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Finite-temperature density functional theory has become a standard tool for first-principles calculations of the
properties of warm dense matter (WDM) relevant to high-energy-density physics (HEDP) applications. Here
we present theoretical grounds of thermal hybrid exchange-correlation (XC) functionals within the generalized
Mermin-Kohn-Sham scheme for an improved description of WDM. Building on the previously developed
KSDT (Karasiev-Sjostrom-Dufty-Trickey) [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)] local density
approximation (LDA) and the KDT16 (Karasiev-Dufty-Trickey 2016) [Karasiev et al., Phys. Rev. Lett. 120,
076401 (2018)] generalized-gradient approximation (GGA) XC free-energy density functionals, we construct a
novel thermal hybrid XC functional, referred to here as KDT0. The KDT0 model at low temperature reduces to
the popular ground-state PBE0 hybrid due to properties of the used KDT16 density functional approximation.
Application to static calculations of electronic band gap and band structure at a wide range of temperatures for
various systems of interest to HEDP show that KDT0 provides a significant improvement to the lower LDA and
GGA rung XC functionals and to the ground-state PBE0 hybrid.
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I. INTRODUCTION

Understanding warm dense matter (WDM) characterized
by elevated temperature (∼103–107 K) and a wide range
of densities (∼10−1–105 g/cm3) is essential to high-energy-
density physics (HEDP). It poses challenges to both experi-
mental and theoretical efforts in fields such as inertial confine-
ment fusion, plasma physics, and planetary science [1–10].
From the theoretical point of view, the WDM regime is too hot
for standard condensed matter approaches; however, quantum
many-body effects are strong and classical plasma physics is
not applicable. An established, standard approach for accurate
treatment of WDM is ab initio molecular dynamics (AIMD),
when classical treatment for ions is combined with finite-
temperature density functional theory (FT-DFT) for electronic
degrees of freedom [11–18].

The biggest source of error in FT-DFT-based molecu-
lar dynamics is the use of an approximate XC density
functional, the choice of which is usually guided by the
desired level of accuracy and computational cost require-
ments [19]. Regardless of choice, to the best of the au-
thors’ knowledge, with one exception [20,21], all available
XC functionals in commonly used DFT software packages
are ground-state functionals which do not explicitly depend
on T , but are evaluated at the T -dependent self-consistent
density, i.e., Fxc[n(T ), T ] ≈ Exc[n(T )]—an approach known
as the ground-state approximation (GSA) [22,23]. The excep-
tion is the PROFESS@QUANTUM-ESPRESSO package, which
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implements KSDT thermal LDA XC. In order to clearly
distinguish between the two DFT approaches, those utilizing
Fxc[n(T ), T ] will be referred to as “finite-temperature approx-
imation” (FTA) or “thermal” and those utilizing Exc[n(T )]
as “GSA.” Also, for compactness, the phrase “free-energy-
density XC functionals with explicit T dependence” will be
substituted with “thermal XC functionals.”

Previously developed thermal functionals belong to the
LDA and GGA level of refinement. At the LDA level
Karasiev et al. developed the nonempirical, thermal func-
tional KSDT [20] (and its corrected version—corrKSDT; see
Supplemental Material in Ref. [24]), which is based on
parametrized path-integral Monte Carlo (PIMC) data for the
homogeneous electron gas (HEG) at finite T [25,26] and,
in the zero-T limit, reduces to the ground-state Perdew-
Zunger (PZ) functional [27]. Groth et al. [28] used the KSDT
approach and protocol to reparametrize the HEG XC free-
energy resulting in representation denoted as “GDSMFB”.
The equivalence of these two representations, GDSMFB and
corrKSDT, was recently demonstrated [29].

Subsequently, driven by the need to incorporate density
gradient effects and thereby account for the nonhomogene-
ity of the system [30–32], Karasiev et al. developed the
GGA-level thermal functional KDT16 [24] by analyzing the
gradient expansion of weakly inhomogeneous electron gas
at finite-T and defining appropriate T -dependent reduced
variables for X and C. KDT16 is, by construction, nonem-
pirical and reduces to the popular Perdew-Burke-Ernzerhof
(PBE) functional [33] in the zero-T limit. An example of the
improved accuracy provided by the KDT16 functional was
recently reported in Ref. [34], where KDT16-based AIMD
studies of shocked deuterium showed improved agreement
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with experimental measurements of Hugoniot, reflectivity,
and dc conductivity at elevated T .

