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There is considerable recent interest in the phenomenon of anisotropic electroresistivity of correlated metals.

While some interesting work has been done on the iron-based superconducting systems, not much is known
for the cuprate materials. Here we study the anisotropy of elastoresistivity for cuprates in the normal state.
We present theoretical results for the effect of strain on resistivity and additionally on the optical weight and
local density of states. We use the recently developed extremely strongly correlated Fermi liquid theory in
two dimensions, which accounts quantitatively for the unstrained resistivities for three families of single-layer
cuprates. The strained hoppings of a tight-binding model are roughly modeled analogously to strained transition
metals. The strained resistivity for a two-dimensional z-'-/ model are then obtained, using the equations
developed in recent work. Our quantitative predictions for these quantities have the prospect of experimental
tests in the near future, for strongly correlated materials such as the hole-doped and electron-doped high-7,

materials.
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I. INTRODUCTION & MOTIVATION

Understanding the temperature and doping dependent elec-
trical conductivity of very strongly correlated metals in two
dimensions (2D) is a very important problem in condensed
matter physics. Recent interest in elastoresistivity, i.e., the
strain dependence of resistivity has been triggered by the
discovery of strong nematicity in iron based superconductors
[1-3]. The nematic susceptibility is defined as
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where p; (poy) is the x-axis resistivity in the presence (ab-
sence) of a small strain €,,. The large magnitude of this
dimensionless susceptibility (| xnem| = 200), and the peaklike
features in its temperature dependence, suggest enhanced
nematic fluctuations in the pnictides.

The situation for cuprates is less studied thus motivating
the present work. The recently developed extremely correlated
Fermi liquid theory (ECFL) [4] accounts quantitatively for
the (unstrained) normal state resistivities of three families
of single layer cuprates [5—7]. This theory treats correlation
effects within the well-defined 7-¢'-J model. The model lacks
any explicit mechanism to drive large nematic fluctuations,
but it is possible that these fluctuations are emergent. It is
thus natural to ask if the theory can provide a benchmark scale
for elastoresistivity effects in cuprates, as well as to examine
if nematic fluctuation are encouraged. Towards this goal we
present results for the anisotropic elastoresistivity in various
geometries for cuprate materials in the normal state within
the extremely correlated Fermi liquid theory (ECFL) [4] as
applied to the 7-'-J model for spin-% electrons on a square
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lattice given by the Hamiltonian
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Here 7;; = t(¢') for nearest (next-nearest) neighbor sites ij and
is zero otherwise on the square lattice [8], N is the number
operator, C;, = PsCi, Pg, and Pg is the Gutzwiller projection
operator which projects out the doubly occupied states. Also
the superexchange J;; = J when acting on nearest neighbor
sites and is zero otherwise. The other symbols have their usual
meaning.

While the ECFL theory accounts for the variation of
resistivity with a change of hopping parameters, we need
another piece of information to calculate elastoresistivity. That
is a solution to the independent problem of describing the
effects of strain on the hopping parameters of the underlying
tight-binding model. In cuprates the 7-t'-J model arises as
an effective low energy model from downfolding from a
three band (or in general multiband) description obtained
within band structure calculations[9-11]. This procedure is
not unique since the extent of correlations included in the band
structure can differ among different calculations. We take the
practical view that the hopping parameters can be chosen
to depend parametrically on the distance between atoms, in
parallel to the treatment of volume effects in transition metals
by V. Heine[12]. Thus in our approach, a small strain can be
parametrized through a single variable o relating the hopping
to the separation R via the relation

A
t(R) ~ R 3)

From tight-binding theory o =1[; + I, + 1, where [;, [, are
the angular momenta of the overlapping orbitals [12]. Within
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this scheme we expect that compression enhances overlap and
hence the magnitude of hopping, and conversely stretching
reduces overlap. Excluding very strong multiband effects we
may take o € {2, 5} for cuprates. The single parameter needed
for our purpose is o, since A is reabsorbed in the unstrained
hopping. We further suggest that one may more realistically
estimate this single parameter o by measuring other « depen-
dent variation of physical variables with strain, as described
below.

This modeling neglects the possible three-dimensional ef-
fects, where the c-axis propagation could in certain situations
influence the two-dimensional bands indirectly. Also cuprates
with many layers per unit cell may have more complex
dependence on strain as compared to single layer systems.
Despite the above caveats in place, it is still worthwhile to
study the model Eq. (2 together with the relation Eq. (3) for
understanding the elastoresistivity of single layer cuprates.

The problem of (unstrained) normal state resistivity has
been explored in various experiments [13—15] on different
materials over the last few decades. Experiments reveal inter-
esting and challenging transport regimes, termed the strange
metal and the bad metal regime [16], whose existence is
inexplicable within the standard Fermi liquid theory of metals.
These results have attracted several numerical studies using
the techniques of dynamical mean field theory [17-19], deter-
minant quantum Monte-Carlo method [20,21], and dynamical
cluster approximation [22,23] etc. These studies indicate that
the unusual regimes are indicative of very strong correlations
of the Mott-Hubbard variety.

Despite the numerical progress, few analytical techniques
are available to extract the low temperature transport behavior
and thus better understand the various regimes. This is due
to the inherent difficulties of treating strong correlations, i.e.,
physics beyond the scope of perturbation theory. Recently, the
extremely correlated Fermi liquid theory (ECFL) [4,24,25]
has been developed by Shastry and coworkers. This theory
consists of a basic reformulation of strong correlation physics,
and its many applications have been reported for the ¢-t'-J
model in dimensions d = 1, 2, co. This is a minimal and fun-
damental model to describe extreme correlations. The ECFL
theory leads to encouraging results which are in close accord
with experiments such as spectral line shape in angle-resolved
photoemission spectroscopy (ARPES) [6,7,26-31], Raman
susceptibility [32,33], and particularly, resistivity [6,7,25,34].
A recent work [5] shows that the ECFL theory gives a quanti-
tatively consistent account of the 7 and density dependence of
the resistivity for single layer hole-doped and electron-doped
correlated materials. Here we explore the strain dependence
of the resistivity within the same scheme.

In the ECFL theory, the resistivity arises from (Umklapp-
type) inelastic scattering between strongly correlated elec-
trons. Here the hopping amplitudes of electrons play a dual
role. The first one, that of propagating the fragile quasipar-
ticles, is standard in all electronic systems. They provide a
simple model for the band structure. Additionally, for very
strong correlations the ECFL theory shows that the hopping
parameters are also involved in the scattering of quasiparticles
off each other [35]. A surprisingly low characteristic tempera-
ture scale[7,34] emerges from the strong correlations, above
which the resistivity crosses over from Fermi liquid type,

i.e., p ~ T? behavior, to an almost linear type, i.e., p ~ T
behavior [6,7,15].

From the above we argue that strain effects could provide
a test of the underlying mechanism for resistivity within
the ECFL theory to include strain dependence. Experiments
probing these strain effects are likely in the near future, thus
enabling an important test of the theory. For the purpose
of independently estimating the strain-hopping parameter «
in Eq. (3), we have identified two experimentally accessi-
ble variables. Firstly we study the integrated weight of the
anisotropic electrical optical conductivity, i.e., the f-sum rule
weight, accessible in optical experiments [36,37]. Secondly
we study the local density of states (LDOS), measurable
through scanning tunneling microscopy (STM) [38—42]. The
f-sum rule weight in tight-binding systems is related to the
expectation of the kinetic energy, or hopping, and can be ob-
tained from the Green’s function. The LDOS can also be
calculated from the local Green’s function easily.

The plan of the paper is as follows: In Sec. II (A) we
introduce the 7-#’-J model and summarize the second order
ECFL equations and the corresponding Green’s functions
and self-energies. (B) We describe how to convert the lattice
constants and hopping parameters for a system under strain.
(C) We outline the parameters for the program. In Sec. III,
we present the detailed calculation for and results of (A) the
resistivity, (B) the kinetic energy, and (C) the LDOS and their
associated susceptibilities with respect to strain. We provide a
brief summary and discussion of our results and future work
in Sec. IV.

