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Higher-order topological insulators (HOTIs) or multipole insulators, hosting peculiar corner states, were
discovered [Benalcazar et al., Science 357, 61 (2017) and Schindler et al., Sci. Adv. 4, eaat0346 (2018)]. It was
independently discovered [Hasimoto et al., Phys. Rev. B 95, 165443 (2017)] that continuum five-dimensional
(5D) Weyl semimetals generically host the corner states, and so do four-dimensional (4D) class A and three-
dimensional (3D) class AIII topological insulators. In this paper we further confirm that the 5D Weyl semimetals,
upon dimensional reduction, lead to universal higher-order topology. First we explain a discrete symmetry
protecting the 5D Weyl semimetals, and describe dimensional reductions of the 5D Weyl semimetals to the
popular HOTIs in the continuum limit. We calculate the topological charge carried by edge states of the 5D Weyl
semimetal, for the most generic boundary condition. The topological charge is a Dirac monopole, which can also
be seen from that edge Hamiltonians, are always of the form of a 3D Weyl semimetal. This edge topology leads
to the edge-of-edge states, or the corner states, generically, suggesting that the 5D Weyl semimetal is thought of
as a physical structural origin of corner states in HOTIs. In addition, we explicitly calculate a nested Wilson loop
of the 5D Weyl semimetal and find that the topological structure is identical to that of a Wilson loop of a Dirac
monopole.
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I. INTRODUCTION

Among various topological phases of matter, recently
higher-order topology in condensed matter physics attracted
attention, due to its peculiarity in dimensional aspects. Gap-
less states can show up not on the surface of materials but
on corners or hinges, thus localized states as a result of the
bulk topology has a spatial support whose dimensions are
lower by two or more, compared to the bulk dimensions.
The higher-order topology goes beyond the ordinary bulk-
edge correspondence [1–3], thus any universal theoretical
understanding of the higher-order topology is in demand.

Higher order topological insulators (HOTI) were intro-
duced in seminal papers [4,5] (see for earlier related propos-
als [6,7], and a mathematical proposal [8]). The notion and
mechanism of corner states were independently introduced
in Ref. [9] (see also [10]), where a 5D Weyl semimetal was
shown to host the corner states quite generically.

The Weyl semimetals [11] have particularly simple topo-
logical structures, and their higher dimensional generalization
and its edge states were studied [12]. It was discovered
in Ref. [13] that an edge state of the continuum 5D Weyl
semimetal has a nontrivial topological charge, through an
analogy of Nahm construction of monopoles [14] and a super-
string T-duality. This observation lead to the notion of corner
states in Ref. [9], since the topological charge of the edge state
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means the existence of a corner state. The corner state was
called in Ref. [9] as an “edge-of-edge state.”

In this paper we bridge the description of the corner states
obtained in the 5D Weyl semimetals [9] and that of the popular
HOTIs [4,5]. We first show that the popular HOTIs in the con-
tinuum are obtained by dimensional reduction of the 5D Weyl
semimetal, and identify the discrete symmetry of the 5D Weyl
semimetals. We explicitly describe the edge Hamiltonian and
the edge topological charge of the 5D Weyl semimetal with a
completely generic boundary condition, to show that the edge
hosts a nontrivial topology of the form of a Dirac monopole.
As for the generic boundary condition we follow the strategy
developed in Ref. [15] for continuum Weyl semimetals. As
HOTIs are often characterized by nested Wilson loops [4]
and entanglement polarization [16], we explicitly calculate the
nested Wilson loop of the 5D Weyl semimetals, to confirm that
it is governed by a topology of a Dirac monopole. Therefore,
in total, the higher order topology of the 5D Weyl semimetals
is due to the common Dirac monopole structure in all of the
following aspects: (1) edge Hamiltonian, (2) topology of the
edge state, and (3) nested Wilson loop Hamiltonian.

This topological structure governed by the 5D Weyl
semimetals can be identified in various recent studies of the
higher-order topology. For example, topological quadrupole
semimetals [17] host a topological semimetal structure on
their surfaces, and the 5D Weyl semimetal shares [9] the same
surface semimetal structure [18]. From these observations,
we claim that, following [9], the 5D Weyl semimetal is a
universal origin of the higher-order topology. Namely, for a
class of microscopic Hamiltonians whose continuum limit is
that of the continuum 5D Weyl semimetal (or a dimensional
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FIG. 1. The schematic picture of the corner state and the dimensional reduction from the 5D Weyl semimetal to the 3D chiral topological
insulator (class AIII), taken from Fig. 1. of [9].

reduction of it), we claim that universally an edge-of-edge
state appears.

The organization of this paper is as follows. In Sec. II we
briefly review the corner states in the continuum 5D Weyl
semimetals, with the most generic boundary conditions, ob-
tained in Ref. [9]. In Sec. III we provide a relation between the
popular HOTIs in the continuum and the 5D Weyl semimetals.
In Sec. IV the effective Hamiltonian of the edge state is
shown to be identical to that of a 3D Weyl. In Sec. V the
topological charge carried by the most generic edge state
of the 5D Weyl is shown to be that of a Dirac monopole.
Then in Sec. VI we explicitly calculate the nested Wilson
loop of the 5D Weyl semimetal and show that it is dictated
by a monopole topological charge. The last section is for
a summary and discussions. Appendix A is a proof of the
most generic boundary condition of the 5D Weyl semimetal.
Appendix B describes cases where corner states are absent in
spite of the nontrivial topology.

