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Interaction-driven topological phase transitions in fermionic SU(3) systems
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We consider SU(3) fermions on the triangular lattice in the presence of a gauge potential which stabilizes
a quantum Hall insulator (QHI) at the density of one particle per lattice site. We investigate the effect of
the Hubbard interaction, favoring magnetic long-range order, and a three-sublattice potential (TSP), favoring
a normal insulator (NI), on the system. For a weak TSP we find that the Hubbard interaction drives the QHI into
a three-sublattice magnetic Mott insulator (MMI). For intermediate values of the TSP we identify two transition
points upon increasing the Hubbard interaction. The first transition is from the NI to the QHI and the second
transition is from the QHI to the MMI. For large values of the TSP a charge-ordered magnetic insulator (COMI)
emerges between the NI and the QHI, leading to an interaction-driven COMI-to-QHI transition.
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I. INTRODUCTION

Since the experimental discovery of the quantum Hall
effect in two-dimensional (2D) electron systems [1], novel
types of band insulators such as quantum Hall (QHI) [2] and
quantum spin Hall (QSHI) [3] insulators have been identified,
which are characterized by topological invariants and cannot
be adiabatically connected to the previously known normal
insulators (NIs) [4]. The QHI occurs at particular particle fill-
ings when a constant magnetic field is applied perpendicular
to a 2D lattice potential, splitting a single energy band into
several subbands [5], each one carrying an integer quantum
number [2] called the Chern number [6]. The QSHI is a
result of time-reversal symmetry and spin-orbit coupling and
is characterized by a Z2 topological invariant [7].

The effect of interaction on a band insulator and the emer-
gence of Mott physics in the strong coupling regime has been
an interesting problem for a long time [8], initially motivated
by the observation of neutral-ionic phase transition in organic
compounds [9]. A spontaneously dimerized phase [10–13]
stabilized by condensation of a singlet exciton [14–17] sep-
arates the NI from the Mott insulator (MI) as is studied via the
1D ionic Hubbard model. The ground-state phase diagram of
the 2D model is controversial [18–20].

In recent years, there has been a large interest in inter-
acting topological insulators [21], with a focus on realizing
topological many-body quantum states such as fractional
QHI [22] and studying interaction-driven topological phase
transitions [23–28]. In the time-reversal-invariant Harper-
Hofstadter-Hubbard model with a spin-mixing hopping term
an interaction-driven NI-to-QSHI transition is identified [23],
which is found also in an extended Bernevig-Hughes-Zhang-
Hubbard model [24,25]. The competition of the Hubbard in-
teraction and the staggered potential in the Haldane-Hubbard
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model stabilizes an antiferromagnetic Chern insulator (AFCI)
where one of the spin components is in the quantum Hall state
and the other in the normal state [26,27]. Such an AFCI is
proposed also for the Kane-Mele-Hubbard model but with a
spontaneous breaking of the time-reversal symmetry [28].

Spin-orbit coupling in multicomponent systems can give
rise to a richer topological band structure compared to the
SU(2) case [29–31]. In the Mott regime, SU(N) systems are
potential candidates to find novel ordered and disordered MIs
[32–37]. Furthermore, interaction-driven metallic phases and
a charge-ordered magnetic insulator (COMI) are reported as a
result of competing charges and magnetic orders in fermionic
SU(3) systems [38].

Here we investigate SU(3) fermions on the triangular lat-
tice at 1/3 filling in the presence of a gauge potential stabi-
lizing a QHI. We study the effect of the Hubbard interaction
and a three-sublattice potential (TSP) on the QHI phase. For
a weak TSP, the Hubbard interaction drives the QHI into a
three-sublattice magnetic MI (MMI). For intermediate values
of the TSP we find the NI at weak Hubbard U and the MMI
at strong Hubbard U , separated by a QHI. For a large TSP an
additional COMI phase emerges between the NI and the QHI.
This leads to the realization of an interaction-driven COMI-
to-QHI transition. This study is experimentally motivated by
the recent progress in the realization of artificial gauge fields
[39–42] and the creation of SU(N)-symmetric multicompo-
nent systems [43–47] in optical lattices. The Hamiltonian
reads

H = − t
∑

〈rr′〉

∑

α

(e2π iφr,r′ c†
r′αcrα + H.c.) +

∑

rα

�rnrα

+U
∑

r

∑

α<α′
nrαnrα′ , (1)

where c†
rα is the fermionic creation operator at the lattice

position r with the spin component α, nrα = c†
rαcrα is the

occupation number operator, and the summation over 〈rr′〉
restricts the hopping to nearest-neighbor sites. The hopping
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phase factors φr,r′ around each triangle add up to a constant,
�, which describes the magnetic flux going through each
triangle in units of the magnetic flux quantum. The three
sublattices A, B, and C of the tripartite triangular lattice
acquire respectively the on-site energies −�1, 0, and +�2

due to the second term, the TSP. The last term is the Hubbard
interaction.