II. METHODS & PARAMETERS
A. The model

It has been argued that the ¢-t'-J model is key to describing
the physics of high-7, superconducting materials [43]. This
model is composed of two terms: H,; = H, + H; where H,
is derived by taking the infinite-U limit of the Hubbard
model plus an additional term H; which introduces antifer-
romagnetic coupling. The general Hamiltonian Eq. (2) can be
rewritten in terms of the Hubbard X operators [4] as

Hy= =) ;XX — Y X7°,
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Here #;; and J;; are already defined below Eq. (2). We present
results for both vanishing and nonvanishing J;;. The operator
X[“b = |a) (b] takes the electron at site i from the state |b) to the
state |a) where |a) and |b) are one of the three allowed states:
two occupied states |1), || ), or the unoccupied state |0)—
the appropriate X operator referring to the doubly occupied
state |1, ) is excluded in both the Hamiltonian and state space.
The X operator relates to the alternative representation used in
Eq. (2) as follows: Xi"o — C,X°% = C,, and DX —

o’ 1
n;.
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B. The ECFL equations

In this section, we briefly introduce the ECFL equations for
the 7-t'-J model. More details can be found in [4,6,24,25]. In
the ECFL theory, the one-electron Green’s function G is found
using the Schwinger method [44] and in momentum space is
factored as a product of an auxiliary Green’s function g and a
“caparison” function zi:

G(k) = g(k) x (k) &)

where k = (1;, iwy), and w; = (2k + 1)wkgT is the fermionic
Matsubara frequency and subscript k is an integer. The auxil-
iary g(k) plays the role of a Fermi-liquid type Green’s function
whose asymptotic behavior is 1/w as w — 0o, and [ is an
adaptive spectral weight that mediates between two conflict-
ing requirements [24]: (1) the high frequency behavior of the
noncanonical fermions and (2) the Luttinger-Ward volume
theorem at low frequencies.

The Schwinger equation of motion for the physical Green’s
function can be symbolically written as [24]

(ggl—X—Yl).gzz?(]l—y), 6)

where X represents a functional derivative and Y| describes
a Hartree-type energy, i.e., G convoluted with hopping and
exchange interactions. The left hand side of Eq. (6) is anal-
ogous to that of the Schwinger-Dyson equation for Hubbard
model [45]: (gg1 —Ué/8V —UG).G = 4§ 1. Observe on the
right side of Eq. (6), the essential difference is the y term
which is proportional to a local G and originates from the non-
canonical algebra of creation and annihilation operators. The
noncanonical nature of operators and the lack of an obvious
small parameter for expansion present the main difficulties
towards solving this equation.

To tackle these difficulties, the ECFL theory inserts into
Eq. (6) the A parameter

(8" —AX —A1).G =8 (1L — Ay), (7

where A € [0, 1] interpolates from a noninteracting to fully
interacting system. This parameter plays a parallel role to that
of inverse spin parameter 1/2S in quantum magnets, where
S is the magnitude of the spin. Then we expand Eq. (7)
systematically with respect to A up to a finite order and
at the end set A =1 to recover the full 7-¢’-J physics. The
introduction of A bound to [0,1] in ECFL makes it possible
that a low-order expansion could be enough to describe low-
energy excitations in a large region of doping. This argument
has been justified in one [46] and infinite [25] dimensions by
benchmarking against exact numerical techniques and in two
[6,7] dimensions by comparing well with experiments.

In the following, we use the minimal version of second
order (in ) ECFL equations [6]:

k) =1 =25 + 29 (6) ®)
g (k) = iox + p — & +AgE,; — 2p(k) 9)

where p is the chemical potential (denoted in boldface) and
€z is the bare band energy found by taking the Fourier trans-
formation of the hopping parameter. The physical Green’s
function features two self-energy terms: the usual Dyson-like
self-energy denoted ¢(k) in the denominator and a second

self-energy in the numerator (k). The self-energy ¢ (k)
can conveniently be decomposed as follows: ¢ (k) = x (k) +
E/,Ew(k) where (k) denotes a self-energy part, 6/% =€ —
up/2 and (k) the second self-energy. Here u acts as a
Lagrange multiplier, enforcing the shift invariance [4,6,24] of
the 7-t'-J model at every order of A. The two self-energies
functions ¢ and x expanded formally in A to second order
approximation O(A?) are ¥ = Yo + A¥p +... and x =
Xo] + Axpy + . ... The expression for these self-energies in
the expansion are

1
Yok =0, xok) =-. (e; +5 ,gﬁ>g<p> (10)

P

and
Yk ==Y (e + €+ 1_)ep)g@)ep +q— k)
rq
(1)
X == (e +€;+ Je) € T ip)
rq
x 8(P)g(@g(p+q — k), (12)

where 3°, = &L > i, and Jj is the Fourier transform of J;;
[47]. By setting A to 1, the resulting expressions for the ECFL
equations expanded to O(A?) are

fik)=1- g + (k) (13)
g (k) =iy + p — e + ge,; — Xt k)

— xmk) — e k). (14)

We can verify that an arbitrary shift of €; — €; + ¢ leaves
the above expression invariant by shifting u — p + ¢y and
uy — ug + 2¢p. In this sense, we may take uy as a second
chemical potential. We can determine the two chemical po-
tentials p and u by satisfying the following number sum rules

Zg(k)eiwk(ﬁ — g — Zg(k)eiwk(ﬁ, (15)
k k

where n is the particle density. We find the spectral func-
tion pg(k) = —1/wImG(k) by analytically continuing (i.e.,
iy = w +in) and by solving Eq. (5) and Egs. (10)—(15)
iteratively. We remind the reader that the spectral function
0G (k, ) is referred to in most experimental literature by
the symbol A(k, w). We can recover the interacting Green’s
function from pg using

Gk, iwy) = /OO pgkv) 4 (16)

oo O —V

C. Strain effects on hopping and exchange
1. Converting lattice constant changes to hopping changes

The ¢-t'-J model in two dimensions describes the hopping
of electrons between copper atoms in the 2d plane. In this
model, the hopping parameters with strain and without strain
are denoted as

{te, by, 14} — {2, 1,1} 17
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Thus under strain ¢, and #, refer to nearest neighbor hops along
x and y axes, and ?; is the second neighbor hopping along
the diagonal of the square lattice. We start with the tetragonal
symmetry case f, = t, = t where there are just two parameters
1.

At the level of a single bond between two coppers, any
generic hopping #(R) for a bond with length R can be repre-
sented by [12]

A
HR) ~ = (18)

where A is a constant. In the simplest cases, the exponent « is
given by the angular momentum [y, [, of the relevant atomic
shells of the two atoms by the formula

a=0L+5L+1. (19)

Thus for two copper atoms /; = [, = 2 and hence we might
expect

a~35, (20)
whereas for copper oxygen bonds [} = 2, I, = 1, therefore
o~ 3. 21

For the effective single band description of the cuprate materi-
als, it is not entirely clear what value of « is most appropriate.
Comparisons with experiments might be the best way to de-
cide on this question, when the results become available. Until
then we can bypass this issue by presenting the theoretical
results in terms of 2 rather than the strain itself. Towards this

t
end Eq. (18) is a very useful result. We rewrite it as

St(R) 3R

— = —«

t(R) R
thus enabling us to convert a change of the lattice constant to
that of the corresponding hopping, using only the value of ¢
and «. Throughout this paper we will refer to 6¢/¢ as “strain”
or with emphasis as “hopping strain” in order to distinguish it
from “conventional strain” SR/R. Strain will always refer to
variations along the x axis unless otherwise noted.