II. REVIEW OF CORNER STATES
IN 5D WEYL SEMIMETAL

In this section we give a review of generic corner (hinge)
states in 5D Weyl semimetals, 4D class A and 3D class AIII
topological insulators, obtained in Ref. [9]. The discovery of
corner states [9] was independent of the discovery of multi-
pole insulators [4]. The corner states are called edge-of-edge
states in Ref. [9], but in this paper we call them corner states
[19]. See Fig. 1 (taken from [9]) for the schematic view of the
edge-of-edge states.

The Hamiltonian of the 5D Weyl semimetal [12] in the
continuum limit is given by

H =
5∑

I=1

pI�I , (1)

where (p1, . . . , p5) is the momentum in the 5D space, and
�I is the 4 × 4 � matrices satisfying the Clifford algebra,
{�I , �J} = 2δIJ . It is the simplest to take the chiral represen-
tation of the � matrices,

�i ≡
(

0 −iσi

iσi 0

)
(i = 1, 2, 3),

�4 ≡
(

0 12

12 0

)
, �5 ≡

(
12 0
0 −12

)
. (2)

Here σi(i = 1, 2, 3) is the Pauli matrix. The 4D class
A topological insulator is obtained by putting p5 = m5

(constant) [20]:

H4D A =
3∑

i=1

pi�i + p4�4 + m5�5. (3)

The 3D class AIII topological insulator is a dimensional
reduction p4 = m and p5 = 0,

H3D AIII =
3∑

i=1

pi�i + m�4. (4)

The edge states of the 5D Weyl semimetals were studied in
Ref. [12].

It was argued in Ref. [9] that the most general boundary
condition at x5 = 0, allowed by the Hermiticity of the system,
is

(12,−U †
5 ) ψ |x5=0 = 0. (5)

Here U5 is a generic U (2) constant matrix. We will provide
a rigorous proof of this in Appendix A. Even under a dimen-
sional reduction to HOTI or other topological insulators, this
generic boundary condition (5) is not modified. Of course
the dimensional reduction should not be made along the
direction perpendicular to the introduced surface (which is x5

in the example above). Note that this boundary condition is
the most general one which respects the Hermiticity of the
system with the Hamiltonian (1) in the continuum limit. The
genericity means that any microscopic boundary condition at
x5 = 0 which does not break the Hermiticity should reduce
to a certain U5 if the Hamiltonian in the continuum limit is
given by (1). Reverse engineering of finding a lattice boundary
condition from a given U5 is a nontrivial problem.

For surfaces not in x5 = 0, one just makes a rotation in the
5D space together with the � matrices. For example, a surface
at x4 = 0 allows the following generic boundary condition [9]:(

1
2 (U †

4 − U4), 12 − 1
2 (U4 + U †

4 )
)
ψ

∣∣
x4=0 = 0. (6)

Here, again, U4 is a general constant U (2) matrix.
In Ref. [9] it was shown that in a 5D Weyl semimetal (1)

with two surfaces with most generic boundary conditions (5)
and (6), there exists generically a corner state localized at x4 =
x5 = 0, with an energy ε given by a solution of the equation

Aε2 − 2Bε + C = 0, (7)

where

A ≡ 1 − cos2 θ4 cos2 θ5,

B ≡ ai pi cos θ5 sin2 θ4 + bi pi cos θ4 sin2 θ5, (8)

C ≡ (ai pi )
2 sin2 θ4 + (bi pi )

2 sin2 θ5 − p2
i sin2 θ5 sin2 θ4.
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In this expression we have parametrized the boundary condi-
tion parameters U5 and U4 as

U5 ≡ eiθ5 (a012 + iaiσi ), U4 ≡ eiθ4 (b012 + ibiσi ), (9)

with a2
0 + a2

i = b2
0 + b2

i = 1.
The simplest example presented in Ref. [9] was a corner

state with a dispersion ε = −p1, with the following boundary
conditions at the intersecting surfaces:

(�4 − i�3)ψ |x4=0 = 0, (�5 − i�2)ψ |x5=0 = 0. (10)

Another simple example in a class AIII topological insulator
(4) was given in Ref. [9] as a localized state at the corner
x2 = x3 = 0 with a dispersion ε = −p1 with the following
boundary conditions:

(�2 − i�5)ψ |x2=0 = 0, (�3 − i�4)ψ |x3=0 = 0. (11)

The 5D Weyl semimetal (1) has a topological defect cen-
tered at pI = 0 from which a 1-form flux ∗(F ∧ F ) made of
the second Chern class density emanates. This can be easily
confirmed by the dimensional reduction to the 4D topological
insulator of class A (3). the bulk topology is the second Chern
class of the Berry connection [21],

1

16π2

∫
d p1d p2d p3d p4 tr[Fμν ∗ Fμν] = −1

2
sgn(m5). (12)

The dimensional reduction corresponds to taking a slice of
the originally 5D momentum space, so the reduced system
inherits partly the original topological structure.

Introducing a surface was interpreted as a T-duality in
string theory [13], and because of that, the edge state on
the surface of the 4D class A system was shown to have an
independent topological charge [13]. It leads to a prediction
of having a corner (hinge) state once another surface is
introduced to the system. As a result, various corner (hinge)
states were constructed in Ref. [9].

