1 β(a),
(105)

where ∪1 is one of the ∪i products of Steenrod [62]. See
Appendix B.1 of [46] or [56] (which also has a geometric
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interpretation of this product) for a review. We note that even
after solving this equation, we find that if s �= 0, then we have
the gravitational anomaly

1
2w2(T X ) ∪ w3(T X ) (106)

identified in [32] as well as

1

2
γ (a) ∪ w3(T X ) = 1

2

dγ (a)

2
∪ w2(T X ), (107)

which can be canceled by a counterterm in view of the Wu
formula

1
2γ (a) ∪ w3(T X ) = 1

2 Sq3γ (a) = 0, (108)

which holds in the cohomology of any 5-manifold.

V. DISCUSSION

The data defining the action (102) match the data of
the canonical boundary condition in [16] for their so-called
“EF1” topological orders, by taking Gb = G, e2 = γ in their
notation [compare (105) with their Eq. (5)]. In their work,
γ ∈ H2(BG,Z2) is interpreted as an extension class for how
Gb is extended by the emergent fermion parity Z f

2 , which we
see is the result of dualizing B (at the cost of introducing
explicit dependence on the second Stiefel-Whitney class).

The other class “EF2” of topological order in [16] appears
to be a more general sort of 3+1D TQFT. I believe they are the
same as those constructed in [18], obtained by G-extension of
a certain fusion 2-category obtained by the Ising braided fu-
sion category. This TQFT describes fermionic quasiparticles
as well as quasistrings which behave like Kitaev wires [63].

We computed anomalies only for gauge theories and EF1
topological order. If one wants to computationally exclude
all known 3+1D topological orders given an anomaly, one
would also need to know how to compute the anomalies of
the EF2 theories. This is an interesting problem, which seems
to require new techniques beyond what we have used above
(although some anomaly calculations of them were performed
in [63]). Because these EF2 theories are a kind of Z2 extension
of EF1 theories, it seems reasonable that if an EF1 theory or
gauge theory cannot realize an anomaly of odd order, such
as in Table I, then neither can an EF2 theory. Indeed, the
symmetry fractionalization classes of the basic EF2 theory
studied in [63] were all 2-torsion.
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APPENDIX A: BASIC CONCEPTS

This material has appeared in various places. We include it
so our conventions are understood. In the author’s thesis [56],
the reader may find a detailed introduction to the subject.

1. Discrete gauge fields

Let X be a triangulated space with ordered vertices and G
be a possibly non-Abelian group. A 1-form G gauge field A on
X is a collection of group elements A(i j) ∈ G for every edge
(i j) (our convention is to arrange the vertices so that i < j in
the vertex ordering), in X satisfying

A(i j)A( jk) = A(ik), (A1)

(dA)(i jk) := A(i j)A( jk)A(ik)−1 = 1, (A2)

for every triangle (i jk). We indicate the set of these objects
as Z1(X, G). For G Abelian they form an Abelian group but
for G non-Abelian there is no group structure. Gauge trans-
formations are parametrized by collections of group elements
g(i) ∈ G for each vertex and act on A by

A �→ Ag := g(i)A(i j)g( j)−1. (A3)

More generally for Abelian G we define a G-valued k-
cochain A ∈ Ck (X, G) as a collection of group elements

A(i0 · · · ik ) ∈ G. (A4)

For every k-simplex spanned by the vertices (i0 · · · ik+1)
(which are by convention ordered as i0 < · · · < ik+1 in the
vertex ordering), we define the differential dA ∈ Ck+1(X, G)
by

(dA)(i0 · · · ik+1) =
k+1∑
l=0

(−1)l A(i0 · · · îl · · · ik+1), (A5)

where the hat indicates that we have dropped il from the
list. The sum is over all the boundary k-simplices of the
k + 1-simplex (i0 · · · ik+1) and the sign comes from whether
the induced boundary orientation matches the orientation
from the vertex ordering. A G-valued k-cocycle is a cochain
satisfying the cocycle condition

dA = 0. (A6)

We denote the group of these cocycles as Zk (X, G).
Observe that for k = 1 this reduces to the definition above

for Abelian G.8 This motivates the definition of a k-form G
gauge field as a G-valued k-cocycle. Gauge transformations
act on A by shifts

A �→ A + dλ, (A7)

where λ ∈ Ck−1(X, G). The quotient of the cocycles by the
gauge transformations is Hk (X, G).

Now let R be a ring, α ∈ C j (X, R), β ∈ Ck (X, R). We
define the cup product α ∪ β ∈ C j+k (X, R) by

(α ∪ β )(i0 · · · i j+k ) = α(i0 · · · i j )β(i j · · · i j+k ). (A8)

The vertex ordering is important here, but if α and β are
cocycles, it turns out

α ∪ β = (−1) jkβ ∪ α + d (· · · ). (A9)

The counterterms in · · · define the ∪1 product [62].

