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Electronic correlation induced expansion of Fermi pockets in δ-plutonium
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Plutonium is a critically important material as the behavior of its 5 f electrons stands midway between the
metalliclike itinerant character of the light actinides and localized atomic-core-like character of the heavy
actinides. The δ phase of plutonium (δ-Pu), whereas still itinerant, has a large coherent Kondo peak and
strong electronic correlations coming from its near-localized character. Using sophisticated Gutzwiller wave
function and dynamical mean-field theory correlated theories, we study the Fermi surface and associated mass
renormalizations of δ-Pu together with calculations of the de Haas–van Alphen frequencies. We find a large
(∼200%) correlation induced volume expansion in both the hole and the electron pockets of the Fermi surface
in addition to an intermediate mass enhancement. All of the correlated electron theories predict, approximately,
the same hole pocket placement in the Brillouin zone, which is different from that obtained in conventional
density-functional band-structure theory, whereas the electron pockets from all theories are in, roughly, the same
place.
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I. INTRODUCTION

With six allotropic crystal phases at ambient pressure,
plutonium (Pu) is one of the most complex elemental solids
in the periodic table. Much of its exotic behavior is driven
by a large anisotropy natural in its f -electron bonding whose
strength is, in turn, tuned by strong electronic correlations,
which arises from its 5 f -electron behavior standing midway
between the metalliclike itinerant character of the light ac-
tinides and the localized atomic-core-like character of the
heavy actinides. In addition, these correlations are highly
temperature dependent and give rise to a strong atomic volume
dependence for the different phases. In particular, the 25%
volume expansion between the α and the δ phases gives rise
to exotic physics that has appealed to experimentalists and
theorists for decades [1–9]. Consequently, the f electrons in
the δ phase of plutonium (δ-Pu) appear to exhibit a complex
combination of localized and itinerant characteristics making
the local moments and their impact on the electronic structure
difficult to model [2,10–12].

The magnetic behavior in Pu associated with this 5 f -
electron duality has long been a puzzle in the condensed-
matter and materials physics community [13–16] since
strongly localized electrons typically exhibit some form of
magnetism. No long-range magnetic ordering has been ob-
served for any phase of Pu [5,6,8,15]. However, theoretical
calculations performed by using density functional theory
(DFT), within either the local-density approximation (LDA)
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or generalized gradient approximation (GGA), cannot repro-
duce the characteristic volume expansion for δ-Pu unless
spin and/or orbital polarization are included [8,17–23]. The
LDA +U and GGA +U methods with a large Hubbard-U
Coulomb parameter usually favor a magnetic ordering. A
recent study [24] based on the GGA +U method imple-
mented in a projector augmented-wave code [25] shows that a
weaker Coulomb interaction (i.e., U ≈ 1 eV) can accurately
reproduce the volume phases of Pu without the addition
of spin or orbital polarization. It has long been believed
that the level of electronic correlation in these approaches
were inadequate, and, indeed, strongly correlated electron
theoretical methods have recently shown very promising
results. By modeling the competition between the on-site
Coulomb repulsion among localized f electrons and their
hybridization with the itinerant electrons in a quantum im-
purity fashion, dynamical mean-field theory (DMFT) is able
to describe the single-particle excitation properties of δ-Pu in
good agreement with photoemission spectroscopy measure-
ments [2,3,26] as well as to predict the valence fluctuations
validated by inelastic neutron spectroscopy [12,27]. Another
strongly correlated electron theoretical approach uses the
Gutzwiller wave-function approximation (GutzA) [28–30],
which has been used to successfully calculate the volume
dependence in Pu phases without the addition of artificial or-
bital polarization [29,31]. The combination of LDA (or GGA)
and GutzA has the same mathematical structure as LDA
combined with DMFT [5] with the difference that the GutzA
assumes infinite quasiparticle lifetimes, which is equivalent
to neglecting the incoherent component of the electrons. This
makes the GutzA method less accurate for calculating strong
correlation effects than DMFT. However, it has the important
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compensating advantage of being significantly less computa-
tionally demanding [29].