III. 5D WEYL AND HOTI

In this section we study the genericity of our 5D Weyl
Hamiltonian, in particular in regards to HOTIs. We specify
the discrete symmetry which brings any four-band system to
5D Weyl semimetals. If we regard some of the components
of the 5-momentum pI as a constant or zero, then this sys-
tem reduces to lower-dimensional semimetals/insulators. We
describe dimensional reduction to two popular examples of
higher-order topological insulators provided in Refs. [4,5].

First, let us point out an important discrete symmetry
which protects the Weyl Hamiltonian (1). Suppose we are
interested in four-band material, then the Hamiltonian is a
four-by-four Hermitian matrix. Any such matrix H can be
expanded as

H = p014 +
5∑

I=1

pI�I + i
∑
I>J

pIJ�I�J . (13)

Here p0, pI , and pIJ are real parameters.
In even dimensions D = 2n, the 2n-dimensional represen-

tation of Clifford algebra is known to be unique, so the repre-
sentation �I (I = 1, . . . , 2n) should be related to its transpose
(�I )T by a similarity transformation C�IC−1 = c(�I )T , with

a constant c = ±1. Our five-dimensional � matrices are ob-
tained by adding �5, which is given by a product �1�2�3�4

up to a sign, to the D = 4 case, so �5 is subject to the same
similarity transformation, and c is known to be equal to 1.

Suppose we impose the invariance of the matrix H (13)
under the similarity transformation C,

CHC−1 = (H )T . (14)

Then we find that the last term �I�J is not invariant under
this transformation, thus the symmetric Hamiltonian under C
transformation is

H = p014 +
5∑

I=1

pI�I . (15)

This is the Weyl Hamiltonian (1), as the first term 14 is a trivial
addition to determine the zero of the whole energy spectrum.
So we conclude that the similarity transformation C brings
the general four-band system to the 5D Weyl semimetal. The
resultant symmetric system has only five constant parameters,
pI (I = 1, 2, 3, 4, 5).

The physical understanding of the similarity transforma-
tion (14) is as follows. Our � matrices are Hermitian, so we
may replace (14) by

CHC−1 = H∗. (16)

This is known to be the PT symmetry (parity and time reversal
symmetry) [22] if we regard the coefficients pI , pIJ do not
change under the symmetry. In fact, if the coefficients are
purely written by momenta, since the PT symmetry leaves
momenta invariant, the coefficients are invariant. So in general
the PT symmetry is our similarity transformation C.

The importance of the PT symmetry to restrict the struc-
ture of the four-band material is well known [23], in particular
for classifying Dirac semimetals. Dirac semimetals in the
continuum limit is a particular dimensional reduction of the
5D Weyl semimetal. Very recently, it was reported [24] that
some Dirac semimetals host a higher-order topology, which
is along our claim that the 5D Weyl semimetal is a universal
origin of a class of the higher-order topology.

As a consequence of the similarity C, the resultant spectra
is doubly degenerate. This is a consequence of the Kramers
degeneracy in terms of the PT symmetry. As we will see in
later sections, the degeneracy makes the Berry connection to
be non-Abelian, and the non-Abelian structure is necessary
for the system to host higher-order topology [25].

Now, let us describe two popular examples of HOTI [4,5]
and show that these are dimensional reduction of 5D Weyl
semimetals.

The first example is the famous 2D quadrupole insulator
given by Benalcazar et al. [4]. It has a lattice Hamiltonian

H = − sin kx�3 + (−1 + mx + cos kx )�4

− sin ky�1 − (−1 + my + cos ky)�2, (17)

where (kx, ky) is the 2D momentum and mx, my are nonzero
constants. The expansion around kx, ky, mx, my ∼ 0 provides
a continuum limit,

HHOTI = (−ky)�1 + (−my)�2 + (−kx )�3 + mx�4. (18)

245138-3



KOJI HASHIMOTO AND YOSHINORI MATSUO PHYSICAL REVIEW B 101, 245138 (2020)

This system hosts a corner state [4]. The identification with
the 5D Weyl semimetal is obvious,

p1 = −ky, p2 = −my, p3 = −kx,

p4 = mx, p5 = 0. (19)

So the x direction in Ref. [4] is the (−x3) direction, and
the y direction in Ref. [4] is the (−x1) direction. This iden-
tification is made explicit to match the notation of [4], but
identification with any SO(5)-rotated frame leads to the same
physical spectra. In Ref. [4] the boundary conditions at the
two orthogonally intersecting edges were derived (see the
supplement Sec. II of [4]), and in our notation they are

(14 − i�3�4)ψ |x3=0 = 0, (14 + i�1�2)ψ |x1=0 = 0. (20)

These boundary conditions turn out to be identical to the
ones (10) given in Ref. [9]. In fact, if we make the following
renaming of coordinates:

(x1, x2, x3, x4, x5) → (x5, x2, x4, x3,−x1), (21)

this brings (10) to (20).
Another popular example of the higher-order topological

insulator was given by Schindler et al. in Ref. [5], a 3D
insulator with Cz

4T symmetry,

H =
(

2 +
∑

i

cos ki

)
�5 +

∑
i

sin ki�i

+ 
2(cos kx − cos ky)�4. (22)

Expanding this lattice Hamiltonian around the band inversion
point ki = (π, π, π )i + k̃i, a continuum Hamiltonian is ob-
tained as

H =
∑

i

k̃i�i − �5. (23)

This can be interpreted as the 3D class AIII Hamiltonian
(4) under swapping �4 and �5, so it is given by a dimen-
sional reduction from the 5D Weyl semimetal. The result of
[5] showing the hinge states is consistent with [9] claiming
general hinge states for the class AIII topological insula-
tors. It should be noted here also that the HOTI (18) is a
trivial dimensional reduction of a 3D class AIII topological
insulator (4).