8There is no known way to define non-Abelian k-cocycles for k > 1
since we do not know how to order the terms in (A5).
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2. 2-group gauge fields

We review some basic notions from [17]. See also [64–66].
A 2-group (�1,�2, α, β ) is specified by a (possibly

non-Abelian) finite group �1, an Abelian finite group �2,
an action α : �1 → Aut(�2), and a “Postnikov class” β ∈
H3(B�1,�2), which can be thought of as a natural map (not
necessarily a homomorphism)

β : C1(X,�1) → C3(X,�2) (A10)

satisfying

dβ(A) = 0 when dA = 0 (A11)

and

β(Ag) = β(A) + dβ1(A, g), (A12)

for some function

β1 : C1(X,�1) × C0(X,�1) → C2(X,�2) (A13)

known as the first descendant of β.
A (�1,�2, α, β )-valued gauge field on X is a pair

A ∈ C1(X,�1), (A14)

B ∈ C2(X,�2) (A15)

satisfying the cocycle condition

dA = 0, (A16)

dαB = β(a), (A17)

where dαB is the twisted differential

(dαB)(i jkl ) = (dB)(i jkl ) − 2α(A(i j)) · B( jkl ), (A18)

where in the second term we use the action α of �1 on �2. A
gauge transformation is parametrized by a pair

g ∈ C0(X,�1), (A19)

λ ∈ C1(X,�2), (A20)

and acts by

A �→ Ag, (A21)

B(i jk) �→ α(g(i)) · B(i jk) + (dλ)(i jk) + β1(A, g)(i jk),
(A22)

where β1 is the first descendant of β, defined implicitly above.
This extra term is needed to preserve the cocycle equation
for B.

APPENDIX B: COMPUTING THE CLASSIFICATION

The classifications (8) and (42) can be computed using the
following standard facts (see, e.g., [47]):

(1) H j (B2K1,Z) = 0 if j = 1, 2, or 4 (although
the latter can be nonzero if K1 has infinitely many
components).

(2) H3(B2K1,Z) = F × Zr , where K1 = F × U (1)r and
F is finite.

(3) H5(B2K1,Z) = H4(B2F,U (1)), the group of U (1)-
valued quadratic forms on F .

(4) H6(B2K1,Z) = H5(B2F,U (1)) × Zr(r−1)/2, the latter
being the Chern-Simons terms for the continuous part
of K1.

(5) H j (B2K1,Z2) = 0 if j = 1, 3.
(6) H2(B2K1,Z2) = Hom(K1,Z2).
(7) H4(B2K1,Z2) = Hom(K1,Z2) through B ∪ B =

Sq2B.
(8) H5(B2K1,Z2) = Hom(K1,Z2)2 through BSq1B and

Sq2Sq1B. These are both equivalent by a Wu formula to the
θ = π term 1

2 ( dB
2 )

2
.

Thus, the k = −1 part of (8) is only nonzero for j = 0, 3,
5, or 6:

(1) H6(BK0,Z), the pure-0-form terms.
(2) H3(BK0,Z), central extensions of K0.
(3) H1(BK0, H4(B2F,U (1)))=Hom(K0, H4(B2F,U (1))).
(4) H6(B2K1,Z), the pure-1-form terms.
And the k = 3 part of (8) is nonzero only for j = 0:
(1) H2(BK0,Z) = Hom(K0,U (1)), which labels mixed

gravitational Chern-Simons terms of type A ∧ R ∧ R.
Also, the k = 1 part of (42) is only nonzero for j = 0, 2,

or 4:
(1) H4(BK0,Z2), terms of the form 1

2w1(T X )ζ (A). Those
ζ with integer lifts are killed by the Wu relations.

(2) H2(BK0, H2(BK1,Z2)), terms of the form
1
2w1(T X )c(A) f (B), with c ∈ H2(BK0,Z2) and f : K1 → Z2.

(3) H4(BK1,Z2), terms of the form 1
2w1(T X )P(B). Those

P with integer lifts are killed by the Wu relations.
The Wu formulas apply to (8) by simply eliminating

the k = 2 piece. In (8), as well as killing certain terms
above, one k = 2 piece remains, for anomalies of the
form

1
2w1(T X )2ρ(A, B),

with ρ a Z2 3-cocycle. The classification of ρ splits into three
cases, j = 0, 2, or 3:

(1) H3(BK0,Z2), a pure 0-form and TRS anomaly.
(2) H1(BK0, H2(BK1,Z2)) = Hom(K0 × K1,Z2), terms

of the form 1
2w1 f (A, B), where f is a pairing K0 × K1 → Z2.

We can write any such map as a product of maps into Z2, since
f must factor through the finite part of the Abelianization of
K0 as well as the finite part of K1, and the product of finite
Abelian groups is also the coproduct.

(3) H3(BK1,Z2) = Zr
2 × Hom(F,Z2).
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