, (22)

2. Geometrical aspects of the strain variation

Our calculation studies a few variations of parameters. We
start on a lattice with tetragonal symmetry at r ~ 5220 K
(0.45 eV), and we vary ¢’ to capture both electron-doped
(¢ > 0) and hole-doped (¢’ < 0) cuprates. The magnitude of ¢
is only a crude estimate, it is refined for different single layer
cuprate systems in [5].

On the distorted lattice with orthorhombic symmetry and
lattice constants a and b, the three distances of interest (two
sets of nearest neighbors and one set of second neighbors) are

a, b, p=+a*+ b2 (23)

For the tetragonal case we refer to the undistorted lattice
parameter as ag, thus a = b = ap, p = ﬁao. We next study
the effect of stretching (§a > 0) or compressing (6a < 0) the
x-axis lattice constant, leaving the y axis unchanged. The
changes in the lattice constants then read as

da

. 24
A (24)

a— ag+ da; b— agy; p—)«/§a0+

We denote the strain in the x direction as

da
€y = —. (25)
ap
In terms of the strain, we can rewrite the distances to neigh-
bors as

exx
a=a(l+ew), b=ap, p=~2a(1+ 7), (26)

so that €,, > 0 is regarded as stretching and €,, < 0 as com-
pression. The single particle (tight-binding) energies for the
distorted lattice are given by

€ = —2t, cos(kea) — 2t, cos(k,b) — 414 cos(k.a) cos(k,b).

In terms of the band parameters of the unstrained system ¢ and
t', we can write the anisotropic band parameters as

= —aen)t, ty=t, td:<1—a %)ﬂ, 27)

where the factor of % for t; comes about due to a shorter
stretching of p as in Eq. (26). Their strain variations are
denoted by

5t, ot 8ty 8ty

1
— = — = —®€y,, — =0, = ——U€y,. 28
tx t XX ty td 2 XX ( )
These formulas relate the change in hopping to the physical
strain, and thus involve the parameter o which is somewhat
uncertain. For that reason, we actually vary ‘i—’ in this study.
We also go beyond the linear response regime, i.e., we use

larger values of % than those attainable in the laboratory. In
dg 3t

such a case we set = £,
tq 2t

used in this work,

To summarize the sign convention

t
compress: — >0, €, <0

stretch: " <0, €, >0. (29)

3. Converting hopping changes into exchange changes

In this model, the superexchange interaction maps to hop-
ping as follows: J = t2/U where U is the on site energy
of the Hubbard model. As we vary the hopping parameter,
we find §J = 2(8t/t)J since U does not vary with strain. In
this model the first neighbor exchange parameters with and
without strain, similar to Eq. (17), are denoted as

e, Iy} = {J. ]}, (30)

where J; and J, refer to the first neighbor exchange interac-
tions along the x and y axes. In terms of hopping changes we
can rewrite the exchange parameters as

8txx
Jx=(l+2 >J, I =1. 31)

XX

D. Parameters in the program

The model considered applies to several classes of mate-
rials, such as the cuprates, the sodium cobaltates, and pre-
sumably also to the iron arsenide superconductors. We shall
restrict our discussion to the cuprates where the parameters
are fairly well agreed upon in the community [5,43,48].
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In this calculation, we sett = 1 as our energy scale and we
allow ¢/t to vary between —0.4 and 0.4, to cover the full range
of cuprate materials. The hopping strain &¢/¢ is varied from
—0.15 to 0.15. The exchange parameter J is set to zero except
where otherwise noted. We convert the energy to physical
units by setting r = 0.45 eV, and hence the bandwidth is
W = 8t = 3.6 eV. If one wants to make a different choice for
t, this can be done by rescaling the energies and 7’s by the
same scaling factor.

We focus on the optimal doping case § = 0.15 for cuprate
materials [49]. Here § refers to the hole doping and relates to
the particle density as follows § = (1 — n). The temperature
range is set to 7' € [37, 450] K. Lower temperatures than this
lie outside the range of convergence for the current scheme.
For the interacting system we solve the ECFL equations
(10)—(15) iteratively on a real frequency grid of size N, =
2!4 within the range [—2.5W,2.5W], where W is the bare
bandwidth, and a lattice L x L with L = 61,79, 135. The
scale of the frequency grid is tuned to capture the low-T
physics. A frequency grid of size N, = 2'¢ only slightly
improves our results at much larger computational costs. We
primarily use an L > 61 for ¢ > 0 at low temperatures (i.e.,
T < 100 K) in order to get sufficient resolution to converge
electrical resistivity calculation. The need for a high resolution
lattice at low temperatures is a product of the spectral function
which features higher, sharper peaks for #’ > 0, to which the
resistivity calculation is sensitive [6], i.e., a larger grid is
required to settle the unphysical oscillations in the resistivity
calculation. For the noninteracting system we compute LDOS
using a system of size N, = 2'? and L = 271.

III. RESULTS

Here we present the effects of strain along the x axis on
electrical resistivity, kinetic energy, and LDOS and their asso-
ciated susceptibilities in response to a compressive (¢ /¢t > 0)
and tensile (6¢/t < 0) hopping strain.

A. Resistivity for an x-axis strain

‘We now study the response of electrical resistivity p, char-
acterized by electron-electron scattering [6] in the presence
of a strain. We use the bubble approximation, factoring the
current correlator as (J(z)J(0)) ~ ), vlggz(k) with suitable
vertices v; and dressed Green’s function G, to compute the
conductivity o,. Our picture of a quasi-2D metal consists
of well separated Cu-O planes and hence each plane can be
characterized using the 2D 7-J model. The weak k dependence
of the self-energy as seen in Fig. 3 of Ref. [7] diminishes
the significance of vertex corrections. In fact the self-energy
is completely k independent in the d = oo limit, and studies
in this limit [34] have successfully implemented the bubble
approximation while completely ignoring vertex corrections.
We shall calculate and quote the following objects denoting
the irreducible representations of the Dy, point group by the
standard names [2,50-52]

(i) p..(T) the strained version of resistivity along the x
axis.

(i1) py/,y(T) the strained version of resistivity along the y
axis.

(iii) py without a prime refers to the tetragonal result,
which is the same as p,,.
(iv) XX component variations:

—(Pyy — Px) /(P82 /1) VS T

(v) YY component variations:
—(pyy, = Pyy)/(pxbt /1) vs T
(vi) Ajg symmetry variations:

Pt Py = 2P0

vs T
200t [t
(vii) Bj, symmetry variations:
/ ’
_M vs T
P01 /1

Of special interest are the p;, + p|, response which cor-
responds to the Ay, irreducible representation (irrep) and the
Prx — P}y TEsponse, corresponding to the By, irrep.

1. Computation of the anisotropic resistivity
To find the anisotropic resistivity, we compute the dimen-
sionless conductivity [6] for the anisotropic case
02
o = (i (fv7)" /(ab)),, (32)
N2
o = (Y3 (hv]}.(.) /(ab)>k’ (33)
where (A); = 1% 2> ANy =L x Land

oo
=0 [ dot-afpongE o G
—00
where f(w) = 1/(1 4+ exp(Bw)) is the Fermi function, pg (k)
is the spectral function from from ECFL theory up to O(A?),
and v]i(‘, v% are the bare vertices, which are defined as

_ 1 Bek a 8ek

x o 0% 40% 35
ET nok,  hok G2
) laék baék

y o 2%k 2% 36

CT hok,  hok (36)

where ki = k,a and k = k,b denote the components of the di-
mensionless momenta. Inserting the dimensionless momenta
into Eq. (33), we obtain

_ de,—(» 2
Opx = <T,;<d—kl> (a/b)>k, (37

d R 2
Oy = <Tk<£> (b/a)>k (38)

for the dimensionless conductivity. The corresponding dimen-
sionless resistivities are o, = 1/0,, and py, = 1/0y,.