Note that all known examples of HOTI use Hamiltonians
with at least four bands [26]. It was shown in Ref. [9] that
3D Weyl semimetals cannot host a corner state, meaning that
two-band Hamiltonian cannot be a HOTI. From the generic
behavior of the 5D Weyl semimetal hosting corner states, we
may argue that among all possible four-band Hamiltonians
the structure of the � matrices is important to host the corner
states. A physical reason for this is the edge topological charge
[13], derived through an analogy to the Nahm construction of
monopoles and string T-duality.

IV. EDGE HAMILTONIAN

In this section we calculate the edge Hamiltonian for edge
states in the 5D Weyl semimetal with the generic boundary
condition (5). We show explicitly that the edge Hamiltonian
has the structure of a 3D Weyl semimetal.

For the general boundary condition (5), the edge state wave
function is expressed as [9]

ψ =
(

12

U

)
ξ exp[ipIx

I ]. (24)

The edge state is given by (24), and if we choose the basis
2-spinor as ξ1 = (1, 0)T and ξ2 = (0, 1)T, then these ξa (a =
1, 2) give the following basis for the 4-spinor:

ψa ≡
(

12

U

)
ξa. (25)

Using this, the effective Hamiltonian for the edge states,

H (eff)
ab ≡

∫
d5x ψ†

a Hψb, (26)

is calculated as

H (eff) = cos θ p̃412 + sin θ p̃iσi, (27)

where we decomposed the U (2) matrix to a product of a U (1)
phase θ and an SU(2) matrix U ′,

U = eiθU ′ (28)

and we defined the SO(4) rotated momentum frame ( p̃i, p̃4)
by the following SU(2) matrix relation:

(−ipiσi + p4)U ′ = −i p̃iσi + p̃4. (29)

This edge Hamiltonian H (eff) (27) is of the form of a 3D
Weyl semimetal, so the edge state is topological. Therefore,
when another surface perpendicular to the original surface
x5 = 0 is introduced, a corner state is expected to exist at the
intersection of the surfaces, due to the topological structure of
the edge Hamiltonian.

Note that this argument is to present a general framework
of the emergence of the corner states. Whether the corner state
actually exists or not in a particular given setup depends on
more details of the system. There are at least two reasons for
this. First, if the effective Hamiltonian (27) is that of a 3D type
II Weyl semimetal [27], because the existence of an edge state
for a given type II Weyl semimetal depends on the surface
direction [28], our 5D system may not give a corner state. Sec-
ond, it is possible that the 3D Weyl Hamiltonian structure may
be accidentally inactive for particular dimensional reductions
to realistic dimensions. For example, if the directions p̃i in Eq.
(27) are all dimensionally reduced, the Hamiltonian simply
reduces to a unit matrix which does not have any topological
structure. Concerning the first reason, we describe a concrete
example in Appendix B.

We will calculate the topological charge in the next section.
For the calculation we need the wave function which is
defined by ξ . The effective Hamiltonian is diagonalized by
a solution of ( ±

√
p̃2

i 12 − p̃iσi
)
ξ = 0. (30)

The energy ε is given by

ε = p̃4 cos θ ±
√

p̃2
i sin θ, (31)

which is consistent with the result in Ref. [9].
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In obtaining the effective Hamiltonian, we did not include
the x5 dependence in the wave function (25). It is not a prob-
lem, because the relevant term disappears when evaluating the
effective Hamiltonian, due to the Hermiticity condition (A6).
In order to extract the information about x5 dependence from
this effective Hamiltonian approach, we instead consider the
following equation:

Hψa = Eaψa +
∑

b=1,2

βabψ̃b, (32)

where ψ̃b (b = 1, 2) is the basis 4-spinor spanning the space
orthogonal to the edge state space spanned by ψa,

ψ̃a =
(

12

−U

)
ξa exp[ipI x

I ]. (33)

For Eq. (32) to be a Hamiltonian eigenequation for the edge
state, we need to require βab = 0. Since β is given by

βba =
∫

d5x ψ̃
†
b Hψa, (34)

we can calculate it explicitly as

β =
(

12

−U

)†

H

(
12

U

)

= p512 + i(sin θ p̃412 − cos θ p̃iσi ). (35)

Because the eigenvalue of this expression needs to vanish, we
find that the momentum p5 has to be pure imaginary and is
given by

p5 = iα ≡ −i
(

sin θ p̃4 ∓ cos θ

√
p̃2

i

)
. (36)

The signs are for the two edge states, respectively. The
edge states are localized at the surface x5 = 0, thus the
wave function should have a pure imaginary momentum p5.
The normalizability of the wave function restricts the possible
momentum region of (pi, p4) for the existence of the edge
state.

V. EDGE TOPOLOGICAL CHARGE

In this section we show that the topological charge of
the generic edge state of the 5D Weyl semimetal is a Dirac
monopole. As we described in the Introduction, the corner
states in the 5D Weyl semimetals are a consequence of the
topological charge of the edge states. In Ref. [13], for a
particular boundary condition of a 4D class A topological
insulator, the edge state is shown to carry a topological charge
of a Dirac/non-Abelian monopole. It was argued in Ref. [9]
that the edge topological charge can be generally the same
for the 5D Weyl semimetals. Here we explicitly confirm it, by
providing the topological charge of the edge state of the 5D
Weyl semimetal (1) with arbitrary boundary condition (5).