II. TECHNICAL ASPECTS

We map the triangular lattice to the square lattice with
hopping along the x̂, ŷ, and (x̂ + ŷ) directions. We consider
the hopping phase factors φr,r+x̂ = 0, φr,r+ŷ = (2m + 2n +
1)�, and φr,r+x̂+ŷ = 2(m + n + 1)� from the lattice position
r = max̂ + naŷ, where a is the lattice constant and m, n ∈
Z [48]. There are three sites in the unit cell for � = 1/6,
which is the flux we consider in this paper. In the absence of
interaction the Hamiltonian reduces to a three-level problem
in momentum space, leading to three distinct Bloch bands
with a threefold spin degeneracy each. We determine the
Chern number of the system at U = 0 using twisted boundary
conditions [49,50]. We employ real-space dynamical mean-
field theory (DMFT) [51–53] which we implemented for
SU(N) systems in Ref. [36] to address the Hamiltonian at
finite U . In real-space DMFT the self-energy is approximated
to be local but it can be position dependent. We consider
L × L lattices with L = 30 and periodic boundary conditions
unless mentioned otherwise. We use the exact diagonalization
(ED) impurity solver with four and five bath sites and check
that the results nicely agree across different transition points.
The presented results are for five bath sites unless mentioned
otherwise. We have used the inverse temperature β = 32/t .
We find at different selected parameter values that the results
remain unchanged compared to the ones obtained using a
zero temperature ED impurity solver [54]. We expect that a
temperature T = t/32 is low enough to capture the ground-
state properties of the model.

We evaluate the Chern number of the interacting system
using the topological Hamiltonian approach [55]. This method
states that the Chern number of an interacting system is equal
to the Chern number of an effective noninteracting model
called the “topological Hamiltonian,” which in the Bloch form
reads

ht (k) = h0(k) + �(k, iω = 0), (2)

where h0(k) is the noninteracting part of the original model
and �(k, iω) stands for the self-energy. In DMFT the self-
energy is local and we have no element in the Hamiltonian
and in the self-energy linking different spin components.
Consequently, the effect of self-energy in Eq. (2) will be to
renormalize the TSP to

�̃1,α = �1 + (�B,α (0) − �A,α (0)), (3a)

�̃2,α = �2 + (�C,α (0) − �B,α (0)), (3b)

up to an irrelevant shift in the energy spectrum. We have used
�A,α (0) for the zero-frequency self-energy on sublattice A
with the spin component α and similarly for sublattices B and
C [56]. The effective TSP, Eq. (3), in paramagnetic phases is
spin independent, while in magnetically ordered phases, i.e.,

FIG. 1. (a) Phase diagram of the model for the Hubbard inter-
action U = 0 in the �1-�2 plane. The shaded area corresponds to
the quantum Hall insulator (QHI) and the white area to the normal
insulator (NI). (b) The double occupancy and the local moment
in the QHI and in the magnetic Mott insulator (MMI) versus U
at �1 = �2 = 0. The gray area is the coexistence region and the
vertical solid line marks the transition point. (c) The spectral function
Arα (ω) at U = 9t and �1 = �2 = 0 versus the frequency ω for a
cylindrical geometry with edges at x = 0 and x = 29a.

in phases with broken SU(3) symmetry, it depends on the spin.
This shows that different spin components can in principle
occur in distinct topological regions.

III. RESULTS

Figure 1(a) shows the phase diagram of the model at U = 0
in the �1-�2 plane. The shaded area denotes the QHI and
the white area the NI phase. In the QHI each spin component
α contributes a Chern number Cα = 1, leading to the Chern
number C = 3 for the full system. The three asymptotic
branches for the phase boundaries can be understood based
on the sublattice degeneracy. For instance, sublattices A and
B are degenerate at �1 = 0, and upon increasing �2 → +∞
always the two lowest Bloch bands remain topological, lead-
ing to a QHI state at 1/3 filling. Figure 1(a) can be used to
determine also the topological properties of the interacting
model as the effect of the interaction is only to renormalize
the TSP.