Recently, an attempt has been made to bring magnetism
back into the models with the “disordered local moment” [32],
involving a static DFT model, which would lead to a Curie
behavior for the susceptibility in contradiction to experi-
mental data. The contrasting picture is the “valence fluctu-
ation” [12] (dynamical) model using the DMFT approach
described above. The static model describes the orbitals as
individual localized magnetic moments that are spatially and
temporally disordered such that any long-range magnetic
ordering is obscured by averaging over time. The dynamical
model proposes a quantum entanglement between the local-
ized magnetic moments and the itinerant conduction elec-
trons, resulting in valence fluctuations that effectively screen
the magnetic ordering below the Kondo temperature TK of the
material [12].

In an effort to determine the validity of these theoretical
models, previous studies of Pu allotropes have focused on
reproducing the volume expansion and bulk modulus of δ-
Pu [2,8,29,31,33–37]. This paper strives to fill a gap in the
understanding of the momentum space electronic behavior
through a direct examination of strong correlation effects. We
accomplish this by probing the Fermi surface topology of δ-Pu
using the de Haas–van Alphen (dHvA) effect present in metal-
lic systems [38–40], and comparing results for several theoret-
ical methods including DFT within the GGA, the GGA + U
(where U is the Hubbard parameter defining the strength of
a static Coulomb interaction), the Gutzwiller approximation
(GGA + GutzA), and the dynamical mean-field theory (GGA
+ DMFT). The most striking result includes the discovery of
strong correlation induced expansion of compensated electron
and hole pockets as well as the relocation of hole pockets.

II. THEORETICAL METHODS

The δ-Pu Fermi-surface topologies were obtained using
four electronic structure methods for comparison.

Density functional theory calculations. Our starting point
is conventional DFT in the GGA as implemented in the
full-potential linearized augmented plane-wave (FP-LAPW)
method of WIEN2K [41]. Relativistic spin-orbit coupling ef-
fects were included by using a k-point grid of 15 × 15 × 15,
a muffin-tin radius of 2.50a0, where a0 is the Bohr radius and
a lattice constant a = 4.637 Å [42]. These parameters were
used for the basis of each calculation method. We note that
the GGA normally gives equilibrium volumes a few percent
larger than the LDA. When it is combined with the many-body
approaches, the equilibrium volume can be overestimated
with a large Coulomb interaction when compared with ex-
perimental lattice parameters. Here, we choose to use a fixed
experimental lattice constant so that the electronic structure
properties from different methods can be compared on the
same footing. We do not anticipate the use of LDA-based
methods will change the results qualitatively.

GGA + U calculations. GGA + U calculations were per-
formed for nonmagnetic δ-Pu using the same parameters and
exchange-correlation functional as those used in the DFT
method. The Hubbard parameter for the on-site Coulomb
interaction strength was tested for values up to U = 4.5 eV

with an exchange-site parameter of J = 0.512 eV, which has
been shown to reproduce characteristics of δ-Pu consistent
with atomic spectral data [5]. The full electronic structure
study for U = 0 to 4.5 eV (with J = 0.512 eV for U > 0) is
available in the Supplemental Material (SM) document [43].
In addition to the nonmagnetic cases, ferromagnetic and an-
tiferromagnetic long-range magnetic-ordering cases were ex-
plored using the GGA and GGA +U methods. The results can
be found in the SM document [43]. These cases were included
purely for comparison as there has been no experimental
evidence of long-range magnetic ordering detected in any
phase of Pu.

Gutzwiller approximation calculations. Similar calcula-
tions were performed for paramagnetic δ-Pu using the
Gutzwiller approximation method implemented in the
CYGUTZ code [29,30]. This method is built upon a FP-LAPW-
based DFT [41] calculation and implements a combination
of the slave-boson Gutzwiller wave-function method (GutzA)
to account for strong electronic correlation. The Coulomb
interaction strength was tested at values up to U = 4.5 eV to
facilitate comparison to the GGA + U and GGA + DMFT
(details below) calculations. The electronic structures for
U = 0 to 4.5 eV (with J = 0.512 eV for U > 0) is also
included in the SM document [43].

