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Dimensionality of metallic atomic wires on surfaces
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We investigate the low-energy collective charge excitations (plasmons, holons) in metallic atomic wires
deposited on semiconducting substrates. These systems are described by two-dimensional correlated models
representing strongly anisotropic lattices or weakly coupled chains. Well-established theoretical approaches
and results are used to study their properties: Random phase approximation for anisotropic Fermi liquids and
bosonization for coupled Tomonaga-Luttinger liquids as well as Bethe ansatz and density-matrix renormalization
group methods for ladder models. We show that the Fermi and Tomonaga-Luttinger liquid theories predict the
same qualitative behavior for the dispersion of excitations at long wave lengths. Moreover, their scaling depends
on the choice of the effective electron-electron interaction but does not characterize the dimensionality of the
metallic state. Our results also suggest that such anisotropic correlated systems can exhibit two-dimensional
dispersions due to the coupling between wires but remain quasi-one-dimensional strongly anisotropic conductors
or retain typical features of Tomonaga-Luttinger liquids such as the power-law behavior of the density of states at
the Fermi energy. Thus it is possible that atomic wire materials such as Au/Ge(100) exhibit a mixture of features
associated with one- and two-dimensional metals.
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I. INTRODUCTION

Atomic wires on semiconductor substrates are prime can-
didates to realize one-dimensional (1D) metals [1–3]. Within
the theory of Tomonaga-Luttinger liquids (TLL) [4–6] the
low-energy behavior of gapless 1D electronic systems is
determined by collective bosonic charge and spin excitations
(called holons and spinons, respectively). The holon excita-
tions are the counterpart of the plasmon excitations predicted
by the Fermi liquid theory. In practice, it is often unclear
whether the two-dimensional (2D) arrays of atomic wires are
better described as (weakly) coupled 1D systems or (strongly)
anisotropic 2D metals. Consequently, the question occurs
whether the Fermi liquid theory is enough to explain the
low-energy electronic properties of metallic atomic wires or
the TLL theory is necessary to describe correlation effects.

In particular, gold wires on Ge(100) surfaces seem to
realize 1D electronic systems [3,7] and a signature of the TLL
theory [the power-law behavior of the density of states (DOS)
at the Fermi energy] has been found in the scanning tunnel-
ing spectroscopy and photoemission spectra of this material
[8,9]. These findings have been contested, however, because
Au/Ge(100) appears to exhibit an anisotropic 2D metallic
dispersion at the Fermi energy, which seems to rule out 1D
electronic states and thus the applicability of the TLL theory
[10–13]. The signatures of TLLs have also been observed in
the photoemission spectra of other atomic wires on surfaces
such as Bi/InSb(001) [14] and Pt/Ge(001) [15].

Moreover, low-dimensional plasmons have been found in
several atomic wire systems, In/Si(111) [16,17], Pb/Si(557)
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[18], Ag/Si(557) [19], Au/Si(557) [20], Au/Si(553) [21,22],
and Au/Ge(100) [23], as well as in ultrathin metallic silicide
wires [24]. The dispersions of plasmons is often investigated
in relation to the dimensionality issue because their long-
wave-length dispersion within the Fermi liquid theory de-
pends on the dimension,

E (�q) ∝
√

| �q| (1)

in an isotropic 2D metal [25] and

E (q) ∝ |q| (2)

in a 1D metal [5]. However, the theoretical predictions for
anisotropic 2D metals or coupled wires are not so simple and
clearcut [20,26–31]. Moreover, the experimental data rarely
allow us to determine the behavior in the long-wavelength
limit q = |�q| → 0 with certainty.

In this paper we discuss the dispersion of low-energy col-
lective charge excitations (plasmons, holons) in atomic wire
systems using well-established theoretical approaches and
results: Random phase approximation (RPA) for anisotropic
Fermi liquids [5,6] and bosonization for coupled TLLs [4,29]
as well as Bethe ansatz [32] and density-matrix renormaliza-
tion group [33–35] methods for correlated ladder models of
coupled chains. (TLL usually refers to a 1D system with short-
range interactions only. Here we use this name more generally
for an anisotropic system of coupled chains with short or
long-range interactions as in Ref. [29].) In particular, we show
that there is no clearcut qualitative difference between the the-
oretical predictions for strongly anisotropic 2D Fermi liquids
and coupled 1D TLLs in the long wavelength limit. Moreover,
in both approaches the behavior of E (�q) for q → 0 reflects the
screening of the Coulomb interaction between electrons rather
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than the dimensionality of the metallic state. Additionally, our
results suggest that low-energy charge excitations can exhibit
a significant 2D dispersion, even when the system is a strongly
anisotropic (quasi-1D) conductor or exhibits a TLL power-law
behavior in the density of states. Thus it is possible that
atomic wire systems such as Au/Ge(100) possess a mixture
of properties associated with 1D and 2D metals, as found
experimentally [3,7–13,23].

II. STRONGLY ANISOTROPIC FERMI LIQUIDS

The theoretical properties of plasmons in low-dimensional
metals are well understood within a Fermi liquid approach.
In particular, the dynamical responses of 2D metals [25] and
quasi-1D metals [26,27] were investigated several decades
ago. The dynamical response in quantum wires was compared
with isotropic 2D systems within the Fermi liquid theory [36]
and with the TLL theory [37] using continuum models. More
recently, plasmon properties have been studied beyond RPA
within the Fermi liquid theory [20,28]. Here we discuss some
properties of plasmons in low dimensions on a anisotropic
lattice to facilitate the comparison with the TLL theory for
coupled chains and the numerical results for correlated ladder
models in the next sections.