For SU(3) systems we define the double occupancy
Dr = ∑

α<α′ 〈nrαnrα′ 〉 and the local moment mr = √
3|〈Sr〉|/2,

where S i
r = ∑

αα′ c†
rαλi

αα′crα′ for i = 1, . . . , 8 define the ele-
ments of the eight-dimensional pseudospin operator Sr with
λi being the Gell-Mann matrices. In magnetic phases there
is a continuous degeneracy and we focus on the solution
with pseudospin order in the Ŝ3-Ŝ8 plane. In Fig. 1(b), the
double occupancy and the local moment in the QHI and in
the MMI are depicted versus U for �1 = �2 = 0. The QHI
and the MMI are two DMFT solutions coexisting in the gray
area. The QHI results from the zero effective TSP in the
paramagnetic region. The MMI is topologically trivial as we
find all three spin components in the normal state. This is a
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point which we discuss further in Fig. 3. For �1 = �2 = 0,
Dr and mr are position independent. The red solid line at
Uc 	 14.5t specifies the transition point obtained by com-
paring the energy of the two states. The MMI has a three-
sublattice magnetic order such that on each sublattice one
of the spin components has the dominant density and the
densities of the other two components are equal, leading to
a 120◦ pseudospin order [36,57].

To investigate gapless edge states in the QHI we consider
a 30 × 30 lattice with s periodic boundary condition along ŷ
and an open boundary condition along x̂, i.e., a cylindrical
geometry, with edges at x = 0 and x = 29a. The spectral
function at position r for the spin component α is defined
from the local Green’s function as Arα (ω) = − 1

π
ImGrα (ω +

iε), where ε is a numerical broadening factor. In Fig. 1(c),
the spectral function Arα (ω) for U = 9t and �1 = �2 = 0
is plotted versus the frequency ω in the range −3t <ω<3t
with ε = 0.05t . The dashed line at ω = 0 specifies the Fermi
energy. Due to the finite number of bath sites Nb = 5 in the
impurity problem, the fine details of the spectral function
cannot be reserved. However, one can clearly identify the
spectral contribution from the edge x = 0 near the Fermi
energy, which vanishes upon approaching the bulk x = 14a.
It is interesting that even with a finite number of bath sites one
can see evidence of gapless edge states. The edge and the bulk
spectral function on finite clusters in an interacting topological
insulator are discussed also in Ref. [58]. However, we notice
that computing topological invariants is a more accurate and
reliable way to recognize topological phase transitions.

We leave a general study of the Hubbard interaction on
the phase diagram in Fig. 1(a) for future research and con-
sider here for simplicity �1 = �2 =: � > 0. We believe that
small deviations from this symmetric case will not change
essentially the physics discussed in the following. At U = 0
there is a transition from the QHI to the NI at �c = 3t/

√
2

upon increasing �. In Fig. 2 we have plotted the double
occupancy DA and the local moment mA on sublattice A as
well as the Chern number Cα versus the Hubbard interaction
U for � = 6t (a) and � = 11t (b). To avoid a busy figure
the local moment is given only in magnetic phases (MP) as
it is trivially zero in paramagnetic phases (PP). In addition
we find Cα = 0 for all three spin components in the MP
(see also below). The given spin-independent Cα is for the
PP. The gray area indicates the coexistence of magnetic and
paramagnetic DMFT solutions. One notices that in Fig. 2(b)
the COMI always coexists with a paramagnetic phase and the
given Chern number is for the paramagnetic phase, not for the
COMI. The red vertical solid line specifies the transition point
and is obtained by comparing the energies of the two states in
the case of coexistence. The blue vertical dashed line denotes
the NI-to-QHI transition in the case that the paramagnetic
solution is enforced.

One can see from Fig. 2(a) that the Hubbard interaction
drives the NI into the QHI and subsequently the QHI into
the MMI. Similar sequences of phase transitions are found in
SU(2) topological systems [23–28]. Upon increasing the TSP
to � = 11t in Fig. 2(b), a COMI phase emerges between the
NI and the QHI. In the COMI phase, sublattice A is almost
doubly occupied with two spin components, sublattice B is
mainly occupied with the third component, and sublattice C

FIG. 2. The double occupancy DA and the local moment mA on
sublattice A, and the Chern number Cα for the spin component α

versus the Hubbard interaction U for � = 6t (a) and � = 11t (b).
The gray area denotes the coexistence of magnetic and paramagnetic
solutions. The local moment mA is given only in magnetic phases
(MP), i.e., in the charge-ordered magnetic insulator (COMI) and
in the magnetic Mott insulator (MMI). The given spin-independent
Chern number Cα is for paramagnetic phases (PP), i.e., for the normal
insulator (NI) and for the quantum Hall insulator (QHI), as it is zero
for MP. The red solid lines mark the transition points and the dashed
blue line denotes the NI-to-QHI transition, ignoring the magnetic
DMFT solution.

is almost empty. The local moments on sublattices A and B
are equal, and the local moment is zero on sublattice C. There
is a 180◦ pseudospin order on sublattices A and B [38]. We
find that the COMI always has an energy lower than that
of the paramagnetic phases, i.e., the NI and the QHI are
metastable. We notice that the charge order is an intrinsic
property of the COMI phase as it is not adiabatically con-
nected to any phase with a uniform charge distribution. This
is to be compared with the QHI and MMI phases which are
adiabatically connected to the � = 0 limit where the charge
distribution is uniform. We believe the Hubbard interaction
driving a magnetic phase into a quantum Hall state as it
occurs in the COMI-to-QHI transition is a peculiar feature of
multicomponent systems which has no SU(2) counterpart.