While it is clear that corrKSDT and KDT16 provide an
apparent improvement on their ground-state counterparts,
PZ and PBE, they suffer from an inherent fundamental
drawback—underestimating the electronic band gap, Egap

[35]. This is not a drawback associated with the PZ and PBE
functionals alone, but with KS DFT multiplicative potential in
general and improving the description of the electronic gap is
the main reason for the development of density functionals be-
yond the GGA, such as meta-GGAs and hybrids, an approach
that includes a nonlocal potential operator and is known
as the generalized Kohn-Sham (GKS) theory [36]. Hybrid
XC functionals, such as PBE0 [37,38] and HSE [39], are
constructed by mixing DFT XC functionals with Hartree-Fock
(HF) exact exchange (EXX) and are known to be superior
to GGAs in predicting quantities such as Egap, atomization
energy, bond length, and vibrational frequency, with HSE gen-
erally showing better agreement with experiment [36,40,41].
However, PBE0 and HSE are both ground state and a ther-
mal XC functional at the hybrid level of DFT is yet to be
developed. Recently, an advanced thermal XC functional with
exact treatment of the X interaction was presented, although
not within the Kohn-Sham DFT, but within the reduced-
density-matrix functional theory formalism [42,43]. In this
article we remedy that deficiency by providing theoretical
grounds for thermal hybrid functionals and presenting the
KDT0 thermal hybrid model which is based on a mixture of
finite-T HF X and thermal KDT16 GGA XC. This thermal
hybrid at low-T reduces to the popular ground-state PBE0. As
we show here, hybrid functionals with admixture of thermal
HF X predict the qualitatively correct behavior for Egap as
a function of electronic temperature T (calculated at fixed
ionic configuration)—Egap(T ) decreases as T rises. This is
in contrast to the LDA/GGA rung functionals, which tend
to predict a monotonically increasing Egap(T ). This results
from the fact that the HF approximation can be generalized
to finite T ; therefore, HF EXX naturally includes the exact
T dependence of the X term [12,44]. Recent work [31]
found significant qualitative differences in X free energy and
pressure between the ground-state and thermal DFT and the
finite-T HF approaches.

II. THEORETICAL GROUNDS OF THERMAL
HYBRID XC FUNCTIONALS

The main goal of our work here is to develop a novel
thermal hybrid XC functional, which provides an improved
accuracy in calculations of Egap(T ) for a wide range of T .
XC free energy [see Eq. (2) in Ref. [20] for definition]
could be partitioned into exchange (X) and correlation (C).
In the zero-T case the single-determinant X energy could
be defined within the HF and EXX Kohn-Sham methods.
The EXX energy formalism developed within the Kohn-Sham
DFT [45,46] formally uses the HF expression for X, but the
X potential is a local multiplicative operator, as opposed to
the nonlocal HF X operator. The two methods, HF and EXX,
provide very close values for X energy and energy of occu-
pied orbitals, whereas virtual (unoccupied) orbital energies
obtained from EXX are significantly lower as compared to

the HF values. The thermal generalization of the zero-T HF
single-Slater determinant X may be expressed in terms of a
one-electron reduced density matrix (1-RDM) (see Ref. [47])
and leads to the following definition of thermal HF X:

FHF
x [n, T ] := −

∫
dx1 dx2

{
1

2
g12�̄

(1)(x1|x′
2; T )

× �̄(1)(x2|x′
1; T )

}
x′

1=x1,x′
2=x2

, (1)

where x := r, s is a composite space-spin variable, g12 =
1/|r1 − r2|, and the 1-RDM is defined in terms of the MKS
orbitals and Fermi-Dirac occupation numbers, fi(T ) = [1 +
exp( εi−μ

kBT )]−1 (μ being the chemical potential and εi are MKS
eigenvalues), as

�̄(1)(x1|x′
1; T ) :=

∞∑
j=1

f j (T )φ j (x1)φ∗
j (x′

1). (2)