We consider a tight-binding system on a rectangular lattice
with the lattice constant a in the wire direction (x direction)
and a distance b between wires (y direction). The hopping
term between nearest-neighbor sites is denoted t‖ in the wire
direction and t⊥ between wires. The system can be seen as
an anisotropic 2D lattice with Lx × Ly sites or as an array of
Ly chains with Lx sites. In addition we take into account an
electron-electron interaction V (�r) in the plane formed by the
wires. The Hamiltonian of the system is

H = −t‖
∑
x,y,σ

(c†
x,y,σ cx+1,y,σ + H.c.)

− t⊥
∑
x,y,σ

(c†
x,y,σ cx,y+1,σ + H.c.)

+
∑

�r1, �r2,σ1,σ2

V (�r1 − �r2) n �r1,σ1 n �r2,σ2 . (3)

The operator c†
x,y,σ creates an electron with spin σ in the

site with position �r = (xa, yb). n�r,σ = c†
x,y,σ cx,y,σ is the local

particle number operator. The first two sums run over all
indices x = 1, . . . , Lx, y = 1, . . . , Ly, and σ =↑,↓, while the
third sum is over all pairs of sites.

We determine the dispersion of plasmons using the RPA
within the Fermi liquid theory. More precisely, we compute
the first-order response of the electron gas to a dynamical
external electric field using a time-dependent Hartree-Fock
approximation. The dispersion of long-live collective charge
excitations (plasmons) is given by the vanishing of the real
part of the Lindhard dielectric function [6]. We discuss only
the results for long wavelengths (q → 0) in the thermody-
namic limit Lx, Ly → ∞.

We first consider an isotropically screened Coulomb
potential

V (r) = e2

4πε

e−r/ξ

r
(4)

with screening length ξ , effective dielectric constant ε, and
electron charge e. For an isotropic lattice (t⊥ = t‖, a = b, and
Lx = Ly) in the low-density regime we obtain the plasmon
dispersion

E (�q) = A q(ξ−2 + q2)−1/4 (5)

with the constant prefactor

A =
√

e2t‖a2n

ε
, (6)

where n is the electron surface density. Assuming no screen-
ing (ξ → ∞) and using the relation between the hopping term
on a 2D lattice and the (renormalized) electron mass m of the
2D Fermi gas in the continuum [t‖a2 = h̄2/(2m)], we recover
the known result for the plasmon dispersion in an isotropic 2D
metallic system [25]

E (�q) = h̄

√
e2n

2εm

√
q. (7)

In a strongly anisotropic lattice, where the Fermi velocity
in the wire direction vF ∝ t‖a � t⊥b, we obtain the plasmon
dispersion

E (�q) = B
√

q2
x + Rq2

y (ξ−2 + q2)−1/4 (8)

with

B =
√

e2h̄vF

πεb
(9)

and the dimensionless anisotropy parameter

R = 2
t2
⊥b2

h̄2v2
F

� 1. (10)

In the low-density strongly-anisotropic limit h̄vF ≈ πnt‖a2b
and thus B = A. Although, we have derived Eq. (8) using the
condition R � 1, we note that it agrees with the isotropic case
(5) if we set R = 1.

In the absence of chain hybridization (t⊥ = 0 ⇒ R = 0),
the charge carriers can move only in the wire direction and
thus the system is a purely unidirectional conductor. The
plasmon dispersion is then E (qx ) ∝ |qx| for qx → 0 at any
finite screening length ξ and fixed qy. This behavior appears to
agree at least qualitatively with the result (2) for a 1D metal,
but the prefactor in Eq. (8) is different from the result for a
single wire [5] and depends on the normal component of the
wave vector qy because the wires are still coupled by the 2D
Coulomb potential in our model. This interpretation is incor-
rect, however. Experimentally, the dispersion is measured as
a function of the wavelength λ = 2π/q either angle-resolved
or averaged over all directions in the surface. The theoretical
dispersion must then be written

E (�q) = C(q)|qx| = C(q)q cos(θ ) (11)

with

C(q) = B(ξ−2 + q2)−1/4, (12)

where θ ∈ [0, π
2 ] is the angle between the wave vector �q

and the wire direction x. Thus we recover the typical angle-
dependent plasmon frequency of a quasi-1D metal [26,27].
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In contrast to isotropic materials, there is a continuum of
plasmon excitations between the vanishing energy E (�q) = 0
for θ = π/2 and the maximal energy E (�q) = C(q)q for θ =
0. For a fixed direction θ �= π/2 we see that the dispersion
(11) scales with the norm q of the wave vector as predicted for
1D metals, Eq. (2), when the Coulomb interaction is screened
(i.e., ξ is finite) but as predicted for isotropic 2D metals,
Eq. (1), in the absence of screening (ξ → ∞), although the
system conducts only in the wire direction in both cases.

