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First-principles Hubbard U and Hund’s J corrected approximate density functional
theory predicts an accurate fundamental gap in rutile and anatase TiO2
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Titanium dioxide (TiO2) presents a long-standing challenge for approximate Kohn-Sham density functional
theory (KS-DFT), as well as to its Hubbard-corrected extension, DFT+U . We find that a previously proposed
extension of first-principles DFT+U to incorporate a Hund’s J correction, termed DFT+U+J , in combination
with parameters calculated using a recently proposed linear-response theory, predicts fundamental band gaps
that are accurate to well within the experimental uncertainty in rutile and anatase TiO2. Our approach builds
upon established findings that Hubbard correction of both the titanium 3d and oxygen 2p subspaces in TiO2,
symbolically giving DFT+U d,p, is necessary to achieve acceptable band gaps using DFT+U . This requirement
remains when the first-principles Hund’s J is included. We also find that the calculated gap depends on the
correlated subspace definition even when using subspace-specific first-principles U and J parameters. Using the
simplest reasonable correlated subspace definition and underlying functional, the local density approximation,
we show that high accuracy results from using a relatively uncomplicated form of the DFT+U+J functional.
For closed-shell systems such as TiO2, we describe how various DFT+U+J functionals reduce to DFT+U
with suitably modified parameters, so that reliable band gaps can be calculated for rutile and anatase with no
modifications to a conventional DFT+U code.
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I. INTRODUCTION

Titanium dioxide (TiO2) has been widely used for several
decades in diverse industrial applications such as pigmenta-
tion and coating [1–3] due to its nontoxicity, low-cost pro-
duction, and thermal stability. TiO2 came under particularly
intense scrutiny beginning with the ground-breaking work
of Fujishima and Honda, who demonstrated water splitting
in TiO2 photochemical cells in the ultraviolet (UV) spectral
range in 1972 [4]. Since then, TiO2-based structures have
been engineered for diverse optoelectronic applications such
as photocatalysts, photovoltaics, sensors, and for energy and
environmental applications [5–7]. In nature, TiO2 has three
common polymorphs: rutile, anatase, and brookite [8]. TiO2-
rutile and TiO2-anatase are more common in industrial appli-
cations, as brookite is less stable and difficult to synthesize
in large volumes [9]. The electronic structures of pristine
TiO2-rutile and TiO2-anatase have been extensively studied
experimentally [10–14], and the most reliable data currently
available shows that TiO2-rutile and TiO2-anatase have funda-
mental (electronic, not optical) band gaps of 3.03 eV [12,13]
and 3.47 eV [11], respectively.

First-principles simulations can provide valuable insights
into the processes at play in TiO2-based systems, offering
clues for the engineering of these systems for desired applica-
tions. This requires the accurate description of their electronic
structures in the region of their band edges, naturally, and
this must necessarily be found by means of computationally
feasible and scalable methods if disordered structures and
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diverse dopants are to be assessed in any detail. There ex-
ist numerous acceptably reliable approaches, such as quan-
tum chemistry methods [15,16], hybrid-functionals [17], and
many-body perturbation theory [18–20], but these methods
are too computationally demanding for routine application to
defective and disordered systems.

Density functional theory (DFT) [21], specifically Kohn-
Sham DFT (KS-DFT) [22] using (semi)local density
exchange-correlation functionals [22–25] offers a computa-
tionally feasible framework to study the electronic structures
of spatially complex TiO2-based systems. In the present work,
with that challenge in mind, we use a linear-scaling im-
plementation of DFT, the Order-N Electronic Total Energy
Package (ONETEP) [26–29]. However, it is well known that
(semi)local KS-DFT is unable to capture the approximate
magnitude of the band gap of TiO2, a common feature of
transition-metal oxides (TMOs) generally [30–32], and so
it requires, at the very least, some corrective measures for
reliable use.

In this work, we revisit the computationally efficient ap-
proach of applying Hubbard-model inspired corrections to
approximate KS-DFT, namely DFT+U [33–41] which is
technically a generalized Kohn-Sham method [42], in terms
of its capability of accurately describing the fundamental
electronic band gap of TiO2 polymorphs. We find that unlike-
spin Hund’s J correction, specifically that introduced in the
pioneering work of Ref. [43], is the key ingredient that en-
ables the band gaps of TiO2 to be accurately described with
this method. A corrective functional is only as good as its
parameters, and here we use the recently proposed minimum-
tracking linear-response formalism of Ref. [44] for calculating
them. Encouragingly for practical use, moreover, we find that
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for closed-shell (non-spin-polarized) systems such as pristine
TiO2 and other TMOs towards the edges of the periodic table
d block, no modification to a standard DFT+U code is needed
to include Hund’s J corrections.

No differently to what has been found in previous works
[45–48] and as an inevitable consequence of the O 2p charac-
ter of the valence-band edge, in order to achieve significantly
improved results using DFT+U we need to apply corrective
potentials to oxygen 2p orbitals on the same footing as to
titanium 3d orbitals. The addition of Hund’s J does not
change this fact, we denote this two-species correction as
DFT+U d,p, short for DFT+U d+U p, following the literature.
Unlike prior works on TiO2, in which one or both of U d and
U p was found to require empirical tuning for good results,
in this work we only use first-principles calculated U and J
parameters (specifically, by means of the minimum-tracking
linear-response method [44,49]), for both the Ti 3d and O 2p
subspaces.

When the unlike-spin Hund’s J term is included (using a
particularly simple form of DFT+U+J , in agreement with
the detailed analysis of Ref. [43]) we predict a generalized
Kohn-Sham band gap of a better quality than that which
hybrid functionals or G0W0 give, for both polymorphs, when
gauged against reported experimental findings (recent, high-
quality ones in the case of anatase, where it seems to be
more challenging to measure). The ionic geometries of both
polymorphs were found to be very little affected by the force
terms due to this functional form. We note in passing that both
functional classes, DFT+U and hybrids, are differentiable in
terms of the density matrix and have a nonlocal potential,
and so their generalized Kohn-Sham gaps include exchange-
correlation derivative discontinuities [50] and are directly
comparable to experiment. Promisingly for future TiO2 simu-
lation, and as the central conclusion of this work, we find that
the same first-principles DFT+U d,p+Jd,p functional predicts
the experimental fundamental gap to within the uncertainty of
the experiment, for both polymorphs.