The analog of thermal HF is called finite-temperature (ft)
EXX DFT [48]. As in the zero-T case, ftEXX defines the
exchange free-energy formally identically with HF, but fol-
lows a true MKS procedure with a local (multiplicative) ex-
change potential followed from the system response function.
Hereinafter we will discuss the thermal HF exchange within
the generalized Mermin-Kohn-Sham (MKS) formalism, when
the corresponding X potential (or its fraction) is represented
by a nonlocal exchange operator of the HF form with use
of generalized MKS one-electron states for evaluation of the
exchange energy and exchange operator.

The thermal adiabatic connection formula derived in
Ref. [49], Fxc[n, T ] = ∫ 1

0 dλUxc,λ[n, T ], provides theoretical
grounds to develop thermal hybrid functionals. The inte-
grand in the above in-line equation is the difference be-
tween the electron–electron interaction potential energy of
the interacting system (with the electron-electron interac-
tion operator scaled by a coupling constant λ, Vee,λ[n, T ])
and the Hartree energy: Uxc,λ[n, T ] = Vee,λ[n, T ] − FH[n].
A simple two-point approximation to the integral leads to
Fxc[n, T ] ≈ (1/2)(Uxc,λ=1[n, T ] + Uxc,λ=0[n, T ]), where the
energy difference Uxc,λ=0 for the noninteracting MKS system
is equal to the HF X free energy, FHF

x [n, T ] = Uxc,λ=0[n, T ] ≡
Vee,λ=0[n, T ] − FH[n], and the first term, (1/2)Uxc,λ=1[n, T ],
which, in a way similar to the ground-state case [50], can be
approximated by a suitable XC free-energy density functional
approximation (DFA), (1/2)Uxc,λ=1 ≈ (1/2)FDFA

x + FDFA
c ,

such that Fxc[n, T ] ≈ (1/2)FHF
x + (1/2)FDFA

x + FDFA
c . Gen-

eralization of the above two-point approximation leads to a
simple one-parameter hybrid XC free-energy functional

Fhyb
xc [n, T ] = FDFA

xc [n, T ] + a(FHF
x [n, T ] − FDFA

x [n, T ]) .

(3)
The value of a = 1/4, rationalized in Ref. [37] for the ground-
state case, will provide a consistent zero-T limit of Eq. (3).
Dependence of a on T is a matter of future investigation.
Employment of the most advanced (up to date) KDT16 GGA
XC in Eq. (3), namely FDFA

xc = FKDT16
xc and FDFA

x = FKDT16
x ,

leads to the KDT0 thermal hybrid functional discussed in
this paper. In the zero-T limit the KDT0 model reduces
to the PBE0 ground-state hybrid due to the KDT16 free-
energy reducing to the PBE ground-state XC, which has been
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demonstrated in Ref. [24] and is the case for all Egap(T )
calculations performed here. Proper temperature scaling in
KDT0 is ensured through the correctly scaled KDT16 [24,49].

III. COMPUTATIONAL DETAILS

In order to compare performance between KDT0 and
PBE0 we perform static calculations of band gap as a function
of electronic temperature Egap(T ) when positions of ions
are fixed at near-ambient conditions. This corresponds to a
two-temperature model, cold ions Tion ≈ 0 K, and T is the
temperature of electrons Te = T . This model is relevant to
HED experiments such as ultrafast femtosecond laser heating
of materials [51] or isochoric heating via ultrafast proton
beams [52] in which hot electrons are produced while the
lattice is still cold. Full Egap dependence on T is determined
by allowing the ions to move according to forces calculated
at every electronic step (AIMD simulation); however, such
calculations with hybrid-level functionals are computationally
expensive and unnecessary for the purpose of introducing and
testing the hybrid free-energy density functional presented
here. We also perform band structure calculations at low-
and high-T to investigate the effect of KDT0 on valence and
conduction band orbitals within the Brillouin zone (BZ). The
systems of choice are Si, C, CH4, polystyrene (CH), and H2O.
The choice of Si and C was motivated by the need to compare
the KDT0 functional to the highly accurate finite-T GW
[53] calculations. We also perform calculations for CH, CH4,
and H2O, which are of relevance to HEDP experiments and
planetary science where thermal functionals could provide
an improvement to, e.g., equation-of-state calculations. In
addition, calculations on CH4 and H2O allow us to study the
effect of KDT0 on systems with a relatively large low-T band
gap.