This behavior is not an artifact of the vanishing interchain
hopping. If t⊥ �= 0 (⇒ R �= 0), the system is an anisotropic
2D conductor. The dispersion of the Fermi wave vector at the
Fermi energy has a width �qy = 4t⊥/(h̄vF) in the strongly
anisotropic limit. We must similarly write the plasmon disper-
sion (8) as a function of the angle θ

E (�q) = B
√

cos2(θ ) + R sin2(θ ) q(ξ−2 + q2)−1/4. (13)

Again we find that the dispersion scales as (2) when the
Coulomb interaction is screened and as (1) in the absence of
screening (ξ → ∞), although the system is a 2D conductor
with an anisotropic metallic dispersion at the Fermi energy
in both cases. Therefore, the dispersions of plasmons in
anisotropic metals do not characterize their dimensionality but
depends on the screening of the interaction between electrons.

This result can be generalized to other potential shapes.
For instance, the screened Coulomb potential (4) does not
result in the nonmonotonic plasmon dispersions observed
experimentally in Au/Ge(100) [23]. To reproduce the experi-
mental curvature, the 2D Fourier transform of the interaction
potential

Ṽ (�q) =
∫

V (�r)e−i �q·�rd2r (14)

must decrease rapidly with increasing q beyond some cutoff
wave number qc. In Ref. [23] a phenomenological isotropic
gaussian potential was considered

V (r) = V0e−r2/(2ξ 2 ) (15)

with qc = √
2/ξ . This results in the plasmon dispersion

E (�q) = B′
√

cos2(θ ) + R sin2(θ ) q e−q2ξ 2/2 (16)

with

B′ =
√

4h̄V0ξ 2vF

b
. (17)

The comparison with the experimental data is discussed in
the next section. Here we just want to point out that for this
gaussian potential, as for all interaction potentials Ṽ (�q) that
remain finite for �q → 0, the plasmon dispersion scales as in
1D metals, Eq. (2), in the long-wavelength limit, irrespective
of whether the system conducts in one direction (t⊥ = 0) or in
two directions (t⊥ �= 0). Actually, the fact that the energy of
collective density oscillations is proportional to q for short-
range interactions in any dimension is well known since
Landau’s Fermi liquid theory of the zero sound in 3He [6].

III. COUPLED TOMONAGA-LUTTINGER LIQUIDS

The theory of low-energy excitations in strongly correlated
systems of coupled metallic chains is not so well developed
as for purely 1D metals (TLLs) and Fermi liquids. Is it estab-
lished, however, that two-body interactions between electrons
lead to a Fermi liquid or an insulating state for any finite
interchain hopping but the system may remain a TLL for
vanishing interchain hopping [4,29–31]. Here we use and
compare two approaches for correlated wire systems without
hybridization (t⊥ = 0): Bosonization for broad systems with
linearized bare dispersions and DMRG for two-leg ladder
systems.

A. Bosonization

We first consider the generalized Tomonaga-Luttinger
model introduced by Schulz for a three-dimensional array of
1D conductors with an unscreened Coulomb potential [29].
Only the forward scattering for small momentum transfer is
considered explicitly and thus the model of coupled chains
can be solved using bosonization. We have adapted this study
to the case of a 2D array of wires with a general electron-
electron interaction V (�r). (Note that we use the notation of
Ref. [4]). The system is a 2D array of 1D conductors with
linear bare dispersions. Electrons can move freely along a
wire (x direction) with a Fermi velocity vF but perpendicular
motion (y direction) is forbidden. The interaction acts both
between electrons in the same chain and in different chains.
This generalized Tomonaga-Luttinger model corresponds to
the weak-coupling limit of the Hamiltonian (3) with t⊥ = 0.
In particular, the system conducts charge in the wire direction
only.

Following Ref. [29] we find that the dispersion of holons
(collective charge excitations or equivalently plasmon) is

E (�q) = h̄u(�q)|qx|, (18)

where the velocity u(�q) of elementary charge excitations in
the wire direction is given by

u(�q)2

v2
F

= K−2(�q) = 1 + 2

π h̄vFb
Ṽ (�q) (19)

with the dimensionless Luttinger liquid parameter K (�q). Note
that in this approach Ṽ (�q) is assumed to be the Fourier
transform of the long-range part of the interaction between
electrons while vF is the charge velocity of the interacting
1D conductors without this long-range part of the interaction.
Thus vF may already be renormalized by the short-range
interactions within a single wire [29]. For an isotropic 2D
interaction [V (�r) = V (r)] the dispersion can be written

E (�q) = h̄u(q)qx = h̄u(q)q cos(θ ). (20)

Thus we recover the angle dependence (11) found in the RPA
calculation but the function C(q) and h̄u(q) are different.

To illustrate this general result we again consider the
isotropically screened Coulomb potential (4). The resulting
plasmon dispersion is

E (�q) = h̄vF cos(θ )q

[
1 + D√

1 + q2ξ 2

] 1
2

(21)
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with the dimensionless constant

D = e2ξ

πεbh̄vF
. (22)

This result reveals the essential qualitative difference be-
tween the RPA (8) and TLL predictions for the plasmon and
holon dispersions, respectively. RPA predicts erroneously that
there are no long-live collective charge excitations in a 1D
conductor in the absence of the electron-electron interaction
[i.e., there is no solution E (�q) �= 0 for e2/ε = 0]. The TLL
theory shows correctly that collective excitations exist in a
1D conductor even in the absence of interactions. The point
at issue in this work is the scaling for long wavelengths,
however. The dispersion (21) scales for q → 0 as in a 1D
metal, Eq. (2), for a screened Coulomb interaction (finite ξ )
but as in a 2D metal, Eq. (1), without screening (ξ → ∞).
Therefore, there is no qualitative difference between RPA and
TLL theory regarding the dispersion for small q. Using the
relation for an isotropic 2D electron gas

vF = π h̄bn

2m
, (23)

we even find that the RPA plasmon dispersion (11) and the
TLL holon dispersion (21) are exactly equal

E (�q) = h̄

√
e2n

2mε0

√
q cos(θ ) (24)

in the absence of screening (ξ → ∞). The equivalence of the
plasmon dispersions predicted by RPA and bosonization was
established previously for purely 1D systems with Coulomb
interaction [38].