Let us calculate the topological charge of the edge state.
It was shown in Ref. [9] that the edge state has a topolog-
ical charge which is the same type as that of the 3D Weyl
semimetal. Here we demonstrate it explicitly. For a particular
choice of the boundary condition, the topological charge was
calculated in Ref. [13].

FIG. 2. The structure of the topological charges. Left: The topo-
logical charge distribution of the edge state. It is a Dirac monopole
situated at the origin of p̃1, p̃2, p̃3 space. They are aligned along the
p̃4 direction, so it is a monopole string. The 4-momentum p̃1, . . . , p̃4

is rotated from the original 4-momentum, p1, . . . , p4 for the edge at
x5 = 0, and p̃4 direction in the original momentum space depends
on the boundary condition. Right: The topological charge of the
Hamiltonian H1 of the nested Wilson loop along p1, given in Eq. (57).
The Dirac monopole is located at the origin of p2, p3, p4 space. It
has no dependence in p5, so the monopole string extends along the
p5 axis. The direction of the monopole string depend on the gauge
condition of the original 5D Berry connection, but independent of the
gauge condition for the Berry connection for H1.

As we have seen in the previous section, the effective
Hamiltonian for edge states is diagonalized by solutions of
(30). We name the two solutions of (30) as ξ+ and ξ− depend-
ing on the ± sign in Eq. (30). As they can be regarded as the
energy eigenstates of a 3D Weyl semimetal Hamiltonian (27),
it naturally leads us to suggest that the edge state has a topo-
logical charge. In fact, we can calculate the Berry connection
associated with ξ+ and show that it is the connection for a
Dirac monopole,

Ã1 + iÃ2 = i( p̃1 + i p̃2)

2
√

p̃2
i

(√
p̃2

i − p̃3
) , Ã3 = Ã4 = 0. (37)

Here Ã is the connection in the rotated frame spanned by
( p̃i, p̃4). It is defined by [29]

Ãi =
∫

d5x iψ† d

d p̃i
ψ, Ã4 =

∫
d5x iψ† d

d p̃4
ψ. (38)

The Dirac monopole (37) sits at the origin of ( p̃i ) (i =
1, 2, 3) space, and it extends to the p̃4 direction. So this is
a monopole string in the 4D momentum space. The location
of the monopole string is at p̃i = 0. (Note that the “string”
of the “monopole string” is different from the Dirac string
associated with a three-dimensional monopole; the former is
physically extending along the p̃4 direction while the latter is
a gauge artifact.) See Fig. 2 (left) for the configuration of the
monopole string.

If we go back to the original momentum space spanned
by (pi, p4), this monopole string is also rotated back. The
direction of the extension of the monopole string is specified
by a straight line

tr[σ j (−ipiσi + p4)U ′] = 0 ( j = 1, 2, 3). (39)

Let us study how the topological charge looks like after
the dimensional reduction to the HOTI (18). In the notation
above, the surface is introduced at x5 = 0, so the reduction
to (18) means placing three of the other momenta by some
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constant, for example,

p2 = mx, p3 = my, p4 = 0. (40)

Upon this reduction we have a 2D system spanned by p1 and
p5. The edge topological charge is seen only as a slice (40) of
the monopole string. Only possible index associated with the
edge state of the dimensionally reduced system is the Wilson
loop,

W ≡
∫ ∞

−∞
d p1 A1, (41)

since the valid quantum number of the edge state is only p1.
This W is defined as an integral over the slice. It is easy
to see that this quantity is generically nonzero, due to the
monopole string in the higher-dimensional momentum space.
However, the value of W is not quantized, and it depends on
the parameters mx, my, and U . In particular, it depends on the
angle between the edge momentum direction (the p1 axis) and
the plane spanned by the p̃4 axis and the p̃3 axis. When they
are parallel to each other, W vanishes, due to the vanishing
components of (37). This complication always emerge after
dimensional reductions, because the topological charge de-
fined in the higher dimensional momentum space can never
be captured naturally just by looking at the connections on the
slices.

VI. NESTED WILSON LOOP

So far we have presented the topological structure of
the most generic edge states of the continuum 5D Weyl
semimetal. On the other hand, it was shown that the nested
Wilson loop [4] captures the topological property of HOTIs
[30], so here we explicitly calculate the nested Wilson loop for
the continuum 5D Weyl semimetal. We show that the nested
Wilson loop is identical to a Wilson loop in a 4D momentum
space with a Dirac monopole string.