The electrical resistivity can be converted to phys-
ical units as follows: pphysicale = P X Po Where po =
coh/e*(~1.171 mSQcm) sets the scale for the resistivity,
and o = xx describes the longitudinal (i.e., current | €,)
resistivity and yy describes the transverse (i.e., current L
€.) resistivity. Here ¢ ~ 6.645 A is the typical separation
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FIG. 1. The longitudinal and transverse resistivities, p,, (solid) and py, (dashed), respectively, versus temperature at filling n = 0.85, for

various #', and at representative strains. While the green curves are for the unstrained case, the red curves correspond to a compressive strain
8t/t = 0.10 (i.e. €, ~ —.02), and the blue curves correspond to a tensile strain §t /t = —0.10 (i.e. €,, ~ .02), if wetake ¢ ~ 5. (a)t'/t = —0.4,
n=0.85()t'/t =—-02,n=0.85;(c)t'/t =0.0,n =0.85;(d) ¢/t =0.2,n = 0.85; (e) '/t = 0.4, n = 0.85. All figures share the legend.

The resistivity in physical units can be found by pphysicat = 0 X 0o, where py = coh/e* ~ 1.17 mQcm.

between parallel Cu-O planes [5,53]. In order to estimate
the magnitude of the inelastic scattering, we can relate the
dimensionless resistivity to (kr)£ as follows (kp)€ = 1/p, as
argued in Refs. [15,54] for quasi-2D materials, where (kg) is
an (angle averaged) effective Fermi momentum and ¢ is the
mean-free-path. Hence we expect p, /0o < 1 in a good metal.

2. The raw resistivities

We first present the effects of hopping strain 6¢/¢f on
resistivity. In Fig. 1, we study the anisotropy of the raw
dimensionless resistivity over a broad range of temperatures

at the optimal density n = 0.85. Figure 1 displays the longi-
tudinal resistivity py, (solid) and the transverse resistivity o,y
(dashed) for a compressive strain (red) and tensile strain (blue)
in comparison to the unstrained tetragonal system (green).
Here we used a representative magnitude of compressive
strain &t/t = 0.10 (i.e., €, ~ —.02). We observe that lon-
gitudinal resistivity under a compressive strain (6¢/¢t > 0) is
reduced, and conversely, under a tensile strain (6 /¢ < 0) it is
enhanced across the displayed temperature range for all ¢'. The
response for transverse resistivity is less than the longitudinal
one in magnitude. An interesting new feature lies in the ¢’
dependence; we note that magnitude and sign of the change
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in transverse resistivity is controlled by ¢’, e.g., for ¢’ = 0.2¢
the resistivity is almost unchanged for all strains.

These behaviors can be understood qualitatively in the
following ways. First, let us look at the simplest case with
t' = 0 as in Fig. 1(c). When the system is compressed in the x
axis, the hopping ¢, rises according to Eq. (27) and so does the
conductivity along the same direction, and vise versa. Hence,
the longitudinal resistivity gets suppressed (enhanced) under
compressive (tensile) strains. One can also consider isolating
the strain-induced effects in Eqgs. (37) and (38) from the band
structure, contained in v¥, and from the spectral function pg,
which accounts for the influence of the Gutzwiller correlations
on resistivity. (Changes in the resistivity due to variation
of the explicit lattice constants are small.) When we exert
a compressive strain, this produces additive changes to the
longitudinal resistivity due to in equal parts (1) changes in
vertex and (2) T-dependent changes in spectral function, both
arising from the enhancement of z,. Whereas for the transverse
resistivity the hopping parameter #, is unchanged and hence
changes to resistivity from the band structure become less
important and as a result the transverse resistivity is domi-
nated by strain-induced effects on the spectral function. For
this reason, the transverse response to compressive strain is
generally smaller in magnitude than the longitudinal response
and likewise for a tensile strain both shown in panel (c). We
also find that the transverse strain response has a different sign
than the longitudinal one when there is no second neighbor
hopping.

Now let us turn on ¢’. According to Eq. (27), the strain has a
longitudinal-like effect, only smaller, on the magnitude of the
second neighbor hopping. Turning on a positive ¢’ strengthens
longitudinal response and “counters” the transverse response
from ¢, hopping. Therefore we see that the longitudinal curves
depart further from the unstrained one in panels (d) and (e),
and it also explains why the transverse change almost vanishes
for t" = 0.2 in panel (d) and switches to the same sign as the
longitudinal one for #’ = 0.4 in panel (e). Likewise turning on
a negative ¢ weakens the longitudinal response and enhances
the transverse response, so that the longitudinal response gets
smaller in panels (a) and (b) while the transverse shifts more
explicitly to the same side as ¢’ = 0. Further analysis of these
effects can be found in the Supplemental Material (SM) [55].

Next we discuss how strain affects the effective interaction
and the characteristic temperature scale. We mainly use the
longitudinal resistivity in this discussion because the longi-
tudinal response is more explicit. In our recent work [6,7],
a significant finding was the #’ dependence of the curvature
of the p-T lines. We observe that this #’-dependent curvature
persists under strain, i.e., the curvature changes from positive
(concave up like +7T2) to negative (convex up like —T2?) as
t'/t is varied upward.

Recall that strain is effectively a small change in the
hopping parameter, so we ought to expect strain to change
the ' dependence of the curvature only quantitatively but
not qualitatively. Phenomenologically, varying ¢’ signals a
change in the effective Fermi temperature scale 7p where
for T < Ty the system is in the Fermi liquid regime p o< T2
and hence has a positive curvature. Moreover, as we decrease
t' from positive to negative, the Fermi liquid temperature
regime is compressed into a smaller temperature regime down

to temperatures where resistivity is usually hidden by the
superconducting state. We want to focus on the crossover
between Fermi liquid and strange metal which is covered by
the following empirical relation

T2

— 39
T +T ©9)

p~C
Here C is a constant that defines the slope of linear regime
and T marks the crossover from the Fermi-liquid regime.
For example when ¢ = —0.2¢ as found in typical hole-doped
cuprates [56], we observe that a compressive strain extends
the Fermi-liquid regime for the longitudinal resistivity, and
flipping the strain reduces the Fermi-liquid regime. Qual-
itatively speaking, a compressive strain enhances the lon-
gitudinal hopping so that the effective interaction reduces
relatively to the hopping. Likewise, a tensile strain increases
the effective interaction in the unit of longitudinal hopping
and suppresses the Fermi liquid temperature scale. Besides,
we observe that a compressive strain suppresses the linear
constant C while a tensile strain enhances it, as shown more
obviously in Fig. 2. That can be verified in the experiment by
measuring the slope of p-T for a strange metal under strain.

3. Susceptibilities for anisotropic resistivities

It has been argued [1] that cuprates are candidates for
an electron nematic phase, in which nematic order might
coexist with high temperature superconductivity, that is, the
electronic system breaks a discrete rotational symmetry while
leaving the translational symmetry intact. Here the normalized
resistivity response plays the role of the order parameter in
the phase transition. Since it is possible to experimentally
identify continuous phase transitions through observation of a
diverging thermodynamic susceptibility across a phase bound-
ary this makes the temperature profile of elastoresistance, i.e.,
normalized resistivity response with respect to an arbitrary
strain, an interest observable to explore. For that reason, we
shall examine linear response function for the longitudinal
and transverse components of the elastoresistivity tensor con-
structed in terms of the hopping strain as:

G —

Y

respectively. The susceptibility as defined is positive if com-
pression along the x axis leads to a reduction of the resistivity
in the specified direction. We note the connection of these
susceptibilities with the nematic susceptibility Eq. (1) on
using Eq. (28) as
Xnem = @ lim xxx. (42)
€ —0
We compute the susceptibility for small values of strain
8t /t 2 .05. However, even these values of strain pick up some
nonlinear components of the response function. These are also
of interest, and we comment on these below.
The linear response function for strain-resistivity curves
is plotted as a function of temperature in Fig. 2 for the
longitudinal and transverse components at optimal density
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FIG. 2. The longitudinal [Eq. (40] and transverse [Eq. (41)]
strain-resistivity susceptibilities versus temperature at filling n =
0.85, for various t' and é&t/t. (a), (c), (e), (g), (1) t'/t = —04,
—0.2, 0.0, 0.2, 0.4 longitudinal, respectively; (b), (d), (f), (h), (j)
t'/t = —0.4, —0.2, 0.0, 0.2, 0.4 transverse, respectively. All figures
share a legend. For various 8t /¢, the susceptibilities x,, for T = 100
approach each other in two sets, one for §7 /t > 0 and another slightly
displaced set for 8t /t < 0. They splay apart at low T thus displaying
strong nonlinearity in the Fermi liquid regime. The susceptibilities
Xyy approach a single set for T 2 100 and splay apart for low T thus
also displaying strong nonlinearity in the Fermi liquid regime.

n = 0.85 for various ¢" and 87 /¢. Note that since the resistivity
vanishes as T — 0, there is an enhancement of the normalized
susceptibility at low T.