All calculations were performed with the Vienna
ab initio simulation package (VASP) [54,55], which imple-
ments the projector-augmented wave (PAW) method [56,57].
The KDT16 functional was implemented in a locally modified
version of the software. KDT0, which comes at the same com-
putational cost as PBE0, was then constructed from KDT16
and thermal HF X, which is readily available in VASP. For all
systems, except CH, atomic coordinates and cell parameters
were extracted from Ref. [58] and the reported experimental
lattice constants were used.

Here, it is important to note that PBE0, as implemented
in VASP, is constructed from thermal HF X FHF

x [n, T ] [see
Eqs. (1) and (2)] and ground-state PBE XC. This differs
from the true ground-state PBE0 as introduced in Ref. [37],
where HF X is by definition ground state, i.e., EHF

x [n]. There-
fore, what is considered ground-state PBE0 in the work pre-
sented here refers to PBE0 constructed from (T -independent)
ground-state PBE XC and thermal HF X. Although this is not
the true ground-state PBE0, it serves as a convenient measure
of the XC thermal effects provided by KDT0 through the
finite-T GGA KDT16.

For all hybrid functional calculations we use a relatively
dense k mesh for which we employ k point parallelism [59],
which is implemented in VASP and allows for simultaneous
parallelism over k points and bands and is necessary for
high-T calculations, where the number of contributing bands

grows significantly due to Fermi-Dirac (FD) thermal occu-
pations. All bands with occupation greater than 10−7 were
included. Egap at all T is defined as the energy difference
between what is the lowest unoccupied molecular orbital
(LUMO) and the highest occupied molecular orbital (HOMO)
at the zero-T limit. For the T ranges considered here this
definition is still valid even though LUMO becomes partially
occupied and HOMO partially unoccupied. An equivalent
unambiguous definition we introduce here is the following:
Egap = mink{εN+1,k} − maxk{εN,k}, where N is the number
of electrons in the system and εi,k are band energies and
we assume 0 � fi,k � 1 for occupations. With BZ sampling
this definition of Egap corresponds to the energy difference
between the conduction N + 1 band minimum and the valence
N band maximum.

For diamond, Si, and CH4, the BZ was sampled using
a 15 × 15 × 15 Monkhorst-Pack k mesh. H2O calculations
were performed with a 7 × 7 × 7 and CH with a 3 × 3 × 8 k
mesh. CH was simulated with a box containing two styrene
(C8H8) monomers that were oriented with respect to each
other so that the (periodic) syndiotactic CH polymer chain
is built according to Refs. [60,61]. Our atomistic model of
CH predicts Egap = 2.92 eV with PBE and Egap = 4.53 eV
with PBE0, which are within the expected range of values
predicted by those functionals considering the reported ex-
perimental value of 4.14 eV [62] and a high-precision GW
estimation of 4.4 eV [63]. For band-structure calculations of
Si (cubic diamond [64]) and CH4 (fcc [65]) at each of the three
selected temperatures, a 20 × 20 × 20 �-centered k mesh was
used, which produced 11 points along the symmetry paths
L-� and �-X .

IV. RESULTS AND DISCUSSION

In order to validate any improved performance provided
by hybrid-level functionals, we shall refer to high-precision
first-principles many-body perturbation theory approaches
that have been reported to achieve excellent agreement with
experiment. Recent theoretical studies of Egap in various semi-
conductors at low-T based on DFT and GW showed that the
quasiparticle self-consistent GW (QSGW ) method achieves
much better agreement with experiment than LDA or GGA
ground-state functionals, which are known to significantly un-
derestimate the Egap(T ) [66]. Consequently, Faleev et al. ex-
tended their theory to include finite-T effects (FT QPSCGW )
and published results for Egap(T ) for several widely used
semiconductors for T up to 47 kK (GaAs, Si, Ge, InSb) and
140 kK (diamond) [53].