First we obtain the normalized energy eigenstates of the
bulk Hamiltonian (1). The energy eigenvalues are ±p with

p ≡
√

p2
I , and we take the positive energy eigenstates. The

degenerate two eigenstates are aligned together to form a 4 ×
2 matrix � satisfying H� = p�,

� =
√

p − p5

2p

(
12

F

)
, (42)

where

F ≡ 1

p5 − p
(p412 + ipiσi ). (43)

With this energy eigenstate, the Berry connection

AI ≡ i�† ∂

∂ pI
� (44)

can be calculated explicitly,

A1 = CA(p4σ1 + p3σ2 − p2σ3), (45)

A2 = CA(p3σ1 − p4σ2 + p1σ3), (46)

A3 = CA(−p2σ1 − p1σ2 − p4σ3), (47)

A4 = CA(−p1σ1 + p2σ2 + p3σ3), (48)

A5 = 0, (49)

with an overall common coefficient CA ≡ 1/[2p(p + p5)].
Let us calculate the Wilson loop (line) of the Berry connec-

tion along the p1 direction,

W1 ≡ P exp

[
i
∫ ∞

−∞
A1d p1

]
, (50)

where “P” means a path ordering which makes W gauge
covariant. We diagonalize the Berry connection A1 using a
unitary matrix V1,

A1 = λV †
1 σ3V1. (51)

Here ±λ is the eigenvalue of A1,

λ ≡
√

p2
2 + p2

3 + p2
4

2p(p + p5)
. (52)

Since the unitary matrix V1 does not depend on p1, the path
ordering becomes trivial and we have

W1 = V †
1 exp

[
iσ3

∫ ∞

−∞
λd p1

]
V1. (53)

The integral is evaluated explicitly and we obtain

W1 = V †
1

(
eis 0
0 e−is

)
V1, (54)

with [31]

s ≡ 2 arctan

√√√√√
√

p2 − p2
1 − p5√

p2 − p2
1 + p5

. (55)

To evaluate the nested Wilson loop, we consider a Wilson loop
Hamiltonian

H1 ≡ −i logW1, (56)

which is calculated as

H1 = V †
1 σ3V1s. (57)

This H1 is interpreted as some sort of the edge Hamiltonian
for a 4D system on the edge at x1 = const. surface as it is
obtained from the Wilson loop along the p1 direction. This H1

depends on the gauge condition, and in the present gauge, it is
independent of p5 apart from the overall factor s.

Now we consider the eigenstates of H1. Since the matrix
part of this H1 is proportional to A1 itself, and it is of the
form of a 3D Weyl semimetal, the Berry connection of the
eigenstate of this H1 is that of a Dirac monopole located at
p2 = p3 = p4 = 0. The monopole extends along p5, so, pre-
cisely speaking, the topological defect is a monopole string.
The direction depends on the gauge condition of the 5D Berry
connection (45)–(49), but independent of the gauge condition
of the Berry connection of the eigenstate of H1. See Fig. 2
(right) for the configuration of the monopole string.

Therefore, the nested Wilson loop is identical to a Wilson
loop of a Dirac monopole string. For example, a nested Wilson
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loop along the p4 direction at p2 = p3 = −∞ is calculated as

W (1)
4 = π

2
. (58)

Here “W (1)
4 ” means the nested Wilson loop along p4 obtained

through the Wilson loop along p1.
It is easy to evaluate other nested Wilson loops W (I )

J . All
nested Wilson loops are nontrivial due to the topological
structure of the monopole string, except for the ones involving
the p5 direction I = 5 (or J = 5). Since in our gauge condition
the p5 direction is special as the Berry connection vanishes
there [see (49)], the nontrivial structure is hidden for Wilson
loops associated with p5.

Note that the trivialization of the path ordering is not
accidental; it is due to a careful choice of the gauge condition
of the Berry connection, which originates in the choice of
the basis of the eigenstates (42). In fact, we could have
chosen some other set of basis of the degenerate eigenstates,
for example (42) multiplied by some arbitrary U (2) unitary
matrix from the right, without losing the orthonormality.
This matrix can depend on pI , and this results in a gauge
transformation of the Berry connection. So the choice of the
gauge condition given by (42) makes the calculation of the
Wilson loop possible [32].

It is amusing to point out that the calculation of the
nested Wilson loop Hamiltonian H1 is almost identical to what
Atiyah and Manton did in 1989 [33], so-called Atiyah-Manton
approach for skyrmions. The Hamiltonian H1 corresponds to
the pion field of the Skyrme model [34–36]. The wrapping
number, which is the baryon number in the Skyrme model,
is nontrivial when the pion field has the hedge-hog ansatz.
This hedge-hog ansatz is nothing but the 3D Weyl semimetal
Hamiltonian in condensed matter physics. In this analogy to
make sense, we need to exchange x in the Skyrme model and p
in condensed matter physics, with a careful check of the Berry
connection (45)–(48) to completely coincide with a renowned
BPST instanton [37], as demonstrated in Ref. [38].

We conclude that the nested Wilson loops of the 5D
Weyl semimetal at the continuum are topologically nontrivial
and the topological structure is that of a Wilson loop in a
monopole string. W (I )

J (I 
= 5) is identical to a Wilson loop
along pJ of a monopole string where the Dirac monopole
center is located at pK = 0 (K 
= I, K 
= 5).

This picture survives any dimensional reduction along the
directions 
=pI and 
=pJ . In particular, the nested Wilson
loop W (1)

2 is of course identical with that evaluated in the
quadrupole insulator [4] upon the dimensional reduction (19).

VII. SUMMARY AND DISCUSSION

In summary, we have bridged the higher-order topology of
the 5D Weyl semimetals [9] and that of HOTIs, by showing
that their Hamiltonians are related each other in the con-
tinuum. We have found that the 5D Weyl semimetal has
the topological structure of the Dirac monopole from every
aspect: the edge Hamiltonian (Sec. IV), the edge topological
charge (Sec. V), the nested Wilson loop, and the entanglement
polarization (Sec. VI). Therefore, the 5D Weyl semimetal can
be regarded as a universal origin of a class of HOTIs. The
5D Weyl semimetal is obtained in the continuum limit of four

bands with two pairs of double degeneracy which is protected
by the PT symmetry. Note that our argument is effective
at the continuum limit where various crystalline symmetries
disappear, so our universality refers to that of a universality
class in the continuum limit or in the low-energy limit which
is not protected by crystalline symmetries. As a scope of this
work, this offers a novel criterion for how one can obtain
HOTIs, due to its continuum structure.

