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Fracton topological order hosts fractionalized pointlike excitations (e.g., fractons) that have restricted mobility.
In this paper, we explore even more bizarre realization of fracton phases that admit spatially extended excitations
with restriction on both mobility and deformability. First, we present exactly solvable lattice quantum frustrated
spin models and study their ground states and excited states analytically. We construct a family tree in which
parent models and descendent models share excitation DNA. Second, with the help of solvability and novel
excitation spectrum of these models, we initiate the first step of general discussions on quantitative and qualitative
properties of spatially extended excitations whose mobility and deformability are restricted to some extent.
Especially, as a useful viewpoint for understanding such fracton physics, all excitations are divided into four
mutually distinct sectors, namely, simple excitations, complex excitations, intrinsically disconnected excitations,
and trivial excitations. Several implications in, e.g., condensed matter physics and gravity are briefly discussed.
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I. INTRODUCTION

A. Mobility and deformability

Hunting for unconventional orders—beyond symmetry-
breaking orders—is one of missions of modern condensed
matter physicists. One of popular examples of unconventional
orders is topological order that supports nontrivial topological
excitations, e.g., anyons in the fractional quantum Hall effect
[1,2]. The creation and annihilation quantum operator of a
single topological excitation in the bulk, e.g., e particle in toric
code model, must be nonlocal. This nonlocality also leads
to robustness of topological order against local perturbations,
partially forming the argument on robustness of topological
quantum computation [3]. Meanwhile, proper local operators
can be constructed to spatially move a topological excita-
tion. Even in a tight-binding model, a “topologically trivial”
electron can locally hop from site j to site i under the local
operator ∼c†

i c j . This property is “free mobility.” Recently, the
invalidity of this seemingly obvious property has been found
in a class of many-body systems that support topological ex-
citations called “fractons” [4,5]. If one tries to move a fracton,
extra fractons will be created nearby, causing unfavorable en-
ergy penalty. Quantum mechanically, the mobility restriction
is deeply rooted in the lack of local operators that act on
a one-fracton excited state by merely changing the fracton
location. There are two issues about the lack of mobility to be
clarified. First, in some sense, this lack of mobility in absence
of external disorders and impurities is more or less similar
to the concept of self-localization phenomenon although the
latter arises in some other strongly correlated systems, e.g., in
Ref. [6], via very different microscopic origins. Second, lack
of mobility leads to flat energy dispersion relation, but flat
energy dispersion relation is insufficient for defining a fracton
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phase. All excitations in the Z2 topological order fixed-point
“toric code model” have flat dispersion but all excitations can
be locally moved.

Surprisingly, such stringent restriction on mobility did not
trivialize underlying physics at all. On the contrary, it has been
discovered that mobility restriction leads to unexpectedly rich
quantum phenomena of many-body physics, dubbed “fracton
physics.” For example, in some exactly solvable models,
ground state degeneracy (GSD) is not only topological but
also dependent on the system size! More specifically, GSD of
some models [7] may grow exponentially with respect to the
length/width/height of 3D systems, while, mutually orthogo-
nal degenerate ground states are strictly indistinguishable un-
der any local measurements. Generally speaking, such many-
body systems possess a part of intrinsic defining properties
of pure topological order1 but the thermodynamical limit of
these systems turns out to be quite subtle and unusual. Such an
“unconventional” type of topological order, dubbed “fracton
topological order” represents a brand-new line of thinking
about strongly-correlated topological phases of matter, and
has been gaining much attention recently. Researchers have
successfully made connection between fracton physics and
vast subfields of theoretical physics, including glassy dynam-
ics, foliation theory, elasticity, dipole algebra, higher-rank
global symmetry, many-body localization, stabilizer codes,
duality, gravity, quantum spin liquid, and higher-rank gauge
theory [4,5,7–45]. Some of these subfields, from previous
points of view, seem no doubt “orthogonal” to each other!
Being topically related to the present paper, exactly solvable
lattice models in the literature (e.g., Refs. [5,8,10–21,24])
have been reported in 3D lattice quantum frustrated spin