In Figs. 2(a), 2(c), 2(e), 2(g), and 2(i), we see that the linear
response function for the longitudinal resistivity xxx is mostly
positive and shows nonlinear (in 8¢/¢) behavior at a fixed T
(as can be identified by the separation of the strain curves)
with respect to strain across the entire temperature range. This
nonlinearity will be measured directly in Fig. 5 for ¢’ = —0.2.
The response function for 7 2> 100 K is highly ordered in
that varying the strain from positive (compressive) to negative
(tensile) increases the strength of the response function for all
t’. Conversely as we cool the system, we observe that strain
dependence of the response function becomes increasingly
nonlinear, i.e., showing a wider separation between strain
curves, the forms of which are strongly ¢* dependent. Now
if we vary ¢’ to survey the range of cuprate materials, we
find at low T for holelike (' < 0) materials a significant
enhancement in and an inversion of the strain dependence that
is absent in electronlike (' > 0) materials, though for both
material types the strength of the response function remains
approximately invariant at high 7'.

We next discuss the transverse linear response function
xvy shown in Figs. 2(b), 2(d), 2(f), 2(h), and 2(j). This
response is potentially interesting since the affects of strain
on the band structure are found to play a less significant
role, hence the correlation effects dominate. We find that the
features of transverse response function are different from that
of the longitudinal response function mainly in two ways:
(1) the xyy collapses at high 7', showing strong linearity with
respect to the strain and (2) it changes sign from negative to
positive as we vary '/t across 0.2 from below, consistent with
Fig. 1. Measurements confirming this linear behavior and sign
change would be potentially interesting results.

4. Resistivity with nonzero J

In this section we examine the role of exchange parameter
J (nearest neighbor exchange energy) on resistivity and the
susceptibilities, setting J = 0.17¢ which is the typical value
for LSCO cuprate materials [48]. We take J = /U where
U is the on site energy of the Hubbard model and U does
not vary with strain and hence 6J = 2(8¢/t)J [47]. Now, if
we turn on the exchange parameter J, we find that at low
temperatures the resistivity is reduced by the exchange energy
and at high temperatures the resistivity is slightly enhanced
as seen in Figs. 3(a) and 3(b). In Figs. 3(c) and 3(d) we see
the longitudinal and transverse susceptibility with exchange
interaction is further enhanced at low temperatures whereas at
higher temperatures the response is unchanged. The J effects
are magnified in the low-T response since p — 0 as T — 0.
We can say the effects of J on the response are negligible at
high T.

5. Susceptibilities for A, and B irreps

Experimentally, it is possible to identify the irrep to which
the order parameter belongs by applying a strain with a
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FIG. 3. (a), (b) The strain-induced resistivity at optimal filling
n=0.85, '/t = —0.2 for three representative strain types with
exchange parameter J = (0.0 (solid) and J = 0.17 (dashed). (c),
(d) The strain-resistivity susceptibility for the same parameter set
as above. All figures share a legend. We note that a nonvanishing
J enhances somewhat the magnitude of the susceptibilities in the
low temperature Fermi liquid regime. (a),(c) Longitudinal; (b),(d)
Transverse.

particular irrep of strain and searching for a divergence in
the temperature profile. In the case of uniaxial strain along
the x axis the strain can be decomposed into the A, and By,
irreps. In this section we examine the strain-resistivity linear
response function for the A;, and By, irreps defined in terms
of the hopping strain as

_ Prx + 0y — 2Pxx O\ xxx £ xvy
Kais = 25 t) 27
(=22)/ ()
X, =\ ——— - ] = Xxx — Xry,
Pxx !

respectively.

In Fig. 4 we present the normalized strain-resistivity re-
sponse functions at optimal density n = 0.85 for various ¢’
and 6t /t. In this picture the A, and By, irreps play the roles
of a center of mass coordinate and a relative coordinate,
respectively. Together the two susceptibilities characterize the
shift of in-plane resistivity as a result of an arbitrary in-plane
strain. Recall that since the resistivity vanishes as 7 — 0, the
Ay, and B, susceptibilities are also enhanced at low T'.

Examining the A, susceptibilities in Figs. 4(a), 4(c) 4(e),
and 4(g), one important feature stands out, namely, that for
T 2 100 K the response function is positive for all ' and
strains 8¢ /t. This indicates that increasing a tensile (compres-
sive) strain for 7 2 100 K enhances (suppresses) the average
of the anisotropic resistivities.

We also see that at 7 ~ 100 K with hole doping, i.e.,
t' < 0, the normalized susceptibilities become independent of
the strain, and hence the response is in the linear regime (sig-
naled by the convergence of all strain curves). The nonlinear
response at lower 7 is interesting and potentially observable
in experiments with varying strain. On the other hand for
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FIG. 4. The normalized strain-resistivity susceptibilities from
Eq. (43) versus T for the Aj, and B, irreducible representations
at filling n = 0.85 at various ¢’ and §t/t. (a), (c), (e), (g) t'/t =
—0.4, —0.2, 0.0, 0.2 x41,, respectively; (b), (d), (f), (h) t'/t = —0.4,
—0.2, 0.0, 0.2 xp,, respectively; All the figures share a legend. For
various 87 /¢, and for T 2 100 all the susceptibilities approach each
other in two sets, one for 67/t > 0 and another slightly displaced
set for 8¢/t < 0. They splay apart at low T thus displaying strong
nonlinearity in the Fermi liquid regime.

electron doping, i.e., ' > 0, we see nonlinear behavior even
at high T. Its origin is the extended Fermi-liquid regime
which has a higher crossover temperature scale. Summarizing,
we find that the early departure from Fermi liquid behavior
into a strange metallic behavior in the hole doping favors an
apparent linear response above 100 K due to a change in scale.
Conversely we expect to see nonlinearity extending to much
higher 7’s in electron-doped systems.

From Fig. 4, we observe that the B, susceptibilities for
T < 100 K are strongly dependent on the value of ¢’ of the
system. We find in holelike materials (+' < 0.0) there is a
strong enhancement (the details of which depend on the &z /1)
in the susceptibility at low 7. In contrast, this feature is absent
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FIG. 5. The strain-resistivity susceptibilities for various symme-
tries as a function of strain §¢ /¢ at filling n = 0.85 and '/t = —0.2.
(a) XX, longitudinal, Eq. (40); (b) Y'Y, transverse, Eq. (41); (c) A ir-
rep, Eq. (43); (d) By, irrep, Eq. (43). The susceptibilities are relatively
strain independent above 100 K but show strong nonlinearity at low
T. It is noteworthy that for the lowest 7' shown, the susceptibilities
Xuxs Xyys Xa,, Change sign at or close to 87/t = 0. At higher T this
change of sign is lost. The behavior of the nematic susceptibility
Xnem = lime_ _,o(or Xy ) at low T has thus the potential for a change of
sign, depending on how we choose a sufficiently small |e,,| or |8z /7]
for the purpose of taking the limit lim. ..

in electronlike materials (' > 0.0) where there is weaker
correlation, higher Ty, and hence stronger quasiparticles.