Dynamical mean-field theory calculations. GGA + DMFT
calculations were also performed for paramagnetic δ-Pu.
As in the case of the GGA + U and GGA + GutzA
methods, this method uses the FP-LAPW implementation of
WIEN2K [41] as its basis. The DMFT calculation implements
a strong-coupling version of the continuous-time quantum
Monte-Carlo method [26,44,45] in order to explicitly con-
sider the on-site Coulomb interactions with strength U = 4.5
and J = 0.512 eV. The remaining Slater integrals F 2 = 6.1,
F 4 = 4.1, and F 6 = 3.0 eV were calculated using Cowan’s
atomic-structure code [46] and reduced by 30% to account
for screening. Calculations were performed at temperatures
of T = 116 and T = 1160 K. In order to compare the DMFT
results to those of the other methods for which T = 0 K, the
Fermi-surface data were extrapolated from the T = 0.01-eV
calculation where the sensitivity of the electronic self-energy
is negligible. The Fermi energy was then shifted to maintain
the conservation of total number of electrons consistent with
T → 0 eV.

De Haas–van Alphen calculations. Analysis of the Fermi
surfaces from each of the above methods was performed using
numerical calculations of the dHvA effect as implemented
by Rourke and Julian [39]. By applying a magnetic field
to the system, oscillations in the magnetic susceptibility can
be determined from the changes in the number of occupied
Landau levels as a function of the reciprocal magnetic-field
1/B [39,47]. Then, the dHvA frequency can be expressed as

fi = 1

�(1/B)
= h̄

2πe
Ai, (1)

where e is the elementary charge of an electron and Ai is the
extremal cross-sectional area of the ith branch of the Fermi
surface on a plane perpendicular to B. The effective carrier
mass averaged around the extremal cyclotron orbits is also
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TABLE I. The dHvA and volume data for Fermi-surface calculations at zero temperature. Frequencies are given in kilotesla (kT), and
corresponding effective masses are in units of electron mass (me). Reciprocal occupied (electron bands 17 and 18) and unoccupied (hole bands
15 and 16) Fermi-surface volumes are given in units of Å−3. Calculations for δ-Pu performed with DFT, the GGA + U , GGA + GutzA, and
GGA + DMFT are compared. All measurements were taken for a magnetic field parallel to the z axis (B ‖ z). The results for T = 0 K were
extrapolated from the GGA + DMFT calculation at T = 116 K where the sensitivity of electronic self-energy to temperature is negligible
since this temperature is already far below the coherence temperature [27]. The Fermi energy was shifted by −3.36 meV to maintain the
conservation of the number of electrons as T → 0 K.

DFT GGA + U GGA + GutzA GGA + DMFT

Band f m∗ VFS f m∗ VFS f m∗ VFS f m∗ VFS

15 and 16 1.74 3.19 0.31 10.2 2.35 1.02 3.12 2.00 0.91 3.07 1.84 0.95
17 and 18 2.87 5.32 0.31 6.65 1.54 1.02 6.27 2.48 0.91 6.18 2.17 0.95

determined from

m∗ = h̄2

2πe

∂A

∂E

∣
∣
∣
∣
E=EF

, (2)

where m∗ is in units of the electron mass me. The results of the
dHvA analysis (Table I) are to be compared against magnetic
quantum oscillation measurements. We anticipate that such
measurements will aid in determining the correct model to
describe the physical properties of Pu.