1Hereafter, for avoiding confusion of terminologies, we use “pure
topological order” to denote the well-known concept “topological
order” [1,2].
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FIG. 1. The family tree of exactly solvable fracton models in all dimensions. The models are labeled by four dimension indexes, which
will be introduced in Sec. IV A. Considering that a model may share a lot of similarities with a lower dimensional model, a part of exactly
solvable models can be organized in a tree diagram. Here every straight line (in either green or red) links a low dimensional parent model and
a high dimensional descendent model. In general, a descendant model may share some “excitation DNA” with its parent model. For example,
a red line means the (i, i + 1)-type excitations in the parent model are promoted to (i + 1, i + 2)-type excitations in the descendent model (as
we shall exemplify in Table II). Even though, due to the existence of Ec excitations, the spectrum of a model can still be quite unpredictable,
as we shall demonstrate in the following sections.

models of types I and II. In type-I series, e.g, the X-cube
model [5], the low-lying excitation spectrum supports both
fractons and “subdimensional particles” whose mobility is
free only inside a subspace (e.g., straight lines formed by links
and flat plane formed by faces of dual lattice) of 3D cubic
lattice. On the contrary, in type-II series, e.g., Haah’s code
[12], all topological excitations are fractons. For readers who
are interested but unfamiliar with the rapid progress in the
field of fracton physics, an up-to-date review in Ref. [46] is
recommended.

Currently, the main stream on the topic of fracton topolog-
ical order focuses on particle excitations which are pointlike.2

Nevertheless, in addition to particles, being a striking theoret-
ical progress in condensed matter physics, spatially extended
excitations, e.g., string and membrane excitations, have been
systematically constructed in 3D and higher dimensional pure
topological order [47]. It should be kept in mind that, higher-
dimensional pure topological order has been analyzed towards
a unified mathematical framework [48–50]. In the presence of
spatially extended excitations, plentiful quantum phenomena
and microscopic justification have been reported analytically,
such as exotic entanglement, symmetry enrichment, adiabatic
braiding statistics and topological quantum field theory, and
higher-category [48,49,51–72]. Therefore it is quite valuable
to move forward to explore underlying physics of spatially
extended excitations that cannot freely move and deform.
With the preparation and interests from both pure topological
order side and fracton physics side, it is time to make efforts to
study the highly unexplored marriage of spatially extended ex-
citations and mobility/deformability restriction. Despite less
progress compared to particle excitations, to the best of our
knowledge, there has been one intriguing field-theoretical

2Just like pure topological order, the geometric shapes of excita-
tions can be properly defined by using continuous space-time only
after smoothing lattice. For example, m particle in the toric code
model on a square lattice is actually labeled by a plaquette operator
whose eigenvalue is flipped, but can be regarded as a pointlike
object once the background lattice is smoothen. It also means that
all geometric structures below the lattice spacing are invisible.

analysis on “fractonic lines” in Ref. [39], i.e., completely
immobile strings. It was claimed that, the presence of such
exotic excitations is tightly related to sophisticated higher-
rank gauge theory and potentially beneficial to quantum error-
correction and quantum storage.

The main results of this paper can be summarized in two
aspects. First, we present exactly solvable lattice quantum
frustrated spin models in three and higher dimensions D � 3.
All models reduce to the aforementioned X-cube model once
dimensions are lowered to 3D. But for the definite space di-
mensions higher than 3D, there are more than one models. All
models form a hierarchical structure of model Hamiltonians.
Some representative series of models are illustrated in Fig. 1
since a part of excitations in these models obey simple dimen-
sion reduction rules. In these models, topologically excited
states contain not only fractonic strings [39], but also more
complex varieties as to be discussed in the main text. Second,
motivated by these models, we initiate the first-step of general
discussions on spatially extended excitations whose mobility
and deformability are restricted to some extent. Both qualita-
tive and quantitative properties in such exotic fracton physics
will be discussed. Along this line of thinking, one challenging
problem is to characterize and classify topological excitations
based on mobility and deformability against local operators.
Pictorially, a spatially extended object in classical mechanics
may leave its original position via either rigid translation
or elastic deformation. To measure the ability of realizing
these two processes, we introduce respectively “mobility”
and “deformability” as mentioned above. Such a classical
scenario looks more complicated than pointlike excitations,
which motivates us to carefully examine how excitations are
deformed and moved under local quantum operators.