II. METHODOLOGY

Perhaps the most well-known systematic error exhibited
by conventional approximate functionals in KS-DFT is the
self-interaction error (SIE) [51–55], and its many-body gen-
eralization, the delocalization error [56–62]. SIE arises due to
spurious self-repulsion of electronic density in the KS-DFT
formalism and it also persists, albeit often to a lesser extent,
within generalized Kohn-Sham schemes. While the origins
of SIE are well understood, it is hard to avoid it in the con-
struction of closed-form approximate functionals. SIE leads
to the well-known significant, even drastic underestimation
of fundamental band gaps of TMOs in particular [30–32],
and TiO2-rutile and TiO2-anatase are no exception in this
regard [63]. Less well understood is the generalization of
SIE to account for the spin degree of freedom, which is not
necessarily less relevant in closed-shell systems where the
spin happens to evaluate to zero. In this section, we outline
in detail our methodology for computing and incorporating
parameters, the Hubbard U d,p for density-related error and
Hund’s Jd,p for spin-related error, to correct a very low-cost
density functional for the specific case of TiO2.

A. DFT+U+J functionals and their simplification
for closed-shell systems

DFT+U is routinely applied to correct for SIE, particularly
for the spurious delocalization of electronic states associated
with transition-metal 3d orbitals. The DFT+U total energy is
given by

EDFT+U = EDFT + EU , (1)

where the rotationally invariant form of EU for a given SIE-
prone subspace [30,38,64], particularly if we take its relatively
recent DFT+U+J form of Ref. [43], is given by

EU [{nσ }] = 1

2

∑
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∑
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I

− J
[
nσ
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m′m
]︸ ︷︷ ︸
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]︸ ︷︷ ︸
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}
. (2)

Here, σ is a spin index, σ̄ is the corresponding opposite
spin, σmin is the index of the minority-population spin channel
for the subspace at hand, nmm′ is the subspace-projected KS
density matrix. The Hubbard U is, in this work at least,
interpreted as the subspace-and-spin-averaged net Hartree-
plus-exchange-correlation interaction. Hund’s J is its spin-
splitting counterpart. We will presently detail what, precisely,
is meant by spin averaging and spin splitting in this context.

The choice of appropriate form of DFT+U (+J) energy
functional depends on various factors such as the system
under consideration, the limitations and robustness of ap-
proaches to determine the Hubbard U and Hund’s J param-
eters, and the underlying approximate density functional. For
instance, it was argued in Ref. [43] that term (IV), which we
dub the “minority spin term”, is best not included, as it arises
due to the double-counting correction of a type of two-particle
density-matrix interaction that is unlikely to be very much
present in the underlying density functional. Our numerical
results supports this analysis. It was furthermore found to
lead to numerical instabilities, and we have also noted this
effect in our own calculations. Our tentative explanation of
this instability is that, when the net spin of a site is weak, the
potential arising due to this term can switch over discretely
from one spin channel to the other. The simplest functional
form is achieved, of course, by neglecting the explicit cor-
rection of exchange and effectively by setting J = 0 eV. If a
value for J is available, then so is the Dudarev functional [33],
which includes only like-spin correction terms [the terms (I)
and (II)] via an effective parameter, Ueff = U − J , resulting
symbolically in DFT+Ueff .

Inspired by the Dudarev model, we note and primarily
use in this work the fact that the full DFT+U+J functional
of Eq. (2) may be applied to closed-shell systems, without
approximation, using an unmodified DFT+U code with no J
implementation. To see this clearly, we can rearrange Eq. (2)
and introduce an additional parameter α, which is exactly that
α which is available and used to calculate the Hubbard U
in many standard DFT+U codes [40]. Here, it captures the
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inclusion or neglect of the minority spin term (term IV), when
rewriting Eq. (2) as

EU =
∑

σ,m,m′

{
Ufull

2

[
nσ

mm′δm′m − nσ
mm′nσ

m′m
] + α nσ

mm′δm′m

}
,

(3)

where Ufull = U − 2J . Three reasonable options for α are
tested in this study, representing different interpretations of
the minority spin (term IV).

(1) The most natural treatment of term IV for closed-shell
systems, that suggested in Ref. [43], is to interpret σmin = σ ,
such that δσσmin = 1. This requires us to set α = −J/2.

(2) A modification of the latter, intended to avoid the im-
plied discontinuity in the total energy at the onset of nonzero
spin polarization (it doesn’t avoid such a discontinuity in the
potential), is to “share” the minority spin term between the
two spins, setting δσσmin = 1/2 for closed-shell systems. This
leads to α = 0 and the resulting Hubbard functional is simply
a Dudarev functional with Ufull = U − 2J .

(3) In the last case, the minority spin term is neglected, as
it was argued that it is best to do in its originating Ref. [43],
by setting δσσmin = 0. For closed-shell systems, DFT+U+J
is then recovered by DFT+U code with parameters Ufull and
α = J/2.

In this work, we test these different corrective functionals
by application to both the Ti 3d and O 2p subspaces of TiO2,
presenting DFT+U d (no O 2p correction) results only for
the sake of illustration and completeness. It has previously
been comprehensively demonstrated in Ref. [65], that it is not
possible to reconcile a reasonable band gap with reasonable
lattice constants when applying DFT+U only to Ti 3d sub-
spaces in TiO2. We further motivate the inclusion of O 2p
corrections in Appendix A and with reference to Fig. 3. In the
Supplemental Material that accompanies this work [66], we
illustrate that the favoured DFT+U+J functional (minority
spin term neglected) has only a very small effect on the
lattice constants and internal ionic geometries predicted for
both polymorphs by the underlying functional. There, we also
specify the computational parameters of our study in detail.