III. RESULTS

A. Electronic structure

The first of the theoretical methods we explored was
the standard DFT GGA calculation, which does not explic-
itly incorporate electronic correlation beyond a simple local
exchange-correlation function. The electronic band structure
and density of states (DOS) calculated using this method are
shown in Fig. 1(a) with the high-symmetry momentum path
illustrated in Fig. 2, and the Fermi-surface calculations are
given in Fig. 3(a). This calculation is the baseline for the other
three methods, each of which adds additional correlation ef-
fects using increasingly sophisticated techniques. The GGA +
U method applies a static Coulomb interaction to the system
within the Kohn-Sham formalism. The GGA + GutzA uses an
auxiliary particle theory, whereas assuming infinite quasiparti-
cle lifetimes. The GGA + DMFT is the most sophisticated and
computationally demanding method for calculating electronic
structure with strong-correlation effects. The resulting band
structure for each method is shown in Fig. 1 along with its
accompanying DOS. It should be noted that the structure
in the DOS for the GGA + DMFT is greatly washed out
relative to the other three methods. This is due to quasiparticle
lifetime effects naturally included in the GGA + DMFT,
whereas the other three methods have sharp (infinite lifetime)
quasiparticle states.

The effects of electronic correlation on the quasiparticle
band structure is to shift and/or renormalize (distort) the
energy bands. The addition of a static Coulomb parameter
with the GGA + U [Fig. 1(b)] results in a large shift of
the conduction bands just above the Fermi energy and a
distortion of the upper valence bands with respect to the GGA
results [Fig. 1(a)]. The GGA + U DOS also shows a distinct
splitting of the 5 f -electron subshells j = 5/2 and j = 7/2
with the j = 5/2 electron character mainly just below the

Fermi energy and the j = 7/2 electron character between
about 4 to 6 eV for U = 4.5 eV. We note that because there is
no spin polarization in the present GGA + U calculations (for
the purpose of quenching magnetism), the Kramers double
degeneracy is restored. Since the Pu-5 f shell is partially
occupied (n f ∼ 5), the j = 5/2 subshell must be pulled to-
ward the Fermi energy, and the unoccupied bands are pushed
away from the Fermi energy with an increased Hubbard
U . The DOS calculated with the GGA + GutzA shows a
similar but less dramatic splitting of 5 f subshells (in part,
due to spin-orbit coupling) [Fig. 1(c)]. The corresponding
band dispersion indicates a concentration of 5 f electrons from
the j = 5/2 subshell around the Fermi energy. There is also
an upward shift of the conduction bands and accompanying
renormalizations around the Fermi energy as compared to the
GGA calculation of Fig. 1(a). This results in flattening of
the bands around the X point with increased slopes to the
right and left of the flat region. The flattening of the bands
in this region is more pronounced than the similar feature
in the GGA + U band dispersion [Fig. 1(b)], whereas the
shift and resulting slope increase is much more prevalent
in the GGA + U method. The band dispersions calculated
using the GGA + DMFT [Fig. 1(d)] show, by far, the largest
band renormalization of f electrons around the Fermi energy,
which is evident from the peak in the DOS (the Kondo peak).
This feature is associated with the flattening of the top valence
bands and bottom conduction bands around the Fermi energy.
Comparing the GGA + GutzA and GGA + DMFT to the
GGA + U band structures, we find that the static approach
of the GGA + U method does not include the type of band
flattening or renormalization of the f -electron bands expected
from strong electronic correlations.

B. Fermi-surface topology

We have further explored the behavior of the electronic
structure around the Fermi energy through an analysis of the
Fermi surfaces shown in Fig. 3 along with sections of the
band structure around the Fermi energy. The Brillouin zone
(BZ) and high-symmetry paths used in Fig. 1 are displayed in
Fig. 2. At first glance, there is a qualitative similarity between
the Fermi surfaces from each of the calculation methods.
A notable difference in the GGA results is the location of
the hole bands (Nos. 15 and 16) intersection with the Fermi
energy. The band structures that include some form of cor-
relation effect show the hole pocket occurring between the L
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FIG. 1. The electronic band structures and DOS for (a) nonmagnetic δ-Pu calculated using the GGA with no explicit electron-electron
correlation, (b) nonmagnetic δ-Pu calculated with the constrained GGA + U for U = 4.5 and J = 0.512 eV, (c) paramagnetic δ-Pu calculated
using the GGA + GutzA for U = 4.5 and J = 0.512 eV, and (d) paramagnetic δ-Pu calculated using the GGA + DMFT for U = 4.5 and
J = 0.512 eV. The thick red bands indicate the f -electron occupations, and the red curves on the DOS show the f -projected densities. The
path that the band dispersions take through the reciprocal space is shown in Fig. 2. Note that whereas the band-structure scales are all the
same (between −4 and +4 eV) that the DOS scales have different maxima, which should be taken into account when comparing the effects of
correlation on the DOS of the four different methods. We have changed the scales to best show the structure in the DOS of each method.