Before moving on, we provide some justification for mod-
els in dimensions higher than the physically relevant di-
mensions of three. Traditionally, it is meaningful to study
condensed matter systems only in dimensions of one, two,
and three. It seems unreasonable to go beyond. Nevertheless,
research in all dimensions has been very common, especially
in the field of topological phases of matter. Organizational
principles or mathematical structures of topological phases
of matter are often unveiled during the systematic treatment
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FIG. 2. Sectorization of Hilbert space. It is guaranteed that two
excitations belonging to two different sectors definitely cannot be
changed to each other by any local operators.

via varying dimensions. For example, the periodic table of
free-fermion gapped states with symmetry shows interesting
periodic behaviors when increasing space dimensions topo-
logical insulators, by the procedure of dimensional reduction
[73–76]. In the group-cohomology construction of bosonic
symmetry-protected topological phases (SPT), SPTs in higher
dimensions can be constructed by SPTs in lower dimensions
via Künneth formula of cohomology theory [77,78], which
is physically discussed via the “decoration scenario.” Also
in SPTs, there exist exotic dimension-dependent patterns for
general response theories of bosonic integer quantum Hall
states in all even (spatial) dimensions and bosonic topological
insulators in all odd (spatial) dimensions [79]. There are also
interesting discussions on anomalous topological phases of
matter in 3D [62–64,80]. Quantum anomaly of these states
is expected to be canceled by 4D bulk states [81]. Studies
how to realize interacting topological insulators with synthetic
dimensions and [82] proposes a 4D exactly solvable SPT
model beyond cohomology. The last example is the general
theory of topological order in all dimensions [50] which has
also been mentioned above.

B. Sectorization of Hilbert space

Among many properties of spatially extended excitations,
in this paper, we focus on mobility and deformability under
local operators. In the long-wavelength limit, we demand
that the size of spatially extended excitations is sufficiently
large compared to correlation length. All local operators are
supported in the space whose size is much smaller than the
excitation size such that topology of configuration space in the
presence of excitations (e.g., defects) keeps unaltered under
local operators. We find that the Hilbert space of models
that support fracton topological order can be divided into
four sectors, as shown in Fig. 2. I incooporates all trivial
excited states e.g., local spin flipping, including ground states
themselves as well. Trivial excitations can be created by local
operators above the ground states. The remaining three sectors
are three mutually distinct classes of topological excitations:
simple excitations Es, complex excitations Ec and (intrinsi-
cally) disconnected excitations Ed . Below we shall define
Es, Ec, Ed .

Let us first assume geometric shape of excitations is con-
nected. At infrared scales where lattice has been smoothen
(see footnote 2), simple excitations denoted by Es have
manifoldlike shape, e.g., pointlike, stringlike, membranelike.
All these excitations, once withdrawing the restriction on

mobility and deformability, can appear in pure topological
order [48,49]. Mathematically, all these geometric structures
can be locally regarded as a n-dimensional Euclidean space
(see p. 219 of Ref. [83]), where n = 0 for points (i.e., parti-
cles), n = 1 for strings, n = 2 for membranes, . . .. In order
to characterize simple excitations in a unified framework, in
the present paper, we introduce a pair of integers (n, m). Here,
m denotes the dimension of the subspace where excitations
can freely move and deform.3 Therefore fractons are simply
labeled by (0,0). Likewise, a string excitation whose mobility
and deformability are allowed within a plane is a (1,2)-type
excitation. Obviously, if m = D, then such excitations are
actually mobile and deformable in the whole D-dimensional
space, which exactly covers all excitations in pure topological
order.

On the other hand, for complex excitations denoted by Ec,
physical properties of both geometric shapes and mobility are
entirely different from the above description of simple excita-
tions. The physical characterization (e.g., creation operators,
excitation energy, fusion rules, mobility) is far more intricate
than that of simple excitations. When we consider the con-
nected configurations of excitations, the shapes of complex
excitations can only be non-manifold-like [83], so a pair of
number (n, m) is no longer a good label. And consequently,
the description of mobility and deformability becomes more
complicated. But it is definite that any pointlike excitations
cannot belong to Ec since a point is always a manifold. The
first example of Ec that we will introduce in the main text is
dubbed “chairon” due to its “legless chairlike” shape as shown
in Fig. 7(b). More complicated examples such as “yuons,”
“xuons,” and “cloverions” will be discussed in the main text
associated with Figs. 8 and 10.