B. The minimum-tracking linear-response approach
for first-principles Hubbard U and Hund’s J parameters

The results of DFT+U d,p are only as good as its input
Hubbard U and Hund’s J parameters. Finite-difference linear-
response theory provides a practical, widely available first-
principles method for calculating these [39,40,43]. It has been
found that linear response tends to give Hubbard U parameters
for closed-shell systems that are too high for practical use,
and this is usually deemed to be an erroneous overestimation
[44,67–69]. The present work provides hints that these values
may be correct after all, but that Hund’s J effectively reduces
them and so the latter is (counterintuitively, perhaps) more
important to include in closed-shell systems. If a system has
zero spin polarization, the systematic error in the approximate
functional related to the spin degree of freedom may still be
large. In this work, we employed the recently introduced
minimum-tracking variant [49] of linear response as
implemented in the ONETEP DFT+U implementation [26,70],

and in particular, its spin-specific extension introduced in
Ref. [44]. The “scaled 2×2” method was used here to evaluate
the Hubbard U , Hund’s J , and effective Hubbard U parame-
ters (Ueff = U − J and Ufull = U − 2J) for the Ti 3d and O
2p subshells of pristine TiO2-rutile and TiO2-anatase using

U = 1

2

λU ( f ↑↑ + f ↑↓) + f ↓↑ + f ↓↓

λU + 1
, (4)

and

J = −1

2

λJ ( f ↑↑ − f ↓↑) + f ↑↓ − f ↓↓

λJ − 1
, (5)

where

λU = χ↑↑ + χ↑↓

χ↓↑ + χ↓↓ , and λJ = χ↑↑ − χ↑↓

χ↓↑ − χ↓↓ , (6)

and where the projected interacting response matrices are
given by χσσ ′ = dnσ /dvσ ′

ext. The spin-dependent interaction
strengths f σσ ′

are calculated by solving a 2×2 matrix
equation given by

f =
[(

δvKS

δvext
− 1

)(
δn

δvext

)−1
]
, (7)

for which matrix entities are obtained by linear fitting
to small changes of the subspace occupancies δnσ and
subspace-averaged Kohn-Sham potentials δvσ

KS with respect
to incrementally varying uniform perturbing potentials δvσ

ext
on the targeted subspaces. These definitions are equivalent
to a particular choice of perturbation in the more physically
transparent but perturbation-independent expressions,

U = d (v↑
Hxc + v

↓
Hxc)

2d (n↑ + n↓)
and J = −d (v↑

Hxc − v
↓
Hxc)

2d (n↑ − n↓)
, (8)

where the factor 1/2 signifies averaging (or halving of
the splitting between) the subspace averaged Hartree-plus-
exchange-correlation potentials vσ

Hxc. Equation (8) can be
taken as the definition of minimum-tracking linear response,
and if using its two parts separately it is natural to use
δv

↑
ext = δα = δv

↓
ext for U and δv

↑
ext = δβ = −δv

↓
ext for J .

The scaling factors become λU = 1 and λJ = −1 for spin-
unpolarized systems such as the pristine TiO2-rutile and TiO2-
anatase. This reflects the vanishing linear coupling between
subspace occupancy and magnetization in such systems. As
a result, the “scaled 2×2” method reduces to the “sim-
ple 2×2” method [44], which can be summarized as U =
( f σ σ̄ + f σσ )/2, J = ( f σ σ̄ − f σσ )/2 (this gives a Dudarev
Ueff = f σσ , which is reasonable for a like-spin-only corrective
functional). In fact, time-reversal symmetry can be readily
exploited for closed-shell systems, where it is sufficient to
perturb one spin channel only, filling in half of the matrix
elements by symmetry, e.g., χ↑↑ = χ↓↓. This feature of the
2×2 approach enabled the simultaneous calculation of U and
J in this work, from a single group of self-consistent calcu-
lations perturbing one spin channel only by finite differences.
We have verified numerically that Eq. (8) provides the same
results under these conditions. The response matrix elements
coupling Ti 3d and O 2p subspaces are not projected out,
as to include such entries in the response matrices would
necessitate corresponding terms in the corrective functional
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TABLE I. First-principles LDA-appropriate Hubbard U and
Hund’s J parameters calculated using the minimum-tracking linear-
response method [44,49], both for the Ti 3d and O 2p subspaces
of TiO2-rutile. The Ti 3d parameters depend significantly on the
pseudoatomic solver charge configuration used to construct the
corresponding DFT+U subspace, with 3+ providing a significantly
more localized subspace and consequently higher parameters. Shown
also are the effective Hubbard U parameter of the Dudarev model
(Ueff) and that which enables us to reproduce DFT+U+J for closed-
shell systems (Ufull).

Ti0 state Ti3+ state

LDA rutile Ti O Ti O

U 3.56 8.57 5.59 8.57
J 0.29 0.92 0.38 0.89
Ueff = U − J 3.27 7.66 5.20 7.68
Ufull = U − 2J 2.98 6.74 4.82 6.80

(these are usually called +V ), which would complicate our
analysis focused on Hund’s J .

III. RESULTS AND DISCUSSION

We first present the calculated Hubbard U and Hund’s
J parameters for pristine, closed-shell TiO2-rutile and TiO2-
anatase. As a preliminary test, LDA-appropriate parameters
were calculated for TiO2-rutile with two different definitions
of the DFT+U target subspace for Ti 3d orbitals. Specifically,
both neutral and 3+ (still non-spin-polarized) atomic DFT
calculations were separately performed using functionality
available in ONETEP and described in Ref. [71], to generate
pseudoatomic orbitals to define the 3d subspace, and also to
build the initial density and NGWF guesses. The tensorial
representation [72] was used to correctly account for the slight
nonorthogonality among the orbitals for a given subspace,
which arises due to their sampling in the ONETEP plane-wave-
like basis. An OPIUM [73] norm-conserving pseudopotential
with a 3+ reference state was used for Ti, while a charge-
neutral atomic configuration was used for O (OPIUM pseu-
dopotential generation, DFT+U definition, and initial density
and NGWF guess generation) throughout. The resulting Hub-
bard U and Hund’s J parameters are summarized in Table I.