The upper edge of the dispersion (21) is plotted in Fig. 1 for
parameters corresponding to gold wires on a Ge(100) surface.
The interpretation of STS data with the TLL theory [8] yields

0 0.05 0.1 0.15

q [Å-1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
(q

x,q
y) 

[e
V

]

FIG. 1. Dispersions E ( �q) of the upper edge of the continuum
(θ = 0) of collective charge excitations (holons) in coupled TLLs
as a function of q = |�q|. The red dash-dotted curve shows the
dispersion (21) for a screened Coulomb potential. The solid black
curve indicates the dispersion (25) for a phenomenological gaussian
potential. The blue dotted curve corresponds to uncoupled TLLs.
The dashed green curve represents a fit to the experimental data for
plasmons in Au/Ge(100) presented in Ref. [23].

K (0) = 1/
√

1 + D ≈ 0.26 and thus D ≈ 13.8. From electron
energy loss spectroscopy [23] we get vF ≈ 1.1 × 106 ms−1

or h̄vF ≈ 7.3 eV Å. If we choose the dielectric constant of
vacuum ε = ε0, we then get a large screening length ξ ≈ 27.6
Å � a, b from Eq. (22). The continuum of holon excitations
(21) extends from the horizontal axis up to this curve as θ

varies. The experimental data are represented in Fig. 1 by a
fitted theoretical curve (see Ref. [23]). This curve is indeed
within the theoretical boundaries of the continuum but clearly
the screened Coulomb potential (4) does not result in the
nonmonotonic plasmon dispersions observed experimentally
in Au/Ge(100).

To reproduce the experimental curvature, the potential
Ṽ (�q) must decrease rapidly with increasing q beyond some
cutoff wave number as with the phenomenological gaussian
potential (15). The plasmon dispersion is then

E (�q) = h̄vF cos(θ )q

[
1 + D′ exp

(
−q2ξ 2

2

)] 1
2

(25)

with the dimensionless constant

D′ = 4V0ξ
2

bh̄vF
. (26)

We again use the experimental values vF and K (0) =
1/

√
1 + D′ mentioned above for the screened Coulomb po-

tential. The remaining free parameter is set to ξ = 3.2 nm
to reproduce the experimentally observed curvature. This
screening length is twice as large as the distance b = 1.6
nm between gold wires on the germanium surface according
to Ref. [8]. This also determines the potential strength V0 ≈
0.39 eV. This value is consistent with a strongly screened
Coulomb interaction at length scales larger than the interchain
distance b because the Coulomb energy between two electrons
at distance b is e2/(4πε0b) ≈ 0.9 eV. The upper edge of the
holon dispersion (25) is shown in Fig. 1 and compared to the
curve deduced from the experimental data for plasmons in
Au/Ge(100) [23]. The agreement between the theoretical and
experimental dispersions is satisfactory. As noted in Ref. [23],
however, the value of the velocity vF is incompatible with
the value obtained from photoemission experiments [7,13].
Additionally, the short fitted screening length ξ is not fully
consistent with the assumptions made to compute the disper-
sion (19) within the TLL theory. Clearly, the holon dispersion
(25) is not monotonic with increasing q as illustrated in Fig. 1.
Nonmonotonic dispersions for collective charge excitations
seem to be a generic phenomenon in 1D electron systems with
long-range interactions [39].

Both examples show that the electron-electron interaction
between TLL wires induces a significant dispersion of the
holon energies E (�q) as a function of the perpendicular com-
ponent qy of the wave vector. As all dynamical response
functions involving charge excitations are derived from these
elementary excitations, their dispersion can exhibit a 2D char-
acter, although the system conducts in the wire direction only.
This result agrees qualitatively with the observations made for
plasmons using RPA in the previous section. Therefore, both
the TLL and Fermi liquid approaches suggest that the momen-
tum dependence of response functions in strongly anisotropic
2D conductors (vF � bt⊥ �= 0) could be determined by the
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strength of the interwire electron-electron interaction rather
than the amplitude of the interchain hopping. As a conse-
quence, a quantity like the single-particle Green’s function,
which corresponds to the spectrum measured in photoemis-
sion experiments, could exhibit a significant 2D dispersion
at the Fermi energy even if the system remains a strongly
anisotropic (i.e., quasi-1D) conductor.

B. DMRG for ladder systems

An important issue is the power-law vanishing of the
DOS observed in some metallic atomic wire systems such as
Au/Ge(100). However, the DOS is finite at the Fermi energy
within the RPA approach and it is not known for the coupled
TLL chains studied in the previous section. Therefore, to
obtain additional information we have investigated the corre-
lated lattice model (3) numerically on a two-leg lattice using
the density-matrix renormalization group (DMRG) method
[33–35]. The dynamical charge structure factor is defined by

S(�q, ω) = 1

π
Im

〈
n−�q,σ

1

H − h̄ω − E0 − iη
n�q,σ

〉
, (27)

where the expectation value is calculated for the many-body
ground state of H , E0 is its energy, n�q,σ is the Fourier trans-
form of the local particle number operator n�r,σ , and η is a
small positive number that broadens the spectrum. In a TLL
the function S(�q, ω) exhibits dispersive features h̄ω(�q) that
are related to the holon excitation branches or a combination
thereof [40]. Thus one can determine the holon dispersions
from the dynamical charge structure factor.