Simple excitations and complex excitations defined above
are restricted to geometrically connected shapes. Neverthe-
less, we should naturally generalize these definitions in order
to incorporate some excited states with disconnected pieces.
For disconnected shapes, excitations (more precisely “excited
states”) can be divided into two subclasses: Ed and Ẽd . The
shapes of all excitations in Ed are said to be “intrinsically
disconnected”: there is no way to fuse disconnected pieces
to connected shapes due to restrictions of mobility and de-
formability. To some extent, the existence of Ed is a hallmark
of fracton topological order. On the contrary, all excitations in
Ẽd can always be fused into excitations with connected shapes
of either manifoldlike or non-manifold-like.4 In this sense, all
excitations in Ẽd can be fully covered by either I, Es or Ec.
If non-manifold-like shape is the only option of fusions, the
excitation with disconnected shape is said to be in Ec sector.
In short, we do not separately consider Ẽd in Fig. 2. Applying

3Obviously, m is insufficient to uniquely label a general subspace.
For example, it is reasonable to consider a model where a string
excitation is movable and deformable inside a certain solid torus.
Nevertheless, we only focus on the simplest situation: for dimension-
m, the subspace is a stacking of infinite parallel straight lines (m =
1), flat planes (m = 2), . . . .

4In this paper, we only consider the simplest fusion process: the
output channel is unique.
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TABLE I. Excitations sectors of different models. More details
about the excitations in the listed models are given in Tables IV,
VI, VII, and VIII. � and × denote existence and nonexistence
respectively.

Exactly solvable models I Es Ed Ec

SPT (e.g., cohomological models) � × × ×
Pure topological orders (e.g., 3D toric code models) � � × ×
X-cube model ([0,1,2,3]) � � � ×
[1,2,3,4] � � � �
[0,1,2,4] � � � ×
[1,2,3,5] � � � �
[0,1,4,5] � � � ×
[0,2,4,5] � � � ×
[0,3,4,5] � � � ×
[2,3,4,5] � � � �

this sectorization of Hilbert space to the three-dimensional
X-cube model can be found in Sec. III B.

In summary, the Hilbert space (eigenstate spectrum) can
be divided into four sectors. In a certain sector, all excitations,
after being moved and deformed by arbitrary local operators,
always stay inside the sector. In other words, it is impossible to
change one excitation in a given sector, via local operators, to
another excitation in another sector. We will see in this paper,
this sectorization scheme is very useful in fracton physics of
spatially extended excitations.

C. Exactly solvable models

In the main text of this paper, we discuss the fracton
physics of spatially extended excitations through exactly solv-
able models. Since there are some additional tunable degrees
of freedom within the same spatial dimension D, we find
that at least four dimension indices (note: D is included) are
necessary to label a model. In the following part of this paper,
we will use a tuple [dn, ds, dl , D] with a series of constraints
required by exact solvability conditions. Technical details
of each integer will be given in the main text. For D = 3,
[0,1,2,3] is the only model that is exact solvable. In fact, this
3D model is nothing but the standard X-cube model [8].

While there are usually more than one models for a more
general D, we first pick a typical model series—[D − 3, D −
2, D − 1, D]—to systematically unveil exotic properties of
spatially extended excitations with restricted mobility and de-
formability. The model [0,1,2,4] has similar simple excitation
contents as 3D X-cube model. However, the model [1,2,3,4]
supports a very fruitful topological excitation spectrum with
all three nontrivial sectors, which will be studied in details
in the main text. Some other models, such as [1,2,3,5] will
also be studied in which chairons, xuons, and cloverions are
found. We finally provide a family tree in Fig. 1 to summarize
some models that share similar properties of excitations.
Several interesting rules are found and summarized as a family
tree according to the relation of excitation spectrum between
parent models and descendent models (see the caption for
details).

Some examples are summarized in Table I. It is obvious
from the table that pure topological order only supports
topological excitations in Es with the label (n, m) = (n, D).
For example, in pure topological order represented by 3D toric
code model, pointlike and stringlike excitations are labeled by
(0,3) and (1,3), respectively, both of which belong to Es sector.
On the other hand, fracton topological order support more
than that. The X-cube model supports topological excitations
of Es and Ed sectors while some models constructed in this
paper support all possible sectors.

D. Outline

The remainder of this paper is organized as follows. In
Sec. II, we introduce geometric notations that are necessary
to symbolize derivations in hypercubic lattices. With the help
of these notations, all derivations are transformed into a
computable algebraic way.