Experimental measurements for Egap(T ) while holding
contributions to Egap(T ) due to thermal motion of ions low
are difficult to obtain, although pump-probe measurements
[67,68] show a decrease in the gap in the subpicosecond
regime during which electrons are much hotter than the lattice,
in agreement with FT QPSCGW , referred to as FT GW
hereafter. One of the main conclusions reached in Ref. [53]
is that at high-T the use of LDA within the GSA (e.g., in
large-scale AIMD simulations) can be justified since there is
little difference in band structure between it and FT GW —
a conclusion based on results that are largely due to error
cancellation as the ground-state LDA underestimates Egap at
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FIG. 1. Band gaps of (a) Si and (b) diamond (C) as a function of
electronic temperature calculated with ground-state PBE and PBE0
and thermal KDT16 and KDT0 functionals. The green curve (FT
GW) was extracted from Ref. [53].

low T and then, contrary to FT GW , predicts a universally
increasing Egap(T ) with rising T . Such error cancellations,
however, have a limited scope of reliability since they only
occur in T ranges that are strongly system dependent and
often very limited.

Figure 1 shows Egap(T ) results for Si and diamond, which
are two of the systems addressed in Ref. [53]. Let us first
compare the GSA functionals PBE and PBE0 in the case
of Si. At low T they both give an approximately equally
wrong value for the Egap, with PBE underestimating it and
PBE0 overestimating it. At higher T PBE0 predicts the same
qualitative behavior as FT GW —monotonically decreasing
Egap(T )—while PBE predicts a monotonically increasing
Egap(T ), which is in direct contrast with FT GW predictions.
The correct qualitative trend for Egap(T ) predicted by PBE0
is a direct result of including T effects in XC through the
T -dependent HF X and serves as an indication of the impor-
tance of thermal effects in XC. The same improvement in the
qualitative behavior of Egap(T ) provided by PBE0 is seen in
diamond [Fig. 1(b)].

Next, we turn our attention to results obtained with the
thermal functionals KDT16 and KDT0. Most importantly, in
both systems thermal XC effects lower the Egap(T ) curve
toward the more-accurate FT GW results, thereby improving
qualitative behavior for all temperatures considered. How-
ever, we stress two important observations: (i) the thermal
corrections are strongly system dependent, with the relative
difference in the gaps predicted by PBE0 and KDT0 reaching
a maximum of 12.7 % in Si and only 1.5 % in diamond at
T = 45 kK (see Fig. 3) and (ii) �Egap(T ) for hybrid-level
functionals is larger than that for GGAs, which is a result of
the different treatment of thermal effects in the X interaction
between the hybrid and GGA levels of approximation. Note
that the corrections provided by KDT0 at higher T correspond
to the magnitude of the XC thermal effects and the fact
that Egap(T ) is still significantly overestimated is a drawback
inherited from PBE0.

Motivated by these observations, we apply KDT0 and
KDT16 to other systems of drastically different properties,
such as density ρ and Egap at near-ambient conditions. Results
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FIG. 2. Band gaps as a function of electronic temperature calcu-
lated with thermal (KDT0 and KDT16) and ground-state (PBE0 and
PBE) functionals.

for Egap(T ) in CH, CH4, and H2O for T up to 30 kK are shown
in Fig. 2.