For narrow quasi-1D correlated systems S(�q, ω) can be
computed with the dynamical DMRG method [40,41]. The
computational cost is very high, however, and increases ex-
ponentially with the system width Ly. Therefore, we restrict
our DMRG study to a ladder system with Ly = 2 and spinless
fermions [i.e., all electrons have the same spin polarization
and thus we can drop the index σ in the definitions of the
Hamiltonian (3) and the structure factor (27)]. Additionally,
we will take into account only the nearest-neighbor interac-
tions Vx = V (�r = (a, 0)) in the wire direction and Vy = V (�r =
(0, b)) between wires as well as the diagonal next-nearest-
neighbor interaction Vxy = V (�r = (a, b)). As mentioned in
the previous section, the hopping term t⊥ leads rapidly to
insulating phases (e.g., charge-density-wave ground states),
thus we consider only the case t⊥ = 0.

This simplified model can be mapped exactly onto a 1D
extended U − V Hubbard model for electrons when Vx = Vxy.
The local interaction (Hubbard term) is then U = Vy while
the nearest-neighbor interaction is V = Vx = Vxy. The ground-
state phase diagram and the Luttinger parameters of this
model at quarter filling (i.e., with N = Lx/2 fermions) are well
known [42–45] and thus we can easily find model parameters
corresponding to a TLL phase. Moreover, the Hubbard model
(V = 0) is exactly solvable using the Bethe ansatz [32] and
thus we can compute the holon dispersions in the simplified
Hamiltonian (3) exactly in that case.

We carry out DMRG computations using up to 800
density-matrix eigenstates, resulting in discarded weights
smaller than 10−6. The system sizes range from Lx = 32
to Lx = 128 with a broadening η/t‖ = 0.1 to 0.4. We use

0 1 2 3 4
ω

0

0.05

0.1

0.15

0.2

S
(q

x,q
y=

0,
ω

)

FIG. 2. Dynamical charge structure factor S(�q, ω) (27) calcu-
lated with DMRG for a two-leg ladder with Vy = 8t‖, Vx = Vxy = 0,
and qy = 0 as a function of the excitation energy h̄ω for several
values of qx from π/(33a) (bottom) to 16π/(33a) (top). The system
length is Lx = 32 and the broadening is η = 0.4t‖. The units are
t‖ = 1 and h̄ = 1.

open boundary conditions and pseudo wave numbers qx =
zπ/[a(Lx + 1)] with z = 1, . . . , Lx and qy = 0, π/a because
momentum-resolved dynamical DMRG simulations are sim-
pler with this choice [40]. We have found as expected that
most of the spectral weight of S(�q, ω) is located close to
|qx| = π/a and π/(2a). This is the signature of the 1D quasi-
long-range charge-density-wave order with wave number 2kF

and 4kF. Nevertheless, we are able to determine the spectrum
and the holon dispersions for smaller |qx| accurately because
S(�q, ω) is calculated separately for each wave vector �q with
the dynamical DMRG method. Figure 2 shows an example of
the calculated spectrum S(�q, ω) for 0 � qx � 2kF = π/(2a).
The position of the maxima as a function of the excitation
energy ω for each wave vector �q yields the holon dispersion
E (�q) = h̄ω(�q). The accuracy of the resulting data is limited
by the spectrum broadening η for the energy h̄ω and by the
discretization π/[a(Lx + 1)] for the wave vector.

Figure 3 shows two examples of the holon dispersions
obtained from the structure factor. First, we see that our nu-
merical results for Vy = 8t‖ and Vx = Vxy = 0 agree very well
with the exact dispersions calculated from the Bethe ansatz
solution. The second example corresponds to an isotropic
interaction Vx = Vy = Vxy = 4t‖. The similitude of the dis-
persion for qy = π/a with the Bethe ansatz solution is a
coincidence. The exact Bethe ansatz dispersions are linear for
qx → 0,

E (�q) = F (qy)|qx|. (28)

Although one clearly observes a curvature at finite qx, our
DMRG data are compatible with this linear dispersion in the
limit qx → 0 for other interaction parameters Vx,Vy,Vxy lead-
ing to a TLL ground state. Moreover, we observe in Fig. 3 that
the dispersions, particularly the slopes F (qy), strongly depend
on the normal component qy of the wave vector. Therefore, our
numerical data agree with the generic holon dispersion (20)
predicted by the TLL theory for system of 1D conductors.
In particular, they confirm that the holon dispersion can be
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0 0.1 0.2 0.3 0.4 0.5
q

x

0

0.2

0.4

0.6

0.8

1

E
(q

x,
q y)

FIG. 3. Holon dispersions E ( �q) in two-leg ladders as a function
of qx for fixed qy. Symbols show values determined from the charge
structure factor calculated with DMRG for Vy = 8t‖, Vx = Vxy = 0,
qy = 0 (circles) and qy = π/a (squares) as well as for Vx = Vy =
Vxy = 4t‖, qy = 0 (triangles) and qy = π/a (diamonds). The Bethe
ansatz solutions for Vy = 8t‖, Vx = Vxy = 0 are represented by a solid
red line (qy = π/a) and a blue dashed line (qy = 0), respectively. The
units are t‖ = 1 and a = 1.

significant in the direction perpendicular to the wires, even
when the system is a unidirectional conductor.