FIG. 2. The high-symmetry path through the first Brillouin zone
used for the band-structure calculations goes from � → L → W →
X → �.

and the W high-symmetry points, whereas the GGA method
has the hole pocket between the X and the � points. The rough
position of the electron pockets seems unchanged between the
GGA and the more correlated electron methods.

We also find differences in dHvA frequencies fi, which
are related to the area of the Fermi surface by the expression
fi = 1/�( 1

B ) = h̄Ai/2πe, where e is the elementary charge of
an electron and Ai is the extremal cross-sectional area of the
ith branch of the Fermi surface on a plane perpendicular to
the applied magnetic-field B. These frequencies are denoted
by the red lines around the isosurfaces in Fig. 3 as well as
listed in Table I. In this case, we have calculated the extremal
frequencies using a simulated external magnetic field parallel
to the Cartesian z axis as indicated in Fig. 2. A full analysis
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(d)

FIG. 3. The Fermi-surface topologies and corresponding closeup band dispersions for (a) the GGA method, (b) the GGA + U method,
(c) the GGA + GutzA methods, and (d) the GGA + DMFT method. Each panel shows the hole (bands 15 and 16) and electron (bands 17 and
18) isosurfaces for two orientations as indicated by the coordinates to the bottom left of each BZ. The arrows from the Fermi surfaces to the
band structures indicate the band intersections with the Fermi energy that correspond to each Fermi surface. Red lines are interposed on the
Fermi surfaces to indicate the cross sections related to the dHvA extremal frequencies for an external B field parallel to the z-axis (B ‖ z). The
path the band dispersions take through the BZ is shown in Fig. 2.

of the angular dependence on the dHvA frequencies and
cyclotron masses is available in the SM document [43].

The most apparent development due to correlation effects
is the expansion of both the electron and the hole Fermi
surfaces. This can be seen in the increase in the dHvA fre-
quencies, but expansion is clearest in the reciprocal volumes
given in Table I. Compared to the GGA method, the GGA
+ U , GGA + GutzA, and GGA + DMFT reciprocal volumes
increase by between 200% and 230% with the largest increase
occurring between the GGA and the GGA + U methods.
The nature of this volume expansion is consistent with the
Luttinger theorem [48], which requires that the number of
electrons be conserved and is directly proportional to the
volume of the Fermi surface. Given that there are four bands
(two degenerate pairs: 15 and 16 and 17 and 18) intersecting
with the Fermi energy and assuming the lower-energy valence
bands do not interact as the electron pocket increases in
volume, the hole pocket must increase to compensate thereby
conserving the total electron number, which leads to the
simultaneous expansion of the Fermi surfaces of both the
hole and the electron bands. This observation of Fermi pocket
expansion is striking and unique for our multiband system,
given that the strong-correlation effect does not change the
Fermi-surface topology in a single-band-correlated electron
model [48].

Because δ-Pu is a multi- f -orbital and a multi- f -electron
electron system, the Pu 5 f -orbital electrons are hybridized