Focusing on the strain dependence, we see that at high-T
the susceptibilities are relatively insensitive to t" and generally
increases as we vary from a compressive to a tensile strain.
There is also asymmetry in rate of change of susceptibilities
between a compressive and tensile strain as |6¢/¢]| is varied,
i.e., the response function changes more rapidly for tensile
than compressive strains. Therefore the degree of anisotropy
is higher for tensile strain than compressive strains of equal
magnitude.

Also, the By, curves under compressive strain (5¢/¢t > 0)
are closer to each other than those under tensile strain for
electron-doped systems, yet this spacing difference is less ob-
vious in the hole-doped case. It means that a tensile response
tends to show stronger nonlinearity, especially in electron-
doped systems.

6. Susceptibilities versus strain

In Fig. 5, we display the strain-resistivity response func-
tions versus hopping strain for various symmetries at ¢’ =
—0.2¢ and n = 0.85 (which is roughly the parameter set for
LSCO cuprate material [56] at optimal density) at four repre-
sentative temperatures. Here we approximate the variance in
the linear response function as follows

X(T) = co(T) + c1(T)(St/t) + co(T)(St/t) +.... (44)

In panels (a) and (b) we have longitudinal and transverse
linear response functions, respectively, showing nonlinear

behavior at low temperature which becomes more linear
(as indicated by horizontal line) as the system warms. This
nonlinear behavior at low T can be understood as a result
of the increasing importance of correlations as the system
is cooled. Although the longitudinal and transverse response
functions differ considerably in magnitude, the curves are ap-
proximately symmetric under inversion of the axes. In panels
(a), (b), and (c) there is a wavelike oscillation which indicates
the presence of higher order terms, e.g., the T = 37 K curve in
panel (a) appears to have (8¢/t)° term competing with a linear
term. Another interesting result we find that as the system
cools the B, response function appears diverge at §t/t =0
as T — 0 suggests that any deviation from the point group
symmetry of the square lattice produces a finite resistivity
response.

B. Kinetic energy for an x-axis strain

In this section we explore the kinetic energy anisotropy
induced by strain along the x axis using ECFL theory. Since
the anisotropic kinetic energy can be related to measurements
of the optical conductivity using the f-sum rule on the ¢-t'-J
model, this makes it another interesting observable to explore.

The total kinetic energy for a system under strain is
computed as

Kot = < / pa X, w)e,;dw> : (45)

00 k

This may be decomposed as follows:
Kiot = Ko + Kyy + nyv (46)

where the cross kinetic energy K., comes from the second
neighbor interactions and is related to the dynamic Hall con-
ductivity. Additional information on the total kinetic energy
can be found in the SM [55]. The longitudinal, transverse, and
cross kinetic energies are given by

o0
K = < | _dossii w)ekx> 7)
o ‘
e -
Kyy = </ da),og(k, w)ek)_> (48)
oo ‘
Ky = < / dwpg(k, a))ekxy> (49)
oo r
where
€r, = —2t, cos(kya) (50)
€k, = —2ty cos(kyb) (51)
€k, = —4t4 cos(kya) cos(kyb). (52)

In the 7-#'-J model the anisotropic kinetic energies K, where
o = xx, yy, and xy, are related to the optical conductivity o,
by the following sum rule

o0
i)%e/ og(w)dw = —Kaez, (53)
0

2

where e is the electrical charge. K,e~ sets the scale of the

optical conductivity, i.e.,

2 Eﬁe/(; og(w)dw = 1. 54)
o
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FIG. 6. Anisotropic kinetic energies K, versus T for K,, (solid)
and K,, (dashed) at filling n = 0.85, for various ¢’ and at three rep-
resentative strains: compressive strain, no strain, and tensile strain.
Note that K,, = K,, in the absence of strain. (a) t'/t = —0.2, (b)
t'/t =0.0, (c)t'/t = 0.2. All figures share a legend.

The optical conductivity in the DC limit o,(0) relates to
the DC resistivity as follows: p,(0) = 1/0,(0). For the
anisotropic kinetic energy, we calculate and quote the follow-
ing objects:

Q) K,
energy.

(ii) I()’,y is the strained version of transverse kinetic energy.

(iii)) We call K, without a prime the tetragonal result. It is
the same as K.

(iv) We present Ay, :

is the strained version of longitudinal kinetic

Kx,x + Kv/} - 2KXX
2K (8t/1)

(v) We present By, : —(K), — K}’,y)/(Kxx&/t) vsT.

1. Raw kinetic energies

From Eq. (47) we calculate the anisotropic kinetic ener-
gies K, as a function of temperature at optimal density for
a representative range of cuprate materials ¢/ and hopping
strains 87/t as shown in Fig. 6. The main observation is that a
compressive (tensile) strain suppresses (enhances) the longi-
tudinal kinetic energy and vice versa for the transverse kinetic
energy response with a smaller magnitude of variation. The
variation in the longitudinal kinetic energy can be understood
as a combination of changes in the band structure parameter
t. and correlations. On the other hand, the transverse kinetic
energy is dominated by changes to the correlation function
since the parameter #, is unmodified by x-axis strain. There is
little T dependence with the exception of a slight broadening
of the range of the response at low T as the Ty is reduced.
The ¢’ dependence is also weak because K., and K,, do not
explicitly depend on ¢’ but through the spectral function.
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FIG. 7. The normalized strain-kinetic-energy susceptibilities vs
T for the A, and B, irrep as defined in Egs. (55) and (56) at filling
n = 0.85, for various ' and 8t /t. (a), (c), (e), (g) '/t = —0.4, —0.2,
0.0, 0.2 My, respectively; (b), (d), (f), (h) '/t = —0.4, —0.2, 0.0,
0.2 Mp,,, respectively; All figures share a legend.

2. Strain-kinetic-energy susceptibilities

In analogy with elastoresistance, we compute the so-called
normalized strain-kinetic-energy response function, which
measures the change in kinetic energy with respect to a
strain. We shall focus on the normalized strain-kinetic-energy
response functions for the Aj, and B, irrep since measure-
ments of these symmetries are sensitive to a break in the
fourfold rotation symmetry of a square lattice. Explicitly the
response functions are defined in terms of hopping strain as

K, + K/, - 2Kxx ot
M. = — Xx VY =), 55
e < 2K\« >/< t ) ©3)
K —K St
mo==(F) /(7)o

where the sign is imposed so that susceptibility defined in
terms of hopping strain matches its counterpart defined in
terms of conventional strain. Figure 7 displays the normal-
ized strain-kinetic-energy susceptibilities as a function of
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FIG. 8. The strain-kinetic-energy susceptibilities versus 8¢/t at
filling n = 0.85 and ¢/t = —0.2 at four representative temperatures.
All figures share a legend. (a) XX, longitudinal, Eq. (57); (b) YY,
transverse, Eq. (58); (c) Ay, irrep, Eq. (55); (d) B, irrep, Eq. (56).

temperature for the A;, and By, irrep at optimal density for
various ¢ and &t/t. The Aj, irrep susceptibility signals a
change in the sum of anisotropic kinetic energies K, + K,
with respect to the hopping change. The A;, susceptibility
shows that tuning the strain from tensile to compressive
increases rather uniformly the magnitude of the anisotropic
kinetic energy, i.e., strain enhances the overall optical weight
from Eq. (53). Analysis of the longitudinal and transverse
components are in the SM [55].