In Sec. III, we discuss a series of models called “[D − 3,

D − 2, D − 1, D] models.” A general introduction of the se-
ries is given in Sec. III A, while the X-cube model introduced
in Sec. III B has been naturally incorporated in this series and
labeled by [0,1,2,3]. For beginners of fracton physics, it is
highly recommended to go through the X-cube model where
some notations and physics are useful for later discussions.
In Secs. III C and III D, we work out the model [1,2,3,4] that
exemplifies the construction of spatially extended excitations
of both “simple” and “complex” categories. In this model,
simple excitations are composed by fractons labeled by (0,0),
volumeons labeled by (0,3), and strings labeled by (1,2) with
six flavors. Complex excitations of this model are chairons
and yuons. Considering that in pure topological orders excited
states with separated loops are rarely discussed, Sec. III E is
devoted to a detailed discussion of such states, as now they
are of great importance to understand the bizarre behavior of
[D − 3, D − 2, D − 1, D] models. The construction of gen-
eral (i, i + 1)-type excitations and its possible relationship
with gravity is also presented in Sec. III F.

In Sec. IV, we present a general procedure to produce
a whole class of exactly solvable lattice models for fracton
topological order in all dimensions D � 3. Each model is
labeled by four integers [dn, ds, dl , D], which means that the
above model series [D − 3, D − 2, D − 1, D] is just a tip of
iceberg of model family. The construction and general dis-
cussion of the whole model family is presented in Sec. IV A,
and a family tree based on similarity of excitation spectrum
is drawn in Fig. 1 in Sec. IV B. In Secs. IV C and IV D,
we concretely discuss the model [1,2,3,5], while the model
[0,1,2,4] is also discussed briefly in Sec. IV C. Many examples
of complex excitations, like β-chairons, cloverions, and xuons
are analyzed in details.

Section V is devoted to concluding remarks. Several re-
lated problems are presented for the future investigation.

II. PRELIMINARIES OF GEOMETRIC NOTATIONS

A. Coordinate system and definition of n-cube

In this paper, we are mainly interested in the high-
dimensional models, so it is highly desirable to define and
unify a group of notations for describing high-dimensional
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S1

S2x̂1

x̂2

FIG. 3. Some examples of geometric objects n-cube and S j

embedded in D-dimensional hypercubic lattice.

objects. First, we introduce “n-cube.” It is n-dimensional
analog of a common “cube,” and we use the symbol γn to
denote an n-cube. Some simple examples are shown in Fig. 3.
In other words, 0-cube, 1-cube, and 2-cube are respectively a
lattice site, a link, and a plaquette. Without loss of generality,
we set the hypercubic lattice with periodic boundary condition
to be D-dimensional with lattice constant a = 1. Therefore we
can refer to every n-cube in the lattice by a unique Cartisian
coordinate, which is the coordinate of the geometric center of
γn. Obviously, the coordinate representation of γn is composed
by n half-integers and (D − n) integers. For example, a usual
vertex is a 0-cube. In the remainder of this paper, we may
simply use the coordinate of an n-cube to refer to the n-cube
itself, since the coordinate can uniquely label an n-cube.

In D-dimensional lattice, there are D orthogonal directions:
x̂1, x̂2, . . . , x̂D. For a specific γdn = (x1, x2, . . . , xD), the set
C i

γdn
is a collection of (D − dn) orthogonal directions along

which the coordinates of γdn are integer-valued. Likewise, the
set Ch

γdn
is composed by dn directions along which γdn has

half-integer coordinates. For example, in 3D cubic lattice, for
plaquette (i.e., 2-cube) γ2 = ( 1

2 , 1
2 , 0), we have C i

γ2
= {x̂3} and

Ch
γ2

= {x̂1, x̂2}.

B. Leaf spaces associated with a given cube

In addition to the notion of n-cube, we also introduce a
useful subspace, namely, dl -dimensional leaf space associated
with a given γdn . By “associated” we mean that the γdn must
be fully embedded in the leaf space l , and dl > dn is assumed.
Symbolically, we use l = 〈x̂i1 , x̂i2 , . . . , x̂idl

〉 to uniquely denote
such a subspace. Among these dl orthogonal directions, dn

ones come from the set Ch
γdn

. As a result, the remaining
(dl − dn) ones are arbitrarily picked from the set C i