with the itinerant conduction electrons (mainly 6d-orbital
electrons). The correlation effects narrow the effective f -
electron band, and the 5 f -band spectral weight is pushed away
from the Fermi energy. A similar phenomenon is also noted in
a more recent DFT + DMFT simulation on a uranium com-
pound [49]. Our observation of Fermi-surface expansion with
compensated electron and hole pockets comes from the fact
that all 14 Pu-5 f orbitals are hybridized mainly with the two
Pu-6dz2 and Pu-6dxy orbitals in the energy range from −1.5
to 1.5 eV (Fig. 1). Because of the Pu-5 f electron occupancy
and strong spin-orbital coupling, the Fermi surface is mainly
composed of the six spin orbitals belonging to the j = 5/2
subshell. The electronic correlations reduce the effective hy-
bridization of the 5 f electrons with the 6d-orbital conduction
electrons. This reduction in hybridization adjusts the band en-
ergy dispersion around the Fermi energy in the Brillouin zone.
In some regions (i.e., along the L-W segment of the k path),
the dispersive 6d character is noticeably restored, causing the
band bending up through the Fermi energy to form a hole
pocket. Then, the electron band cutting the Fermi level around
the X point should sink down to ensure the Luttinger sum rule
requiring the expansion of then compensated Fermi pockets.

We have also analyzed the cyclotron effective masses
on the Fermi surface. Their relationship to the dHvA cross
section can be expressed as m∗ = h̄2

2πe
∂A
∂E |

E=EF
, which is in

units of the electron mass me. The results of these calculations
are recorded in Table I. They show a decrease in the effective
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mass for methods including electronic correlations. As the
cyclotron mass is calculated directly at the Fermi energy, we
can explain the decrease in effective mass as stemming from
the conspiring Fermi-surface expansion and band renormal-
ization. Because the effective mass is inversely proportional
to the slope of the energy band, a steeper band intersecting
the Fermi energy leads to a smaller cyclotron mass. From the
sections of the electronic band structures shown in Fig. 3,
it is apparent that the slope of the hole and electron bands
increases when moving from the GGA to the other strongly
correlated electron methods. The electron bands (Nos. 17 and
18) calculated using the GGA + U have the steepest slope
and, consequently, the most reduced effective mass. Similarly,
the band structures from the GGA + GutzA and GGA +
DMFT show bands of increased slope at the Fermi energy
resulting in smaller effective masses.

C. Mass enhancement

Due to the multiband nature of the electronic structure
in δ-Pu, the cyclotron mass is not an effective comparison
of mass enhancement due to the overall correlation induced
renormalization. Although the total number of electrons is
conserved within each calculation method, the electron and
holelike Fermi pockets expand when correlation effects are
introduced, so in order to perform a meaningful comparison of
the effective masses, a thermodynamic analysis of correlation
induced self-energies of Pu-5 f electrons is required [50].
This is beyond the GGA and GGA + U methods, which are
limited to the single-particle Kohn-Sham formalism. We have
performed the comparison for the GGA + GutzA and GGA
+ DMFT methods using

m∗
qp

mb
= ρ̃(EF )

ρb(EF )
, (3)

where ρb(EF ) = ∑
j w jρb, j (EF ) is the band DOS and

ρ̃(EF ) = ∑
j w jρb, j (EF )/z j is the quasiparticle DOS. The

partial density of states ρb, j (EF ) is from the 14 5 f -electron
spin orbitals, and indices b and j are the band index and
spin quantum number, respectively. In the case of the 5 f
electrons, j is either 5/2 or 7/2 where w j is the number of
electrons with either spin (six of j = 5/2 and eight of j =
7/2). In the GGA + DMFT method, the quasiparticle weight
is z j = [1 − ∂ Im 	 j (ωn)/∂ωn|ωn→0]−1, where Im 	 j (ωn) is
the imaginary part of the electronic self-energy in terms of
the Matsubara frequency ωn [45,51]. In the GGA + GutzA
method, the quasiparticle weights are the elements z j of the
matrix Zj ≡ R†

j R j where the matrix Rj is defined from the
formulation of the rationally invariant slave boson theory
derived by Lanatà et al. [30]. We estimate the effective
mass for the GGA + GutzA calculation to be m∗

qp = 1.30mb

and m∗
qp = 5.04mb for the GGA + DMFT calculation. This

is consistent with correlation induced band renormalization
theory [52,53], which finds that effective mass is enhanced,
overall, by strongly correlated electron-electron interactions.