On the other hand, it is well known that the DOS of
1D TLLs with short-range interactions exhibits a power-law
behavior at the Fermi energy [4]. This behavior has been
observed explicitly in correlated 1D lattice models similar
to the ones studied here using numerical methods [46–48],
although this requires much longer system lengths than in
the present work. Nevertheless, it is certain that a power-law
scaling of the DOS occurs in the two-leg ladder TLL studied
here. Therefore, our investigation suggests that one could
observe both a significant 2D dispersion of elementary charge
excitations and a TLL power-law behavior of the DOS at the
Fermi energy in a system of coupled TLLs described by the
Hamiltonian (3). This could explain some of the apparently
conflicting experimental results for gold chains on germanium

surfaces [3,7–13,23]. Naturally, investigations of the single-
particle spectral functions and the DOS in broader systems of
coupled chains are necessary to confirm these findings, but
they are too computationally expensive currently.

IV. CONCLUSIONS

We have investigated the low-energy collective charge
excitations (plasmons, holons) in strongly anisotropic 2D
lattices or weakly coupled wires with a view to understanding
metallic states in 2D arrays of atomic wires deposited on semi-
conducting substrates. Various aspects have been neglected
and most results have been obtained using approximate meth-
ods. For instance, it is known that the substrate modifies the
effective interaction between conduction electrons in the wires
and thus influences the properties of TLL [49]. Nevertheless,
three main findings arise from the present study. First, the
Fermi liquid and TLL theories predict the same qualitative
behavior for the dispersion E (�q) of these excitations for
long wavelengths. Second, their scaling for q → 0 depends
on the choice of the effective electron-electron interaction
but does not characterize the dimensionality of the metallic
state. Third, the same system can exhibit a 2D dispersion
of low-energy excitations due to the coupling between wires
but remain a strongly anisotropic conductor or retain typical
features of a TLL such as the power-law behavior of the
DOS at the Fermi energy. Therefore, we are not able to
propose a practical criterion to distinguish between a strongly
anisotropic 2D Fermi liquid and a system of weakly coupled
TLL wires. Actually, it is probable that metallic states in real
atomic wire materials possess some properties characterizing
2D metals as well as some signatures of 1D metals. This
duality may be revealed in different experiments, as suggested
by the diverse features found for Au/Ge(100).

ACKNOWLEDGMENTS

This work was done as part of the Research Unit Metallic
nanowires on the atomic scale: Electronic and vibrational
coupling in real world systems (FOR1700) of the German
Research Foundation (DFG) and was supported by Grant No.
JE 261/1-2.

[1] M. Springborg and Y. Dong, Metallic Chains/Chains of Metals
(Elsevier, Amsterdam, 2007).

[2] N. Oncel, Atomic chains on surfaces, J. Phys.: Condens. Matter
20, 393001 (2008).

[3] L. Dudy, J. Aulbach, T. Wagner, J. Schäfer, and R. Claessen,
One-dimensional quantum matter: Gold-induced nanowires on
semiconductor surfaces, J. Phys.: Condens. Matter 29, 433001
(2017).

[4] T. Giamarchi, Quantum Physics in One Dimension, Interna-
tional Series of Monographs on Physics (Clarendon Press,
Oxford, 2003).

[5] H. Bruus and K. Flensberg, Many-Body Quantum Theory in
Condensed Matter Physics (Oxford University Press, Oxford,
2004).

[6] J. Sólyom, Fundamentals of the Physics of Solids, Volume 3 -
Normal, Broken-Symmetry, and Correlated Systems (Springer,
Berlin, 2010).

[7] S. Meyer, J. Schäfer, C. Blumenstein, P. Höpfner, A. Bostwick,
J. L. McChesney, E. Rotenberg, and R. Claessen, Strictly one-
dimensional electron system in Au chains on Ge(001) revealed
by photoelectron k-space mapping, Phys. Rev. B 83, 121411(R)
(2011).

[8] C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger,
M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and R.
Claessen, Atomically controlled quantum chains hosting a
Tomonaga-Luttinger liquid, Nat. Phys. 7, 776 (2011).

[9] S. Meyer, L. Dudy, J. Schäfer, C. Blumenstein, P. Höpfner, T. E.
Umbach, A. Dollinger, X. Y. Cui, L. Patthey, and R. Claessen,

245153-6

https://doi.org/10.1088/0953-8984/20/39/393001
https://doi.org/10.1088/1361-648X/aa852a
https://doi.org/10.1103/PhysRevB.83.121411
https://doi.org/10.1038/nphys2051


DIMENSIONALITY OF METALLIC ATOMIC WIRES ON … PHYSICAL REVIEW B 101, 245153 (2020)

Valence band and core-level photoemission of Au/Ge(001):
Band mapping and bonding sites, Phys. Rev. B 90, 125409
(2014).

[10] K. Nakatsuji, Y. Motomura, R. Niikura, and F. Komori, Shape
of metallic band at single-domain Au-adsorbed Ge(001) surface
studied by angle-resolved photoemission spectroscopy, Phys.
Rev. B 84, 115411 (2011).