We find that the calculated LDA Hubbard U value for Ti
3d increases by ∼2 eV or ∼60% when going from a neutral
subspace configuration to a 3+ charge one, due to the pro-
nounced increase in the spatial localization of the subspace,
plotted in Fig. 3 of Appendix B. The relatively small calcu-
lated J value also increases somewhat, by a smaller amount
in multiplicative terms, 30%. Ufull = U − 2J therefore also
increases by ∼60%. We choose the smoother orbitals from the
neutral pseudoatomic solver configuration to define DFT+U
in our further calculations, and the reasoning for this will be
discussed and demonstrated in Appendix B. There, we will
see that, not only does calculating U and J from first principles
not compensate for the arbitrariness of the DFT+U projectors
in TiO2-rutile, it in fact reinforces it. We note a small but
nonetheless irksome deviation in the O 2p J parameter when
moving to a 3+ Ti 3d NGWF initial guess, which results from

TABLE II. First-principles LDA-appropriate Hubbard U and
Hund’s J parameters calculated using the minimum-tracking linear-
response method [44,49], both for the Ti 3d and O 2p subspaces
of TiO2-anatase. Only the neutral pseudoatomic solver configuration
Ti0 is used here. Shown also are the effective Hubbard U parameter
of the Dudarev model (Ueff) and that which enables us to reproduce
DFT+U+J for closed-shell systems (Ufull).

LDA anatase Ti O

U 3.57 8.56
J 0.29 0.91
Ueff = U − J 3.28 7.66
Ufull = U − 2J 3.00 6.75

poorer convergence characteristics when those functions are
initialized with excessive localization.

Turning next to the LDA-appropriate Hubbard U and
Hund’s J parameters calculated for TiO2-anatase using the
same method with a neutral Ti 3d subspace definition, shown
in Table II, we note a remarkable degree of similarity with the
TiO2-rutile values. In fact, the differences are within the noise
of the linear-response method, and this reflects the similar
LDA charge states (to well within 1% for both the Ti 3d and
O 2p DFT+U subspaces) and coordination chemistry in the
two structures.

A. The first-principles band gap of pristine TiO2-rutile

As a generalized Kohn-Sham theory with an differentiable
density-matrix dependence, in the same way that hybrid
functionals are [50], the Kohn-Sham gap of DFT+U (or
DFT+U+J) includes an explicit derivative discontinuity. The
relationship between the Kohn-Sham gap and the fundamental
gap is thereby not only assured in principle, but the derivative
discontinuity gives, in practice, the opportunity for direct
comparability to the experimental insulating gap. Shown in
Table III is the band gap of TiO2-rutile calculated using LDA
and first-principles DFT+U , DFT+Ueff , DFT+Ufull with dif-
ferent α values, and explicit DFT+U+J [minority spin term
(IV) neglected], both when applied only to the Ti 3d subshell
and when applied also to the O 2p subshell.

Experimental, first-principles, semiempirical hybrid, GW
results, and several previous DFT+U results from the litera-
ture are also shown in Table III, for comparison.

The experimental direct gap quoted [12,13] is based on
absorption, photoluminescence, and resonant-Raman scatter-
ing data, and is expected to be very reliable due to the
relatively small exciton binding and phonon coupling effects
in rutile [11], and moreover in light of its good agreement with
available inverse photoemission data [74].

The LDA yields a Kohn-Sham band gap of 1.96 eV, much
lower than the experimental band gap of 3.03 eV, as expected
given its absence of a derivative discontinuity. Regardless of
the Hund’s J incorporation scheme used, and as is generally
attested in the literature on calculations with J = 0 eV, first-
principles DFT+U applied to Ti 3d states only performs
poorly and here predicts a band gap of 2.17–2.24 eV.

The inadequacy of the conventional DFT+U subspace
definition can be explained by comparing the very different
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TABLE III. The fundamental band gap (in eV) of TiO2-rutile
calculated within DFT(LDA), DFT+U with Hund’s J neglected,
when treated within the Dudarev model (Ueff), and when treated in
a matter which fully reproduces DFT+U+J using only DFT+U
code for closed-shell systems (Ufull), both when treated with (α =
−J/2) and without (α = J/2) its minority-spin (term IV). DFT+U d

and DFT+U d,p results are separately shown, using parameters cal-
culated from first principles using the minimum-tracking linear-
response method, using only the neutral pseudo-atomic solver con-
figuration Ti0. Prior experimental, first-principles local, semi-local,
meta-generalized-gradient, and semi-empirical hybrid functional;
perturbative G0W0; empirical; first-principles SCF linear-response
(Ref. [82]), and ACBN0 (Ref. [83]) DFT+U values are provided for
convenient comparison. Our central results are highlighted in bold.

TiO2-rutile Egap

DFT (LDA) 1.96

+U d +U d,p

DFT+U 2.24 3.59
DFT+Ueff = U − J 2.21 3.38
DFT+Ufull = U − 2J, α = −J/2 2.17 3.32
DFT+Ufull = U − 2J 2.18 3.18
DFT+Ufull = U − 2J, α = J/2 2.20 3.04
DFT+U+J (no minority spin term) 2.20 3.04

Experiment [12,13] 3.03
LDA [48] 1.79
PBE [19] 1.88
PBE [75] 1.86
PBE [76] 1.77
TB-mBJ [77] 2.60
SCAN [78] 2.23
HSE06 [79] 3.3
HSE06 [19] 3.39
HSE06 (α = 0.2) [76] 3.05
sX Hybrid [75] 3.1
LDA+G0W0 [18] 3.34
PBE+G0W0 [19] 3.46
HSE+G0W0 [19] 3.73
DFT+U (U=7.5 eV) [80] 2.83
DFT+U (U=10 eV) [81] 2.97
DFT+U d (U = 3.25 eV) [82] 2.01
DFT+U d,p (U d = 3.25 eV, U p = 10.65 eV) [82] 3.67
DFT+U d,p (U d = 3.25 eV, U p = 5.0 eV) [82] 2.69
DFT+U d,p (U d = 0.15 eV, U p = 7.34 eV) [83] 2.83

valence and the conduction band edge characters seen in all of
the local density of states plots shown in Fig. 1, and addition-
ally motivated by recalling the very similar degree of spatial
localization of Ti 3d and O 2p atomic orbitals (see Fig. 3).
The valence (conduction) band edge is left almost unaffected
by applying the Hubbard correction only to the Ti 3d (O 2p)
subshell, for any reasonable Hubbard U parameter (hence,
unreasonable values have been tested in the prior literature). In
qualitative agreement with that, we observe that the impact of
the method on the band gap increases substantially as soon as
correction is also applied to both subshells, within DFT+U d,p