In CH, ρ = 1.06 g/cm3, relative differences in Egap(T )
predicted by PBE0 and KDT0 (see Fig. 3) are small (<2.5%)
and comparable to those in diamond. For CH4, ρ = 0.43
g/cm3, and H2O, ρ = 0.96 g/cm3, �Egap(T ) reaches values
comparable to those in Si at 45 kK, although the peaks occur
at much lower T . This suggests that the temperature range in
which XC thermal corrections to Egap are most prominent is
also strongly system dependent. This observation is consistent
with the behavior of relative thermal XC corrections for the
HEG as a function of T and density, when thermal XC correc-
tions become important in the range of reduced temperature
between 0.3 and 1 (see Fig. 2 and corresponding discussion
in Ref. [30]). At high T the trend for Egap(T ) is reversed,
(see, e.g., H2O at T > 20 kK) and according to both PBE0
and KDT0 the gap starts increasing.
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FIG. 3. Relative difference between Egap(T ) predicted by GSA
and thermal XC: [(EGSA-XC

gap − E thermal-XC
gap )/(EGSA-XC

gap )] × 100, where
GSA-XC refers to PBE/PBE0 in case of (GGA)/(Hyb.) and thermal-
XC refers to KDT16/KDT0 in case (GGA)/(Hyb.). Dotted lines
correspond to GGA-level and solid lines correspond to hybrid-level
thermal corrections. Colors correspond to different systems, the
absolute values of the gaps for which are shown in Figs. 1 and 2.
For example, the solid purple line represents the relative difference
in Egap(T ) predicted by hybrid-level functionals PBE0 and KDT0,
i.e., �E hybrid

gap (T ) = {[EPBE0
gap (T ) − EKDT0

gap (T )]/[EPBE0
gap (T )]} × 100.
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FIG. 4. Band structure of Si (top row, 15, 30, and 45 kK) and
CH4 (bottom row, 1, 10, and 20 kK). The valence band maximum in
the lowest-T case (15 kK in the case of Si and 1 kK in the case of
CH4) has been shifted to E = 0 eV (black, dashed line) and the same
shift has been applied to the band diagrams in the corresponding
higher-T calculations to help visualize any lowering of the valence
band states.

As seen in Fig. 3 for CH4 and H2O, the relative difference
in Egap(T ) between KDT0 and PBE0 decreases at high T .
For Si at 45 kK �Egap(T ) starts to level off and although
calculations at higher T have not been performed, based on
the decrease in �Egap(T ) above 30 kK due to GGAs, it is
expected that it too will decrease. This is because at the high-T
limit, which is correctly satisfied by KDT0, XC effects, and
therefore XC thermal corrections, become negligible [29,30].

Results from band structure calculations at selected tem-
peratures with PBE0 and KDT0 for Si [Figs. 4(a)–4(c)] and
CH4 [Figs. 4(d)–4(f)] show that the Egap corrections due to
KDT0 come primarily from correcting the overestimation of
the conduction band state energies. In Si at T = 45 kK, the
lowest three conduction bands, with both KDT0 and PBE0,
are nearly degenerate at � point and KDT0 predicts a 0.25 eV
lowering from their PBE0 values—a 7.1% relative correction.
The eighth highest conduction band appears at 0.38 eV lower
energy with KDT0 than with PBE0—a 3.0% relative correc-
tion. For CH4 at 20 kK [Fig. 4(f)] a similar trend, but with
larger relative correction is observed—the lowest conduction
band is lowered by KDT0 by 14.6%, while the eighth highest
is lowered by 7.6%.

V. CONCLUSIONS

Theoretical grounds of thermal hybrid XC functionals have
been presented. Use of the KDT16 GGA XC free-energy
density functional as density functional approximation for the
exchange and correlation free-energy terms in the proposed
model leads to the KDT0 thermal hybrid. Results for Egap(T )
in various systems of interest to HEDP show that KDT0
could provide a significant improvement to calculations of
electronic properties at temperatures within the WDM regime.
There are significant thermal XC effects on the entire band
structure of studied systems, meaning that the accuracy of op-
tic properties calculated via the Kubo-Greenwood formalism
[69,70] depends on accounting for those effects via thermal
hybrid XC functionals. Also, we show that the importance of
XC thermal effects depends strongly on the type of system and
T range. In addition, we show that taking XC thermal effects
into account at the hybrid level of approximation can lead
to larger corrections compared to those at the GGA level of
approximation and although KDT0 takes those effects into ac-
count, it still suffers from the fundamental drawback inherent
through the PBE0 functional—significantly overestimating
the gap. Therefore, KDT0 also serves as a justification for the
need for further development of advanced thermal free-energy
density functionals.
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