The By, susceptibility is characterized as the difference in
the kinetic energies K,, — K, with respect to the hopping
change. Thus a nonzero value for the By, irrep signals an
anisotropy between the two directions. We observe that the
response function for the By, irrep is strongly ¢+’ dependent.
For t' = —0.4, the response functions is nearly linear at all
temperatures. We point out a curious feature for the t’ = —0.2
curve where at high 7 the system is linear whereas at low
T the system is nonlinear, but it is nearly symmetric with
respect to a compressive or tensile strain of similar magnitude.
At high T for all ¢’ the system is monotonic with respect to
strain. For t' > 0 there is little variation in the response func-
tion across the temperature range and it appears to become
increasingly nonlinear as the system is warmed due to the
reduction in the scale of variation.

3. Strain-kinetic-energy susceptibility versus strain

We now present strain-kinetic-energy susceptibility as a
function of strain at optimal density (n = 0.85) and ¢’ =
—0.2r for XX, YY, Ay,, Bj, symmetries at various T (see
Fig. 8), where we define the longitudinal and transverse
response functions as

o= (S5 /2,

Myy = (58)

Il
|
N
>
~|7
£ |
=
N—"
\
—~
Je
N——"

respectively. Like the resistivity case, My,, = 0.5 x (Mxx +
Myy) and Mp,, = Mxx — Myy.

We find that at low temperatures, decreasing the magnitude
of the strain increases the strength of the longitudinal response
function in panel (a) and the response function is symmetric
with respect to both strain types. The transverse response
function in panel (b) shows a similar symmetry between
tensile and compressive strains with a flipped sign. Therefore
we find that a compressive strain for the A, response function
[panel (c)] depletes the in-plane optical weight and vice versa
for a tensile strain. The By, response function is similar to the
longitudinal and transverse only more intensive and it signals
an enhanced (suppressed) anisotropy between in-plane kinetic
energies for a compressive (tensile) strain. In all cases the
response function is approximately linear at room temperature
(297 K) and becomes increasingly nonlinear as the system
cools. In comparing panels (b)-(d) we see strong similarity
between their respective responses. This is expected since
strain merely shifts kinetic energy versus temperatures curves
up and down. Also, it appears to diverge for small strains as
T — 0.

C. The local density of states for an x-axis strain

The local density of states (LDOS) is also very interesting
since it can be measured using STM probes. We present
results on how the LDOS changes with strain and the related
susceptibilities. We argue that if experiments are done on
resistivity variation as well as LDOS variation with strain,
we can bypass the need for measuring strain accurately and
of estimating the parameter « in Eq. (19). The LDOS is
calculated as pgloc(w) = (pG(lz, w))r where averaging over
the Brillouin zone is implied, and G — g is the free Green’s
function (i.e., band structure) which gives the bare LDOS and
the ECFL Green’s function G — G gives the LDOS for the
t-t'-J model.

In this section we calculate the normalized change in the
local density of states and quote the following:

@) pg,loc(w) = (,og(lz, w)); is the bare LDOS for a strain
along the x axis.

(i1) ,o/gloc(a)) = (pg (l?, w))y 1s the interacting LDOS for an
X axis strain.

(iii) pgloc Without a prime refers to the tetragonal result and
similarly for pgjoc-

(iv) We present (pélyloc - :Ogloc)/(:ogIO(:St/t) VS w.

(v) We present ('O/gloc - Iogloc)/(pglocat/t) VS @.

1. T variation

In Fig. 9, we display the LDOS at optimal density (n =
0.85) and t' = —0.2 for various temperatures at three charac-
teristic strains: a compressive strain (thick dashed), unstrained
(solid), and tensile strain (thin dashed). We compare the
LDOS for a noninteracting system [panel (a)] to a system
with electron-electron interaction [panels (b)—(d)]. We find
over large temperature scales that curves for the bare LDOS
shifts to left along the w spectrum upon warming, leaving the
line shape intact. In contrast with the bare LDOS, we see
that warming the LDOS for the interacting system in panel
(c) completely smooths and broadens the LDOS peaks for
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FIG. 9. The local density of states for (a) the noninteracting
(band-structure) and (b)—(d) interacting system (¢#-J model) at op-
timal filling (n = 0.85), ' = —0.2¢, for various temperatures and at
three characteristic strains: 8¢/t = 0.15, 0.00, —0.15 (thick dashed,
solid, thin dashed), respectively.

all strains and slightly shifting them left. This is consistent
with previous findings that interactions significantly lower the
Fermi liquid temperature 7r. [6]. We note that strain inverts
the LDOS peak at low T, leaving behind a pair of cusps at a
reduced height. This is an artifact of the anisotropy of hopping
parameters since it also shows up in the bare case.

2. J variation

In Fig. 10, we turn on the exchange parameter J and
examine the LDOS. We also find it useful to examine the
self-energy of the system. We define the Dyson self-energy
Y as

1
w+p—e — k)

Gk) = (59
Here we use the shorthand ¥ = ¥’/ 4 iX” to denote the real
and imaginary parts of a complex function. In terms of the
spectral function, self-energy imaginary part is

—7 pg (k)
G (K)1? + [ pg (k)1

where NeG = G is found by taking the Hilbert transform
of ImG = G” and we can find ¥’ in the same manner. In
Figs. 10(c)-10(f) we display the Dyson self-energy averaged
over the Brillouin zone Xj..(w) = (E(l_é, ).

Turning on the exchange parameter in Fig. 10(a) has a
small but visible effect on LDOS at low @ when compared
to Fig. 6(b) of the SM [55]. For panel (c) we see that varying
strain from compressive (6¢/t > 0) to tensile (6¢/t < 0) shifts
the average quasiparticle states to higher energies and panel
(e) shows that increasing the intensity of the strain produces
quasiparticles with higher and sharper peaks. In panels (b),
(d), and (f) we see that varying J from ferromagnetic (neg-
ative) to antiferromagnetic (positive) splits a single LDOS

X(k) = [ (60)
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FIG. 10. (a), (b) The LDOS; (b), (c) real part of local Dyson
self-energy; (e), (f) the imaginary part of local Dyson self-energy
for parameter set n = 0.85, T = 37K, t' = —0.2¢ with varying 8¢/t
(LHS) and varying J (RHS). Figures (a), (c), (e) J = 0.17¢ and (b),
(d), (f) 8¢/t = 0.05 share a legend, respectively.

peak into two, shifts the average quasiparticle states to higher
energies, and narrows the quasiparticle peaks.

3. t' variation

In Fig. 11, we examine the LDOS from a different vantage
point by looking at the ' dependence for a system at optimal
density (n = 0.85), for a compressive strain of 6¢/t = 0.15,
at various t'/t. In panel (c), we show the bare LDOS at room
temperature as a reference for the interacting system. In panels
(a) and (b), we display the interacting system at 7 = 37 K
and T = 298 K, respectively. Upon inspection it appears the
primary role that ¢’ plays is to shift the energy band along
the spectrum. As previously noted, warming the interacting
system to room temperature smooths and broadens the char-
acteristic LDOS peaks for all strain types and at all ¢ while
leaving their position in the spectrum fixed. Even though the
relative position of different ¢’ curves remain unchanged as
the interactions are turned on, we note that strong correla-
tions renormalize the bare band into a smaller energy region.
Comparing panels (a) and (b) fixed at t' = —0.4, —0.2, we
observe that LDOS peak height is more strongly suppressed at
a lower #’. This is consistent with previous studies [7] on the
unstrained interacting system, and it indicates that a smaller ¢/
has a lower Fermi-liquid temperature scale and hence it is less
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FIG. 11. The local density of states versus frequency at optimal
filling (n = 0.85), for a compressive strain (§z /t = 0.15) at various ¢’.
(a), (b) The interacting system (z-¢-J model) at T =37 K and T =
298 K, respectively. (c) The noninteracting (band-structure) system
at T = 298 K. All figures share the same legend.

robust to heating. For further analysis of the strain dependence
see the SM [55].