The double occupancy DA versus U in Fig. 2 exhibits a
change of slope in different phases and can be conveniently
measured in optical lattices using the photoassociation tech-
nique [46]. The magnetic order can be identified using a
quantum gas microscope [59,60]. Lower temperatures are
accessible in multicomponent systems compared to the SU(2)
case due to the Pomeranchuk cooling effect [61]. We notice
that to realize magnetic order at finite temperature in our
system a weak coupling in the third direction or an interaction
anisotropy is required.

To further clarify the topological nature of different phases,
we study in Fig. 3 the evolution of the effective TSP as a
function of U for the paramagnetic DMFT solution [panel
(a)], for the COMI with � = 11t [panel (b)], and for the MMI
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FIG. 3. The evolution of the effective potential as a function
of U for the paramagnetic DMFT solution (a), for the charge-
ordered magnetic insulator with � = 11t (b), and for the magnetic
Mott insulator with � = 6t (c), for the spin components α = ↑, 0,
and ↓.

with � = 6t [panel (c)]. The direction of the curves are upon
increasing U . The shaded area corresponds to the QHI and the
white area to the NI. One sees from Fig. 3(a) that for � = 2t
the system is always in the QHI region, but for � = 6t and
� = 11t a NI-to-QHI transition occurs. Figures 3(b) and 3(c)
demonstrate that the COMI and the MMI are topologically
trivial as all three spin components α =↑, 0, and ↓ are in the
NI region. The larger the local moment is in the MMI and in
the COMI in Figs. 2(a) and 2(b), the deeper the corresponding
topological Hamiltonian is in the NI in Fig. 3. The interaction-
driven topological phase transitions can be studied in optical
lattices using the tomography scheme proposed in Ref. [62].

Figure 4 displays the phase diagram in the U -� plane.
The gray areas denote the coexistence of magnetic and
paramagnetic states, the red lines are the phase boundaries,
and the blue line separates the NI from the QHI, ignoring the
magnetic DMFT solution. The solid (dashed) line indicates
a continuous (discontinuous) transition. We have used four
bath sites in the impurity problem due to the large number
of data we needed to produce. However, by comparing Fig. 4
with Figs. 1(b) and 2, one can see the nice agreement for
coexistence regions and transition points obtained with five
and four bath sites. We have performed further checks across
some other selective transition points. We always find that the
NI-to-QHI transition is continuous, although discontinuous
transitions in two-orbital systems have also been reported
[25]. The coexistence regions shrink upon increasing �. The
QHI in the limit U,�
 t appears around U = 2�, where
the COMI and the MMI are degenerate in the atomic limit,
i.e., at t = 0 [38]. We have produced the phase diagram up to
U = 32t and � = 20t and the QHI persists with a constant
width. This width is proportional to t and vanishes in the
atomic limit.

FIG. 4. The phase diagram in the U -� plane. The red lines
denote the phase boundaries, the gray areas represent the coexistence
regions, and the blue line separates the normal insulator from the
quantum Hall insulator when ignoring the magnetic DMFT solu-
tion. The solid (dashed) line indicates a continuous (discontinuous)
transition.

IV. SUMMARY AND OUTLOOK

To summarize, in recent years there has been a large
interest in fermionic SU(N) systems [32,47] as well as in
artificial gauge fields [63–65] due to their possible realization
in optical lattices. While studies of SU(N) systems have
mainly been focused on topological states in the absence of
interaction [29–31] and on Mott states in the strong-coupling
limit [32–37], less attention has so far been paid to the
competition of band and Mott insulators and the possible
emergence of intermediate phases and novel phenomena. This
requires tuning the interaction from weak to strong, which can
experimentally be achieved by Feshbach resonances [66–68].
In this paper we show that local correlations, which are best
known for the famous Mott transition, can drive a magnetic
phase into a quantum Hall state in multicomponent systems.
Z2 lattice gauge theories have recently been simulated using
ultracold atoms in optical lattices [69,70]. Our work sets the
stage for a generalization of static gauge fields with interac-
tions to the dynamical case and for studies of Z3 lattice gauge
theories, which are linked to important issues in high-energy
physics.
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