We have described relations between the continuum 5D
Weyl semimetals and the popular HOTI models. The corner
states of the 5D Weyl semimetal, obtained in Ref. [9], are
shown in various manners to lead to genetic HOTIs, as origi-
nally anticipated in Ref. [9]. We have explicitly calculated the
topological charge of the edge state of the continuum 5D Weyl
semimetal, with the most generic boundary condition on the
surface, and have shown that it is a Dirac monopole (precisely,
it is a monopole string in a 4D momentum space). The
effective Hamiltonian of the edge state is shown to possess
the structure of a 3D Weyl semimetal, which is consistent
with the topological charge. These calculations generalize
[13] and confirm the edge topological structure of [9], leading
to the generic existence of the corner state. Furthermore, we
have given the explicit calculation of the nested Wilson loop
of the continuum 5D Weyl semimetal, and found that the
topological structure is identical to that of a Wilson loop
in the 4D momentum space with a Dirac monopole string.
The 5D Weyl semimetals can be dimensionally reduced to
the realistic HOTI models, while keeping the topological
structure originated in the five dimensions. It is worth being
emphasized that the three methods, the edge Hamiltonian, the
edge topological charge, and the nested Wilson loop, do not
require how the two surfaces intersect. Hence the universality
is applied for intersection of surfaces at a generic angle.

Our study and [9] suggests that one of the bulk origins of
generic corner states is the second Chern class. In fact, the
edge topology which is the Dirac monopole is a consequence
of the T-duality of the bulk Yang-Mills instanton hosting the
second Chern class [13], and the bulk 5D Weyl semimetal has
the second Chern class on the four-dimensional slice [38].
This structure may be hidden once a dimensional reduction
to lower dimensions is made. However, since there exists a
generic mechanism of the existence of the corner states due
to the 5D Weyl semimetals, generically after the dimensional
reduction the possibility of having the corner states remains.

To look back, the study [9] was motivated by elementary
particle theories which are often in the continuum limit.
Although a detailed study in condensed matter physics re-
quires lattice Hamiltonians, which are lacking in Ref. [9],
continuum limit generically provides a universal viewpoint
which is irrelevant to detailed microscopic theories. Bridging
particle physics and condensed matter physics has played
quite an important role so far. In particle physics, it has been
known for many years that the anomaly inflow argument
[39] provides fermion modes localized at codimension two
hypersurface (that is, a string in three spatial dimensions),
and this is one historical origin of hinge states. Based on
this, fermion localization at the intersection of surfaces in six
dimensions was studied [40,41] for an application to 4D chiral
gauge theories. Further symmetry/anomaly arguments may
lead to various interesting researches bridging the particle

245138-7



KOJI HASHIMOTO AND YOSHINORI MATSUO PHYSICAL REVIEW B 101, 245138 (2020)

and condensed matter physics. In particular, particle physics
is formulated to treat intrinsically many-body systems, and a
quantum-field-theoretic definition of multipoles [42] may be
of importance.

Some comments on possible future directions are in order.
In this paper we concentrated on the second-order topological
insulators and hinge states, and a generalization to third order
(and higher) is important. To host the third order, one needs
eight bands, so the instanton may be an octonionic instan-
ton [43]. Some usage of higher-dimensional Clifford algebra
[44,45] may help building the bridge. It is expected that on the
surface of the eight-band system the BPST instanton emerges
as the surface topological charge.

It should be noted that Weyl semimetals admit various
deformations: the tilt of the Weyl cones, producing type
II Weyl semimetals [27], as well as type III and type IV
Weyl semimetals [46]. In particular, similarities to black hole
spacetime was suggested [47], and its relevance to the surface
state was studied [28]. The tilt of the edge dispersion can
be interpreted [38] as a monopole in noncommutative space
[48,49], and these ideas may be unified in higher dimensions
of momenta. The localization of the fermions at corners may
be affected by the deformation, as was reported for example
in non-Hermitian deformations [50]. A deformation which
breaks the PT symmetry was analyzed in Ref. [12], and it
would be interesting whether the corner states may survive
or not. Furthermore, the “deformation” going back to the mi-
croscopic Hamiltonian will necessarily introduce a Brillouin
zone which suffers from the doubling of the Weyl points
[51,52]. The continuum limit corresponds to a zoom-in on a
small region around a Weyl point. As long as the Weyl points
of the opposite signature are separated, our monopole-string
structure will persist, and the corner state will survive. As
well as these possible deformations, one should be careful in
treating the dimensional reduction, as various dimensional re-
duction provides deformations which could change the topo-
logical properties. For example, a possible relation between
the interpretation of HOTI as a piled-up Chern insulator [53]
and our dimensional reduction needs to be clarified.
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APPENDIX A: GENERIC BOUNDARY CONDITION

It was studied in Ref. [9] that all possible boundary
conditions of the continuum 5D Weyl semimetal (1) are
parametrized by a U (2) matrix (see [15] for the case of the
3D Weyl semimetal). Here we derive the same result in a
more rigorous manner. We use this result in Secs. V and IV
to evaluate the topological charge of the generic edge state
and the effective edge Hamiltonian.