4. Susceptibilities

Next, we examine the normalized response function of
LDOS of the noninteracting and interacting system, respec-
tively, defined as

' - oc (S

N, = (M)/(l) 61)
Pgloc t

Ng = ('O/Qloc - pgloe)/(ﬁ). (62)
PGloc t

In Fig. 12, we plot the LDOS susceptibility for a noninter-
acting and interacting system at room temperature at optimal
density for various #'. We observe that the response function
is linear at all frequencies except near the LDOS peak and, al-
though not shown in the figure, at the band edges. Regardless
of the presence of interaction, we note that the susceptibility
is enhanced by tensile strain near the LDOS peak and reduced
by a compressive strain.

5. Susceptibility versus strain

Changing up the perspective, we explore the LDOS sus-
ceptibility now as a function of strain, at four representative
frequencies as seen in Fig. 13. We can approximate the
variance in the linear response function in Egs. (61) and (62)
as

N(T) = co(T) + 1 (T)(St/t) + (TSt /1) + ..., (63)

where ¢ is the linear term, c; is the second order term, and
c; is the third order term of the response. We see that for the
bare LDOS, Fig. 13(a), at @ = 0.45 the system is nearly linear
with ¢y &~ —0.5 and ¢; =~ 3. The other presented frequencies
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FIG. 12. The LDOS susceptibility versus frequency at optimal
filling n = 0.85, at room temperature (7 = 297 K), for various ¢’
and 8t/t. The noninteracting (band-structure) system (LHS) and
interacting system (¢-t'-J model) (RHS) from Eq. (61) and Eq. (62),
respectively. (a), (c), (e), (g) t'/t = —0.4, —0.2, 0.0, 0.2 N,, respec-
tively; (b), (d), (f), (h) t'/t = —0.4, —0.2, 0.0, 0.2 Ng, respectively;
All the figures share a legend.
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FIG. 13. The LDOS susceptibility versus strain at optimal filling
n = 0.85, at room temperature (T = 298 K), for#’ = —0.2¢, at a few
representative frequencies  in units of 7. (a) The noninteracting
system (band-structure) in Eq. (61). (b) The interacting system (¢-¢'-J
model) in Eq. (62).
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appear to be nonlinear with significant second and third order
terms. The LDOS susceptibility for the interacting system
[panel (b)] appears to be nearly linear everywhere except at
the location of the LDOS peak (@ = 0) which has a strong
quadratic response, suggesting that at temperatures relevant to
experiments nonlinear behavior is only observable at energies
near the Fermi surface. Note that the second order scheme
used here is good for low energies but somewhat less reliable
at high energies, |®| 2 kpTgL.

IV. SUMMARY AND COMMENTS

A. Summary

In this work, we have applied the ECFL theory to study the
effect of small strain on the resistivity, kinetic energy, LDOS,
and their associated susceptibilities in the 7-#'-J model Eq. (2)
with various ¢’ at n = 0.85. These results are expected to be
relevant to cuprate superconductors, especially single layered
materials, where the calculated unstrained resistivities are in
good accord with the experimental data [5].

Based on comparisons carried out earlier, the second order
scheme of ECFL used here is expected to be reasonable in
the density range 0.85 = n = 0.80 spanning an experimen-
tally accessible range in cuprates. With improvements in the
theoretical scheme, we expect that while resistivities them-
selves might not change too much, the related susceptibilities
[involving division by the small resistivity as in Eq. (1)] could
be more sensitive.

Our results exhibit in considerable detail the theoretically
expected strain dependence of resistivity and LDOS as well as
optical weight. The derived susceptibilities depend sensitively
on the magnitude and sign of #'. Our results in Figs. 2 and
3 illustrate the quantitative change of the strain dependence
due to varying the magnitude and sign of #’. We should stress
that the absolute scale of ¢ is important in determining the 7
dependence. For illustration we have used + = 0.45 eV in the
present paper while the more fine-tuned estimates in Ref. [5]
suggest a material dependent and somewhat larger value of
t ~ 1 eV in most cases.

Our results can be converted to actual strains as in Eq. (42),
with o in the range o € {2, 5}. If data is available one may
ideally eliminate o by measuring the strain dependence of the
LDOS or the optical conductivity sum rule.

B. Comments on experiments

The results found in Fig. 2 yield a magnitude of the
nematic susceptibility xpem ~ (1 — 5)a for cuprates. Using
the expected range of o € {2, 5}, we find Ypem ~ 2-25). On
the other hand, iron based pnictide superconductors appear
to have a considerably larger value for ypem, €.g., in Fig. 3
of [1] the range |xnem| S 650 is reported, thus an order of
magnitude greater than our theoretical estimate for cuprates.
While fluctuations may drive the magnitude of nematicity
further upwards, especially at some densities and tempera-
tures, it appears that the baseline magnitude of this object
is itself much larger than expected in cuprates. For example
in the four featureless curves of Fig. 3 of [1] we see that
[ Xnem| ~ 200.

This magnitude indicates that the downfolding of the many
bands of the pnictides to an effective single (or few) band
model must yield hopping parameters that are much more
sensitive to strain than in cuprates. The different type of
quantum overlap of relevant atomic orbitals from those in
cuprates are presumably the origin of this difference. We also
note that the sharp peaks in | xyem| On varying 7', as reported
in Refs. [1,3], are missing in our results. Instead we have a
monotonic increase of | xnem| and related susceptibilities as we
cool the system, as seen in Fig. 2 and Fig. 4. This increase is
largely due to the decrease of the (unstrained) resistivity with
lowering T in the Fermi liquid regime.

The sign of xpem presents a more subtle problem. In
iron pnictides it is known to be sensitive to effective mass
anisotropy. In fact it changes sign with doping in certain
hole-doped iron pnictides [57]. Our single band model lacks
such an anisotropy and is therefore not appropriate to describe
the elastoresistivity of iron pnictide materials.

Recently, we came across the measurement of the elastore-
sistivity nematic susceptibility in [S8] on the two layer cuprate
Bi2212. In this experiment, the magnitude of the nematic
susceptibility is found to be in the range |xuem| € {2.5, 5}.
This range is consistent with our theoretical estimate. It is
also smaller than the nematic susceptibility in iron pnictides
by about two orders of magnitude.

The sign of the nematic susceptibility xnem [Eq. (1)] re-
ported in [58] implies that the resistivity increases in the
direction of compression. This result has the opposite sign
to our theoretical result as seen in Fig. 2. There we see that
the theoretical resistivity decreases in the direction of com-
pression, although it does increase in the transverse direction.
It is possible that the two layer nature of Bi2212 might be
responsible for this opposite sign. Also as noted in Fig. 5, the
behavior of the nematic susceptibility xpem = limc__.0(c Xxx)
at sufficiently low T has the potential for a change of sign,
depending on how we choose a sufficiently small |e,,| or
|6¢/t| for the purpose of taking the limit lim. 0. On the
experimental side, a more detailed 7' variation and examining
the various susceptibilities listed in Fig. 5 should yield a more
complete picture.

The results found here should also motivate further studies
of the strain variation of the three-dimensional electronic
bands of cuprates, towards computing strain variation of the
resulting two-dimensional bands found from projecting to a
t-t’-J model. These would test the simple assumptions made
here between strain and hopping parameters of a reduced
two-dimensional model as presented in Egs. (22), (27), (28),
and (29). It is also possible that under certain situations, the
sign of « can even be changed, as a naive interpretation of the
experiments of Ref. [58] suggests.

We believe that it is important to study a more extensive
set of samples including single layer cuprates at various
compositions in the future. It would also be useful to study
the variations of resistivity along different axes, parallel and
transverse to the strain axis and extend the studies to various
T’s. This type of measurements would enable the construction
of the symmetry adapted susceptibilities as in Fig. 5, which
provide a greater insight into the results. It would also be of
considerable interest to measure the variations of the LDOS
and optical weight with strain, as emphasized above.
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