(as we show in detail in Table III and now discuss).
Focusing on our own first-principles DFT+U d,p results

and comparing with experiment, we find that when the

FIG. 1. The total and local generalized Kohn-Sham density of
states (LDOS) of pristine TiO2-rutile calculated within DFT(LDA),
DFT+U with Hund’s J neglected, when treated within the Dudarev
model (Ueff), and when treated in a matter which fully reproduces
DFT+U+J using only DFT+U code for closed-shell systems (Ufull),
both when treated with (α = −J/2) and without (α = J/2) its minor-
ity spin (term IV). The spectrum is partitioned on a per-species basis
using Mulliken analysis based on the variationally optimized NG-
WFs. DFT+U d,p results only are shown, using parameters calculated
from first principles using the minimum-tracking linear-response
method, using only the Ti0 pseudoatomic solver configuration, and a
Gaussian broadening of 0.1 eV. In order to show the separate effects
of the corrective functionals tested on the valence and conduction
bands, each panel uses the mid-gap energy of the DFT(LDA) calcu-
lation for 0 eV.

correction for energy-magnetization curvature is neglected
(letting J = 0 eV), the band gap is overestimated by ∼0.56 eV
with respect to the experimental gap. The important point
here is that, even though the system harbors no magnetism
in its ground state, this does not imply that the error in the
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approximate energy functional related to the magnetic degree
of freedom vanishes. When including this effect only in the
like-spin term (using Dudarev’s Ueff = U − J) this overes-
timation reduces to ∼0.35 eV, and when also applying the
unlike-spin term [using Ufull = U − 2J and α = −J/2, which
is equivalent to DFT+U+J including its standard minority
spin term (IV), for closed-shell systems such as this one], the
overestimation reduces further to ∼0.29 eV.

However, when we apply DFT+U+J in its simplest form,
i.e., neglecting the minority spin term (IV) of Eq. (2) (in
practice using Ufull = U − 2J and α = J/2), the gap under-
estimation vanishes to within the expected error in the ex-
periment (using the zero-temperature extrapolation provided
in Ref. [12] for the fundamental gap) and the theoretical
methodology. We note that the zero-point phonon correction is
held to be very small in rutile, unlike in anatase. As shown in
Table III, we also carried out DFT+U+J calculations using
explicit +J code, with the same results to a high precision,
as expected. We note, in passing, that the deduction in the
calculated gap due to the omission of the minority spin term,
of ∼0.29 eV, is very close to (J p − Jd )/2 ∼ 0.31 eV, as might
be predicted by considering the different characters of the
band edges and the change in the potentials acting upon them.

These fundamental gap changes are reflected in the local
density of states (LDOS) plots shown in Fig. 1. Here, we see
the successive effects of first turning on +U d,p correction, and
then by moderating it using J per Dudarev’s Ueff = U − J
prescription, which mostly brings the valence band back up
in energy in this case. Moving ultimately to DFT+U d,p

full , α =
J/2 (which means αd = Jd/2, etc., and which gives identical
results to DFT+U d,p+Jd,p by construction), we see a further
closing of the gap and upward shift both in the valence
and conduction bands. Interestingly, we obtain an extremely
similar valence-band LDOS from the Dudarev prescription
and DFT+U d,p

full , α = −J/2, i.e., DFT+U d,p+Jd,p with the
minority spin term intact. This reflects the almost-complete
cancellation of the potentials due to terms (III) and (IV) in
Eq. (2), for a subspace near full occupancy.

B. The first-principles band gap of pristine TiO2-anatase

A similar procedure was followed for pristine TiO2-anatase
as that which we have outlined for TiO2-rutile, except that
only the neutral atomic configuration of Ti was used in the
pseudoatomic solver, in view of our previously discussed
findings. As reflected in the calculated U and J parame-
ters of Tables I and II, the electronic structures of the two
polymorphs are rather similar, and again the valence (con-
duction) band edge is dominated by O 2p (Ti 3d) character
in TiO2-anatase, necessitating DFT+U d,p for successful gap
correction. Shown in Table IV is the fundamental band gap
of TiO2-anatase calculated using LDA and first-principles
DFT+U , DFT+Ueff , DFT+Ufull, and DFT+U+J [minority
spin term (IV) included, spin-averaged, and neglected], both
when applied only to the Ti 3d subshell and when applied also
to the O 2p subshell. The corresponding NGWF-partitioned
Mulliken LDOS plots are show in Fig. 2. We anticipate a slight
overestimation in our calculated gap values for TiO2-anatase,
due to our necessarily finite effective sampling of the Brillouin
zone. The band gap of anatase is of indirect character and,

TABLE IV. The band gap (in eV) of TiO2-anatase calculated
within DFT(LDA), DFT+U with Hund’s J neglected, when treated
within the Dudarev model (Ueff), and when treated in a matter
which fully reproduces DFT+U+J using only DFT+U code for
closed-shell systems (Ufull), both when treated with (α = −J/2)
and without (α = J/2) its minority spin (term IV). DFT+U d and
DFT+U d,p results are separately shown, using parameters calculated
from first principles using the minimum-tracking linear-response
method, using only the neutral pseudoatomic solver configura-
tion Ti0. Prior experimental, first-principles local, semilocal, meta-
generalized-gradient, and semiempirical hybrid functional; pertur-
bative G0W0; empirical and first-principles SCF linear-response
DFT+U (Ref. [82]) values from the literature are provided for
convenient comparison. Our central results are highlighted in bold.