[11] K. Nakatsuji and F. Komori, Debate over dispersion direction in
a Tomonaga-Luttinger-liquid system, Nat. Phys. 8, 174 (2012).

[12] J. Park, K. Nakatsuji, T.-H. Kim, S. K. Song, F. Komori, and
H. W. Yeom, Absence of Luttinger liquid behavior in Au-Ge
wires: A high-resolution scanning tunneling microscopy and
spectroscopy study, Phys. Rev. B 90, 165410 (2014).

[13] N. de Jong, R. Heimbuch, S. Eliëns, S. Smit, E. Frantzeskakis,
J.-S. Caux, H. J. W. Zandvliet, and M. S. Golden, Gold-induced
nanowires on the Ge(100) surface yield a 2D and not a 1D
electronic structure, Phys. Rev. B 93, 235444 (2016).

[14] Y. Ohtsubo, J.-I. Kishi, K. Hagiwara, P. Le Fèvre, F. Bertran,
A. Taleb-Ibrahimi, H. Yamane, S.-I. Ideta, M. Matsunami, K.
Tanaka, and S.-I. Kimura, Surface Tomonaga-Luttinger-Liquid
State On Bi/InSb(001), Phys. Rev. Lett. 115, 256404 (2015).

[15] K. Yaji, S. Kim, I. Mochizuki, Y. Takeichi, Y. Ohtsubo, P. L.
Fèvre, F. Bertran, A. Taleb-Ibrahimi, S. Shin, and F. Komori,
One-dimensional metallic surface states of Pt-induced atomic
nanowires on Ge(001), J. Phys.: Condens. Matter 28, 284001
(2016).

[16] C. G. Hwang, N. D. Kim, S. Y. Shin, and J. W. Chung,
Possible evidence of non-Fermi liquid behavior from quasi-one-
dimensional indium nanowires, New J. Phys. 9, 249 (2007).

[17] C. Liu, T. Inaoka, S. Yaginuma, T. Nakayama, M. Aono, and T.
Nagao, Disappearance of the quasi-one-dimensional plasmon
at the metal-insulator phase transition of indium atomic wires,
Phys. Rev. B 77, 205415 (2008).

[18] T. Block, C. Tegenkamp, J. Baringhaus, H. Pfnür, and T. Inaoka,
Plasmons in Pb nanowire arrays on Si(557): Between one and
two dimensions, Phys. Rev. B 84, 205402 (2011).

[19] U. Krieg, C. Brand, C. Tegenkamp, and H. Pfnür, One-
dimensional collective excitations in Ag atomic wires grown on
Si(557), J. Phys.: Condens. Matter 25, 014013 (2013).

[20] T. Nagao, S. Yaginuma, T. Inaoka, and T. Sakurai, One-
Dimensional Plasmon in an Atomic-Scale Metal Wire, Phys.
Rev. Lett. 97, 116802 (2006).

[21] T. Lichtenstein, C. Tegenkamp, and H. Pfnür, Lateral elec-
tronic screening in quasi-one-dimensional plasmons, J. Phys.:
Condens. Matter 28, 354001 (2016).

[22] S. Sanna, T. Lichtenstein, Z. Mamiyev, C. Tegenkamp, and
H. Pfnür, How one-dimensional are atomic gold chains on a
substrate?, J. Phys. Chem. C 122, 25580 (2018).

[23] T. Lichtenstein, Z. Mamiyev, E. Jeckelmann, C. Tegenkamp,
and H. Pfnür, Anisotropic 2D metallicity: Plasmons
in Ge(100)-Au, J. Phys.: Condens. Matter 31, 175001
(2019).

[24] E. P. Rugeramigabo, C. Tegenkamp, H. Pfnür, T. Inaoka, and T.
Nagao, One-dimensional plasmons in ultrathin metallic silicide
wires of finite width, Phys. Rev. B 81, 165407 (2010).

[25] F. Stern, Polarizability of a Two-Dimensional Electron Gas,
Phys. Rev. Lett. 18, 546 (1967).

[26] P. F. Williams and A. N. Bloch, Self-consistent dielectric re-
sponse of a quasi-one-dimensional metal at high frequencies,
Phys. Rev. B 10, 1097 (1974).

[27] A. Gold, Elementary excitations in multiple quantum
wire structures, Z. Phys. B - Condens. Matter 89, 213
(1992).

[28] R. K. Moudgil, V. Garg, and K. N. Pathak, Confinement and
correlation effects on plasmons in an atom-scale metallic wire,
J. Phys.: Condens. Matter 22, 135003 (2010).

[29] H. J. Schulz, Long-range Coulomb interactions in quasi-one-
dimensional conductors, J. Phys. C: Solid State Phys. 16, 6769
(1983).

[30] P. Kopietz, V. Meden, and K. Schönhammer, Anomalous Scal-
ing and Spin-Charge Separation in Coupled Chains, Phys. Rev.
Lett. 74, 2997 (1995).

[31] P. Kopietz, V. Meden, and K. Schönhammer, Crossover between
Luttinger and Fermi-liquid behavior in weakly coupled metallic
chains, Phys. Rev. B 56, 7232 (1997).

[32] F. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. Korepin,
The One-Dimensional Hubbard Model (Cambridge University
Press, Cambridge, 2005).

[33] U. Schollwöck, The density-matrix renormalization group, Rev.
Mod. Phys. 77, 259 (2005).