D. Temperature effects

We have also explored the temperature dependence of the
Fermi-surface topology and electronic structure by using the

TABLE II. The dHvA and volume data for Fermi-surface calcu-
lations at temperatures up to 1160 K. Frequencies in kT, effective
masses in units of me, and reciprocal Fermi-surface volumes in
units of Å−3 are shown for the GGA + DMFT calculations of δ-Pu
performed at T = 116 and T = 1160 K. These are compared to the
extrapolated DMFT calculations for T = 0 K.

T = 0 K T = 116 K T = 1160 K

Band f m∗ VFS f m∗ VFS f m∗ VFS

15 and 16 3.07 1.84 0.95 2.38 1.56 0.57
17 and 18 6.18 2.17 0.95 7.02 1.98 1.14 13.80 2.36 3.04

GGA + DMFT method. Table II contains the dHvA results
obtained from electronic structure data for three temperatures.
As the temperature increased from 0 to 116 K, the extremal
frequency of the hole bands (Nos. 15 and 16) decreased and
that of the electron bands increased. From 116 to 1160 K,
the band structure evolves significantly such that only two
degenerate bands (Nos. 17 and 18) intersect the Fermi energy.
The extremal frequency from this electron band isosurface is
dramatically increased as is its reciprocal volume contained
by the Fermi surface. It is noteworthy that the temperature
T = 1160 K is well above the melting point for Pu. These
results are intended to demonstrate the range of the GGA +
DMFT capabilities as well as explore the band renormaliza-
tion in the region where Pu 5 f electrons become localized.
Details of the electronic structure and Fermi-surface topology
at T = 1160 K can be found in the SM document (Fig.
S8) [43].

IV. CONCLUDING DISCUSSION

In this paper, we provide detailed calculations of the
Fermi-surface and associated mass renormalizations of δ-Pu.
By using a comparison between the results of four different
theoretical methods, we have found a significant impact of
strong electronic correlations on the δ-Pu Fermi surface. For
example, using a conventional GGA band-structure method as
our starting point, three other methods that include electronic
correlation effects beyond the GGA showed a Fermi-surface
volume increase between 200 and 230% on individual Fermi
pockets, depending on the method. The correlated-electron
formalisms GGA + GutzA and GGA + DMFT, which take
quantum entanglements in the electronic structure into ac-
count, were in relatively good agreement with each other with
both providing a renormalized electronic band structure and
enhanced effective masses. Given the similarity in the results
between the two methods and the computational efficiencies
present in the GGA + GutzA method, this suggests that the
GGA + GutzA may be highly beneficial for future studies of
Fermi-surface properties in other more complex Pu allotropes
and alloys that may be beyond the current computational
capabilities of the GGA + DMFT.

We also found that each theoretical method has a unique
and identifiable impact on the electronic structure of δ-
Pu. These differences in the nonmagnetic and paramagnetic
Fermi-surface topologies, along with the Fermi-surface data
calculated for the ferromagnetic and antiferromagnetic cases
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(see the SM document [43]), should provide useful theoretical
input to help analyze ongoing magnetic quantum oscillation
measurements. These can be directly compared to our dHvA
simulations by matching the frequency vs magnetic-field
angle curves to experimental measurements performed on
powder δ-Pu samples.

Additional analysis of the Coulomb interaction strength
has been included in the SM documentation [43]. A study
of increasing U using the GGA + U and GGA + GutzA
was performed to explore the evolution of the electronic
structure and Fermi surface (SM Figs. S4–S7) [43]. Figure
S6 of the SM [43], in particular, shows very little change in
the band structure between U = 1 and U = 4.5 eV. The most
significant change occurs between U = 0 and U = 1 eV, sug-
gesting that the introduction of electronic correlation effects
has a more significant impact on the calculation than the
strength of the interactions. Temperature effects for which
there have been only a few extremely limited studies for Pu so
far [4,54] are another interesting factor to influence the Fermi-
surface topologies. Our comparison of calculations at 116 and

1160 K show a dramatic evolution of the electronic structure
and, consequently, the Fermi surface. Further studies on the
temperature dependence of electronic correlation effects will
be beneficial in advancing our understanding of Pu and other
actinides.
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