We put the boundary surface at x5 = 0 without losing its
generality. The boundary condition is of the form

Mψ |x5=0 = 0, (A1)

where M is some constant matrix, and ψ is the wave function.
Since this M has to have four linearly independent eigen-
vectors to constrain the whole wave function space, M is
diagonalizable. And M has to project out half of the degrees of
freedom of ψ at the boundary, so two of the four eigenvalues
should be zero. Therefore, there exists a regular matrix B with
which

M = B−1DB, D = diag (0, 0, a, b), (A2)

with a, b 
= 0. Decomposing ψ and B as their 2-spinor sub-
spaces,

ψ |x5=0 ≡
(

ξ

η

)
, B =

(
B1 B2

B3 B4

)
, (A3)

we can rephrase (A1) as

B3ξ + B4η = 0. (A4)

When det B4 
= 0, we solve this as

η = −B−1
4 B3ξ . (A5)

Next, we impose the boundary Hermiticity condition: for
any ψi satisfying Mψi = 0, we need

ψ
†
i �5ψ j = 0. (A6)

The latter equation is equivalent to

ξ
†
1 ξ2 = η

†
1η2. (A7)

substituting the solution (A5) of the boundary condition (A1)
to this equation, we find(

B−1
4 B3

)†
B−1

4 B3 = 12, (A8)

as (A7) needs to be satisfied for arbitrary ψ satisfying the
boundary condition (A1). This shows that −B−1

4 B3 is a U (2)
unitary matrix U , so we derive the generic boundary condition

η = Uξ (A9)

for a U (2) matrix U .
There remains the case of det B4 = 0. In fact, it is possible

to show that with det B4 = 0 the condition (A7) cannot be
met except for a trivial solution η = 0, as in the following. So
det B4 
= 0 is necessary for (A1) to be a consistent boundary
condition.

When det B4 = 0 and B4 
= 0, we name the zero eigenvec-
tor as η(0). Choose a vector η(1) which is perpendicular to η(0),
as (η(0) )†η(1) = 0.

(1) If det B3 
= 0, the vectors which satisfy the boundary
condition (A4) is

ψ =
(

0
η(0)

)
, ψ̃ =

(
B−1

3 B4η
(1)

η(1)

)
. (A10)

(2) If det B3 = 0 and B3 
= 0, choose the zero mode of B3

as ξ (0), then we obtain the vectors satisfying (A4) as

ψ =
(

0
η(0)

)
, ψ̃ =

(
ξ (0)

0

)
. (A11)

If B4 = 0, then use two zero modes to form a solution to
(A4) as

ψ =
(

0
η(0)

)
, ψ̃ =

(
0

η′(0)

)
. (A12)
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In all of these three cases, we construct generic vectors
satisfying (A4) as

ψi ≡ aiψ + biψ̃, (A13)

with arbitrary complex constants ai, bi. Then we substitute
them to the Hermiticity condition (A6). It turns out that for
all of these three cases, (A6) for arbitrary ai and bi leads
to η(0) = 0. Therefore there is no solution to the boundary
condition when det B4 = 0.

APPENDIX B: HERMITICITY CONDITION
FOR EDGE HAMILTONIAN

In order to have a corner state, the edge effective Hamil-
tonian (27) must obey the Hermiticity condition at the corner
of the edge. However, for a certain boundary condition of the
edge, the effective Hamiltonian (27) takes the form of that of
the type II Weyl semimetals, and depending on the direction
of the other edge it may not host any corner state. Here we will
show the condition for which the 5D Weyl semimetal does not
have the corner state.

We consider the corner at x4 = 0 on the edge at x5 = 0.
The rotated momentum frame is defined by using an SU(2)
matrix U ′, which is expressed generically as

U ′ = cos φ 12 + i sin φ niσi, (B1)

where ni is a unit vector, which can be taken as ni = (0, 0, 1)i

without loss of generality. Then, the edge Hamiltonian is

expressed as

H (eff) = cos θ (cos φ p4 + sin φ p3)

+ sin θ [ p̃1σ1 + p̃2σ2 + (cos φ p3 − sin φ p4)σ3],
(B2)

where p̃1 and p̃2 are linear combinations of p1 and p2. As the
momentum p4 acts on the wave function ψ as the derivative
−i∂4, the Hermiticity condition requires the surface term at
the boundary (the corner at x4 = 0) vanish,

ψ
†
1 (cos θ cos φ 12 − sin θ sin φ σ3)ψ2 = 0. (B3)

This condition must be satisfied for arbitrary wave functions
ψ1 and ψ2 which satisfy the boundary condition at the corner.
For ψ1 = ψ2 = (v1, v2)T , the condition gives

cos θ cos φ(|v1|2 + |v2|2) − sin θ sin φ(|v1|2 − |v2|2) = 0,

(B4)
which has no solution for

| tan θ tan φ| < 1. (B5)

Therefore, for the boundary condition with (B5), the 5D Weyl
semimetal has no corner state at x4 = x5 = 0.

The parameters θ and φ are the ones for the boundary
condition at x5 = 0. This means that one can even control the
existence of the corner state by just modifying a boundary
condition on a single surface. The corner state may become
unstable under the adiabatic change of the boundary condition
parameters of the surface. Here a peculiar interplay between
the higher order topology and the type II Weyl semimetal is
found.
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