TiO2-anatase Egap

DFT (LDA) 2.21

+U d +U d,p

DFT+U 2.51 4.13
DFT+Ueff = U − J 2.48 3.88
DFT+Ufull = U − 2J, α = −J/2 2.41 3.81
DFT+Ufull = U − 2J 2.45 3.65
DFT+Ufull = U − 2J, α = J/2 2.49 3.50
DFT+U+J (no minority spin term) 2.49 3.50

Experiment [11] 3.47
PBE [19] 1.94
TB-mBJ [77] 3.01
SCAN [78] 2.56
HSE06 [19,79] 3.60
LDA+G0W0 [18] 3.56
PBE+G0W0 [11] 3.61
PBE+G0W0 [19] 3.73
HSE+G0W0 [19] 4.05
DFT+U d (U=7.5 eV) [80] 3.27
DFT+U d (U = 3.23 eV) [82] 2.43
DFT+U d,p (U d = 3.23 eV, U p = 10.59 eV) [82] 4.24
DFT+U d,p (U d = 3.23 eV, U p = 5.0 eV) [82] 3.23

while our sampling is chosen to closely sample the LDA
band edges, we cannot be guaranteed to precisely sample the
valence band maximum (most studies hold the fundamental
gap of rutile to be direct at �, on the other hand, which we do
sample). Again, experimental, first-principles, semiempirical
hybrid, many-body perturbation theory, and several previous
DFT+U results from the literature are shown for comparison.

While anatase has been thoroughly studied using optical
techniques [84], our focus here is on the fundamental elec-
tronic gap. For the latter, very little direct data is available, but
fortunately there has recently been reported angle-resolved
photoemission spectroscopy with n-type doping (to circum-
vent the need for inverse photoemission) in Ref. [11], strongly
supported by temperature-dependent many-body perturbation
theory calculations including electron-phonon coupling. The
fundamental gap reported in the latter work is higher than
that found elsewhere in older studies, and the reason is
that, whereas the commonplace misidentification between the
optical and fundamental gap is not very significant for rutile
(the exciton binding is ∼4 meV), it is not at all reasonable
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FIG. 2. The total and local generalized Kohn-Sham density
of states (LDOS) of pristine TiO2-anatase calculated within
DFT(LDA), DFT+U with Hund’s J neglected, when treated within
the Dudarev model (Ueff), and when treated in a matter which fully
reproduces DFT+U+J using only DFT+U code for closed-shell
systems (Ufull), both when treated with (α = −J/2) and without
(α = J/2) its minority-spin (term IV). The spectrum is partitioned on
a per-species basis using Mulliken analysis based on the variationally
optimized NGWFs. DFT+U d,p results only are shown, using param-
eters calculated from first principles using the minimum-tracking
linear-response method, using only the Ti0 pseudoatomic solver
configuration, and a Gaussian broadening of 0.1 eV. In order to show
the separate effects of the corrective functionals tested on the valence
and conduction bands, each panel uses the mid-gap energy of the
DFT(LDA) calculation for 0 eV.

for anatase, which is reported to exhibit relatively very large
exciton binding ∼0.18 eV effects in its low-energy optical
spectra [11].

The LDA gives a Kohn-Sham band gap of 2.21 eV, sub-
stantially underestimating the experimental electronic gap of

3.47 eV. DFT+U d is ineffective at opening the gap as it is
in TiO2-rutule, given the LDA-appropriate calculated first-
principles U and J parameters. DFT+U d,p opens the gap
very efficiently and, closely mirroring what we found for
TiO2-rutile, both DFT+U with J neglected and Dudarev’s
DFT+Ueff cause the gap to be overestimated.

Similarly, again, first-principles DFT+U+J including O
2p correction gives decent agreement with the experimental
gap, overestimating it by 0.03 eV (0.34 eV) when the minor-
ity spin term is neglected (included). Interestingly, both the
HSE06 and DFT+G0W0 approximations seem to recover the
anatase gap better than the rutile one, based on the available
literature. DFT+Ufull, α = J/2 [which is to say, technically,
first-principles DFT+U d,p+Jd,p with the minority spin term
neglected, which doesn’t require an explicit Hund’s J imple-
mentation for closed-shell systems] seems to be very com-
petitive with respect to both methods as far as both the fun-
damental gap and computational complexity are concerned.
The key ingredient for TiO2 in this sort of method, aside from
the established message that the O 2p subspace needs to be
treated on the same footing as the Ti 3d one, is evidently to
correct both for the usual charge-related (U ) and spin-related
(J) systematic errors in the approximate functional. Indeed,
more generally it has been shown in Ref. [44], by using the
2×2 formalism to analyze the linear-response approach for
Hubbard U parameter calculation, that the non-neglect of
Hund’s J is advisable even on abstract consistency grounds.

IV. CONCLUSIONS

We have shown that the DFT+U+J functional devel-
oped in Ref. [43], in combination with the first-principles
procedure for calculating U and J parameters developed in
Ref. [44], yields fundamental gaps that are in very close agree-
ment with the most sophisticated available zero-temperature-
approaching experimental findings for TiO2. The residual
errors, 0.01 eV for rutile and 0.03 eV for anatase, are within
the anticipated errors due to factors such as neglected zero-
point phonon motion and relativistic effects, the pseudopoten-
tial approximation, imperfect Brillouin zone sampling (more
relevant for anatase), and various sources of experimental
uncertainty. Interestingly, the method performs better than
both hybrid functionals and perturbative G0W0 for the fun-
damental gap, while retaining a semilocal DFT-like level of
computational cost (even linear scaling [70], algorithmically,
though we don’t exploit that here).

An important and surprising finding of this work, which
we go on to discuss in Appendix B, is that, contrary to our ex-
pectation, the first-principles calculation of U and J for TiO2-
rutile acts to reinforce the numerically significant arbitrariness
[85] of DFT+U with respect to the (too often unstated)
choice of localized orbitals defining the subspaces targeted
for correction. The good news here is that it is the default,
neutrally charged, isolated atomic configuration that yields the
accurate gaps. In our experience to date, the introduction of
chemical intuition when defining atomic solver charge states
for DFT+U projector construction yields worsened results
together with worsened convergence behavior.