[34] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. 326, 96
(2011).

[35] E. Jeckelmann, Density-matrix renormalization group algo-
rithms, in Density-Matrix Renormalization Group Algorithms,
edited by H. Fehske, R. Schneider, and A. Weiße, Vol. 739 of
Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2008),
Chap. 21, pp. 597–619.

[36] S. Das Sarma and E. H. Hwang, Dynamical response of a one-
dimensional quantum-wire electron system, Phys. Rev. B 54,
1936 (1996).

[37] D. W. Wang and S. Das Sarma, Elementary electronic excita-
tions in one-dimensional continuum and lattice systems, Phys.
Rev. B 65, 035103 (2001).

[38] Q. P. Li, S. Das Sarma, and R. Joynt, Elementary excitations
in one-dimensional quantum wires: Exact equivalence between
the random-phase approximation and the Tomonaga-Luttinger
model, Phys. Rev. B 45, 13713 (1992).

[39] Y.-Z. Chou and S. Das Sarma, Nonmonotonic plasmon disper-
sion in strongly interacting Coulomb Luttinger liquids, Phys.
Rev. B 101, 075430 (2020).

[40] H. Benthien and E. Jeckelmann, Spin and charge dynamics of
the one-dimensional extended Hubbard model, Phys. Rev. B 75,
205128 (2007).

[41] E. Jeckelmann, Dynamical density-matrix renormalization-
group method, Phys. Rev. B 66, 045114 (2002).

[42] F. Mila and X. Zotos, Phase diagram of the one-dimensional
extended Hubbard model at quarter-filling, Europhys. Lett. 24,
133 (1993).

[43] K. Penc and F. Mila, Phase diagram of the one-dimensional
extended Hubbard model with attractive and/or repulsive inter-
actions at quarter filling, Phys. Rev. B 49, 9670 (1994).

[44] S. Ejima, F. Gebhard, and S. Nishimoto, Tomonaga-Luttinger
parameters for doped Mott insulators, Europhys. Lett. 70, 492
(2005).

[45] T. Shirakawa and E. Jeckelmann, Charge and spin Drude weight
of the one-dimensional extended Hubbard model at quarter
filling, Phys. Rev. B 79, 195121 (2009).

[46] V. Meden, W. Metzner, U. Schollwöck, O. Schneider,
T. Stauber, and K. Schönhammer, Luttinger liquids with

245153-7

https://doi.org/10.1103/PhysRevB.90.125409
https://doi.org/10.1103/PhysRevB.84.115411
https://doi.org/10.1038/nphys2240
https://doi.org/10.1103/PhysRevB.90.165410
https://doi.org/10.1103/PhysRevB.93.235444
https://doi.org/10.1103/PhysRevLett.115.256404
https://doi.org/10.1088/0953-8984/28/28/284001
https://doi.org/10.1088/1367-2630/9/8/249
https://doi.org/10.1103/PhysRevB.77.205415
https://doi.org/10.1103/PhysRevB.84.205402
https://doi.org/10.1088/0953-8984/25/1/014013
https://doi.org/10.1103/PhysRevLett.97.116802
https://doi.org/10.1088/0953-8984/28/35/354001
https://doi.org/10.1021/acs.jpcc.8b08600
https://doi.org/10.1088/1361-648X/ab02c5
https://doi.org/10.1103/PhysRevB.81.165407
https://doi.org/10.1103/PhysRevLett.18.546
https://doi.org/10.1103/PhysRevB.10.1097
https://doi.org/10.1007/BF01320939
https://doi.org/10.1088/0953-8984/22/13/135003
https://doi.org/10.1088/0022-3719/16/35/010
https://doi.org/10.1103/PhysRevLett.74.2997
https://doi.org/10.1103/PhysRevB.56.7232
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.54.1936
https://doi.org/10.1103/PhysRevB.65.035103
https://doi.org/10.1103/PhysRevB.45.13713
https://doi.org/10.1103/PhysRevB.101.075430
https://doi.org/10.1103/PhysRevB.75.205128
https://doi.org/10.1103/PhysRevB.66.045114
https://doi.org/10.1209/0295-5075/24/2/010
https://doi.org/10.1103/PhysRevB.49.9670
https://doi.org/10.1209/epl/i2005-10020-8
https://doi.org/10.1103/PhysRevB.79.195121


E. JECKELMANN PHYSICAL REVIEW B 101, 245153 (2020)

boundaries: Power-laws and energy scales, Eur. Phys. J. B 16,
631 (2000).

[47] S. Andergassen, T. Enss, V. Meden, W. Metzner, U.
Schollwöck, and K. Schönhammer, Renormalization-group
analysis of the one-dimensional extended Hubbard model with
a single impurity, Phys. Rev. B 73, 045125 (2006).

[48] E. Jeckelmann, Local density of states of the one-dimensional
spinless fermion model, J. Phys.: Condens. Matter 25, 014002
(2013).

[49] A. Abdelwahab and E. Jeckelmann, Luttinger liquid and charge
density wave phases in a spinless fermion wire on a semicon-
ducting substrate, Phys. Rev. B 98, 235138 (2018).

245153-8

https://doi.org/10.1007/s100510070180
https://doi.org/10.1103/PhysRevB.73.045125
https://doi.org/10.1088/0953-8984/25/1/014002
https://doi.org/10.1103/PhysRevB.98.235138