We judge that our results are, overall, very encouraging
for the continued, very widespread use of DFT+U and its
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extensions for studying TiO2, and that they serve as a coun-
terexample to the concept that such methods are fundamen-
tally limited in their applicability to high-spin systems. It
remains for a future study to establish whether TiO2 is a
special case for the combination of the methods introduced
in Ref. [43] and Ref. [44], or whether it is as successful for
oxides, particularly closed-shell oxides, more generally.

What has hampered closed-shell applications to date, as
highlighted in Ref. [86], have been available Hubbard U val-
ues, calculated or otherwise, that are too high for practical use.
Our results demonstrate that Hund’s J , which is subtracted
from U once in the Dudarev formalism, and effectively twice
in DFT+U+J for closed-shell systems, yielding Ufull = U −
2J , may be the key ingredient in moderating the U . The first-
principles U values in common circulation for Ti 3d orbitals
in TiO2, in the range of approximately 3–4 eV depending on
the projector choice, are perhaps fine after all. Meanwhile, our
directly calculated, relatively high-seeming-at-first U values
for O 2p orbitals in TiO2 (which are more localized than Ti
3d ones; see the plot in Fig. 3) sit among the few previously
reported calculated values for TiO2 in the literature [83,87].

Our results are consistent with the prescriptions detailed in
Refs. [43,44], for the use and calculation of U and J parame-
ters, being correct. The contribution of the explicit unlike-spin
J correction [term (III) in Eq. (2)] to the potential subspace
matrix elements for spin σ , is given by V Jσ

mm′ = Jnσ̄
mm′ . It seems

that this is a very good approximation, given that there are J
parameters involved for two different subspace types and the
net result is very accurate as far as the gap is concerned. Our
results strongly support the conclusions of Ref. [43] that the
minority spin term (IV) of Eq. (2), which arises only due to the
double-counting correction of an unlike-spin interaction that
is unlikely to be well described in the underlying functional in
the first place, should be neglected. Equivalently, they support
the conclusion that the fully localized limit double-counting
term of Refs. [88,89] is sufficient at this level of theory, at
least as far as the potential is concerned.

The DFT+U+J gap is just one aspect of the potential, of
course, and its correctness cannot be used to judge whether the
double-counting in the total energy is correct, for example. In
previous works, we have pointed out cases where the standard
DFT+U potential fails due to nonsatisfaction of Koopmans’
condition [90], or due to inadequate projection onto the states
adjacent to the band edges [91], neither of which effects are
expected to be alleviated particularly by the incorporation of
Hund’s J .

On a similar cautionary note, it is worth emphasizing
that our first-principles calculations of U and J in TiO2

were made simpler by the vanishing occupancy-magnetization
coupling in closed-shell systems, by which we mean that
d (n↑ + n↓)/dβ = 0 = d (n↑ − n↓)/dα. In this case, the ele-
gant formulas of Eq. (8) become unambiguous with respect
to the spin polarization of the perturbing potential. In our
current view, these two formulas are essentially the correct
ones for U and J , neglecting self-consistency over parameters.
As a result, without approximation and very conveniently,
we were able to perturb one spin only and obtain U and J
simultaneously. A disadvantage of this decoupling, however,
is that we cannot judge on the basis of the present calculations

between the merits of the “scaled 2×2” and “simple 2×2”
procedures of Ref. [44], since they become identical.

Overall, there is without doubt much further work to
be done on developing self-contained corrective techniques
such as first-principles DFT+U+J for approximate density
functional theory, which sidestep the evolution of increasingly
costly closed-form functionals. Meanwhile, our results here
may prove to significantly lower the computational barrier
to simulating accurate spectral quantities in large, possibly
defect-containing or disordered supercells of TiO2.
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APPENDIX A: DFT+U ON 2p AND 3d
ORBITALS: DFT+Ud,p

In principle, SIE is harbored by all subshells and cannot
be partitioned out between them, however, it is commonly
more dominant in 3d subshells due to their spatially localized
nature. Hence, in titanium-comprising systems, the Hubbard
correction in DFT+U is conventionally applied to the Ti
3d subshell only. The Hubbard U parameters used for the
3d orbitals of the Ti atom have ranged over ∼2.5–10 eV
[92], and have most commonly been determined by tuning to
some observed quantity [87,93–98]. Even when overlooking
our serious concerns regarding the robustness and conceptual
validity of U value calibration to observable quantities, partic-
ularly when those are not ground-state observables, a practical
problem arises for DFT+U due to the location of Ti on the
extreme left of the transition-metal block.

It is well known that Hubbard U correction to the 3d
orbitals alone is not very effective for opening the band gap
of TiO2, which saturates even with unreasonably large U
values, as the dominant 2p states at the valence band edge
remain barely affected. Moreover, when actually plotted, as
they are in Fig. 3, the 2p pseudoatomic orbitals of O atoms
are rather more localized than their Ti 3d counterparts, and
so it is not at all unreasonable, quite the contrary, to calculate
(or at least tune, where calculation is not possible) Hubbard U
and even Hund’s J parameters for O 2p. Indeed, it has been
demonstrated in several prior works that applying the Hubbard
U correction simultaneously on the 3d orbitals of Ti and
the 2p orbitals of O atoms, symbolically giving DFT+U d,p,
readily addresses the aforementioned gap saturation problem
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FIG. 3. The radial probability distributions of the three pseudo-
orbital types used to define DFT+U (+J) subspaces in this work,
as defined in the main text. The oxygen 2p subspaces are more
localized than their titanium 3d counterparts, and thus are reasonable
candidates for correction testing. The Ti pseudoatomic solver charge
state significantly affects the localization of the 3d orbitals, and the
resulting gaps.

and provides a more accurate description of the band structure
around the Fermi level [45–48].

APPENDIX B: THE EFFECTS ON THE DENSITY
OF STATES OF THE CHOICE OF PSEUDOATOMIC

SOLVER CONFIGURATION FOR GENERATING
THE Ti 3d DFT+U SUBSPACE

For the specific case of rutile, we investigate in detail
here the effect of varying the charge configuration for Ti
used in the pseudoatomic solver [72], which constructs the
set of the pseudoatomic orbitals defining the 3d subspace
of Ti. The neutral configuration is perhaps a natural choice,
giving the relatively smooth, diffuse subspace density shown
in Fig. 3. This results in less pressure on the plane-wave
convergence and, more importantly, it does not rely on any
prior chemical intuition. We also investigated the 3+ atomic
charge configuration, as a slightly more “informed” spatially
localized subspace test case. Given the LDA-appropriate U
and J parameters calculated for each of the two subspace
types and presented in Table I, we performed the matching
DFT+U , DFT+Ueff, and DFT+U+J band-gap calculations,
both within DFT+U d and DFT+U d,p. We also performed
the “cross” calculations in the case of α = 0, i.e., where we
used the 3+ subspace parameters for correcting the neutral
subspace, and vice versa, in order to illustrate the separate
effects of over-localizating the projectors.

The results of these tests are shown in Table V, and a
representative set of LDOS plots are shown in Fig. 4. We
find that first-principles calculation of the Hubbard U and
Hund’s J parameters does not compensate for the arbitrariness
of the subspace choice, for Ti 3d . Instead, it reinforces this
arbitrariness as far as the fundamental gap is concerned in
this system. Table V reveals that this trend holds irrespec-
tive of whether correction is also applied to O 2p orbitals,
denoted DFT+U d,p, or indeed whether we are using DFT+U ,
DFT+Ueff, or DFT+Ufull.

FIG. 4. The total and local generalized Kohn-Sham den-
sity of states (LDOS) of pristine TiO2-rutile calculated within
DFT+U d , separately for Ti0 and Ti3+ subspace definitions, within
DFT+U d+Jd for the same two subspace definitions, and finally
within DFT+U d,p+Jd,p for the Ti3+ definition. The spectrum is
partitioned on a per-species basis using Mulliken analysis based on
the variationally optimized NGWFs. Parameters where calculated
from first principles using the minimum-tracking linear-response
method, and a Gaussian broadening of 0.1 eV was used. Each
panel uses the mid-gap energy of the DFT+U d (Ti0) calculation
for 0 eV.

As previously discussed, the increase in spatial localization
of the 3d subspace, when we move from a neutral to a 3+
configuration, increases the corresponding calculated U and
J parameters. This, of course, increases the predicted gap,
when those parameters are applied to either subspace type.
Moreover, Table V demonstates that, for either fixed set of
parameters, the increase in subspace localization also tends
to open the gap, in this system, in fact by roughly the same
amount. The net increase in the gap in going from the neutral
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TABLE V. This table highlights the arbitrariness of DFT+U with respect to the targeted subspace choice, which is not compensated
for in this system by first-principles calculation of the U and J parameters. Shown is the band gap (in eV) of TiO2-rutile calculated within
DFT(LDA), DFT+U with Hund’s J neglected, when treated within the Dudarev model (Ueff), and when treated in a matter which fully
reproduces DFT+U+J using only DFT+U code (Ufull). DFT+U d and DFT+U d,p results are separately shown, and these depend on the
pseudoatomic solver configuration (neutral or 3+) used to define the targeted Ti 3d subspace, together with the corresponding subspace-
dependent U and J parameters. For the intermediate case of Ufull with α = 0, i.e., DFT+U+J with its minority term split over the two
spins, we show the effect on the gap of separately changing the subspace used to calculate the parameters, and the subspace used to apply
the parameters, revealing that these effects combine to reinforce, not to cancel, the subspace dependence in this system. The gaps from
“mismatched” calculations, with parameters from the other subspace type, are shown in bold.

TiO2-rutile Egap

Subspace definition Ti0 state Ti3+ state

DFT(LDA) 1.96 1.96

+U d +U d,p +U d +U d,p

U 2.24 3.59 2.69 4.20
Ueff = U − J 2.21 3.38 2.63 3.94
Ufull = U − 2J, α = −J/2 2.17 3.32 2.52 3.81
Ufull = U − 2J from Ti0 2.18 3.18 2.31 3.33
Ufull = U − 2J from Ti3+ 2.38 3.46 2.57 3.69
Ufull = U − 2J, α = J/2 2.20 3.04 2.62 3.58
U + J (no minority spin term) 2.20 3.04 2.64 3.58

to 3+ subspace densities shown in Fig. 3, with correspond-
ing first-principles parameters, is thus approximately due,
half-and-half, to the increase in parameters and increase in
localization.

On the basis of these results, we can envisage that both
the first-principles LDA-appropriate U and J parameters, and
the fundamental gap for a fixed reasonable set of parameters,
will attain maxima for some reasonable (though not generally
the same) value of the pseudoatomic configuration charge.
A tentative step towards plotting observables as functions of
a DFT+U subspace localization quantifier was presented in
Ref. [85]. More recently, the projector dependence of DFT+U
results on rutile TiO2 has previously been demonstrated at
fixed U values in Ref. [99].

We do not necessarily expect that the projector ar-
bitrariness reinforcement effect will arise transition-metal
oxides generally, particularly since projector arbitrariness
cancellation has previously been observed in molecular FeO+

using a self-consistently evaluated Hubbard U parameter
[100]. This issue in DFT+U clearly warrants further inves-
tigation on diverse systems using various approaches, such as
parameter [49,68] or projector [85,101] self-consistency.

Pragmatically, we have found, in our minimum-tracking
linear-response calculations to date, that using the sim-
plest, neutral pseudoatomic configuration for constructing
the DFT+U projectors works well relative to more local-
ized charged configurations. This is irrespective of the pseu-
dopotential generator reference state, which is a somewhat
different, technical matter related to the transferability in
norm-conserving pseudopotentials. We note, in passing, that
there is a small discrepancy in the gap from Ti3+-only sub-
space explicit DFT+U+J and the corresponding unmodified
DFT+U code equivalent form with α = J/2, reflecting that
calculations with excessively localized subspaces are typi-
cally less numerically stable, aside from giving less favorable
results.
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