γdn
. There-

fore there are combinatorially
(D−dn

dl −dn

) ≡ (D−dn )!
(dl −dn )!(D−dl )! differ-

ent choices of leaf space associated with the given γdn .
It must be noted that any lattice site inside the leaf space l

has a coordinate with D components since the lattice site is in
fact a point in D-dimensional lattice. Among D components,
dl components are free variables with orthogonal directions
x̂i1 , x̂i2 , . . . , x̂idl

, which spans a dl -dimensional subspace. The

remaining (D − dl ) coordinate components are fixed and sim-
ply equivalent to corresponding coordinate components of γdn .
Therefore a leaf associated with a given γn can be uniquely
labeled by l as long as γdn is specified. For such a leaf l , we can
define a set of orthogonal directions L = {x̂i1 , x̂i2 , . . . , x̂idl

},
which will be used later.

Let us apply the above notation to the X-cube model (to
be introduced in Sec. III B). The X-cube model has foliation
structure [7,10,22–24], where the leaf space dimension dl =
2, and the model dimension D = 3. The direction index i
in Eq. (5) can be also seen as an index for a leaf space l .
For example, when i = x and the vertex is (0,0,0) (i.e., a
0-cube), Bx

(0,0,0) corresponds to the nearest four σ z’s inside the
〈ŷ, ẑ〉 leaf (i.e., ŷ-ẑ plane with x = 0). In this manner, for the
Hamiltonian in the form of

HX−cube = −J
∑
{γ3}

Aγ3 − K
∑
{γ0}

∑
l

Bl
γ0

, (1)

which is in fact the standard X-cube model that will be given
in Eq. (5), there are in total

(3−0
2−0

) = (3
2

) = 3 different leaf
spaces: 〈ŷ, ẑ〉 , 〈x̂, ẑ〉 , 〈x̂, ŷ〉 planes associated with the vertex
(0,0,0). All of these planes pass through the vertex (0,0,0).

Besides, as higher dimensional leaf spaces shall be used in
the following sections, here it’s also beneficial to give some
examples of leaves in high dimensional models:

Example 1. In the model [1,2,3,4] (to be studied in
Sec. III C), the total space dimension D = 4 and the leaf space
dimension dl = 3. For a 1-cube γ1 = (0, 0, 0, 1

2 ), there are(4−1
3−1

) = 3 leaves associated with it, which are respectively
〈x̂1, x̂2, x̂4〉, 〈x̂1, x̂3, x̂4〉 and 〈x̂2, x̂3, x̂4〉. The coordinate com-
ponent x3 of each lattice site inside 〈x̂1, x̂2, x̂4〉 is 0, which is
exactly determined by x3 of γ1.

Example 2. In the model [0,1,2,4] (to be studied in
Sec. IV C), the total space dimension D = 4 and the leaf space
dimension dl = 2. For a 0-cube γ0 = (0, 0, 0, 0), there are(4−0

2−0

) = 6 leaves associated with it, which are respectively
〈x̂1, x̂2〉, 〈x̂1, x̂3〉, 〈x̂1, x̂4〉, 〈x̂2, x̂3〉, 〈x̂2, x̂4〉 and 〈x̂3, x̂4〉. Both
coordinate components x3 and x4 of each lattice site inside
〈x̂1, x̂2〉 are 0, which are exactly determined by x3, x4 of γ0.

Example 3. In the model [1,2,3,5] (to be studied in
Sec. IV C), the total space dimension D = 5 and the leaf space
dimension dl = 3. For a 2-cube γ2 = (0, 0, 0, 1

2 , 1
2 ), there are(5−2

3−2

) = 3 leaves associated with it, which are respectively
〈x̂1, x̂4, x̂5〉, 〈x̂2, x̂4, x̂5〉 and 〈x̂3, x̂4, x̂5〉. Both coordinate com-
ponents x2 and x3 of each lattice site inside 〈x̂1, x̂4, x̂5〉 are 0,
which are exactly determined by x2, x3 of γ2.

Besides, as examples above suggest, the meaning of the
four indexes in the 4-tuple notation of models are listed below.
(1) The first index dn is the dimension of the dn-cube where a
B term in the Hamiltonian is defined on. (2) The second index
ds is the dimension of the ds-cube where a spin is defined on.
(3) The third index dl is the dimension of the leaf spaces. (4)
The fourth index D is both the dimension of the D-cube where
an A term in the Hamiltonian is defined on, and the dimension
of the whole system. A more detailed definition is given in
Sec. IV.
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C. Definition of “nearest” via L1-norm and L1-distance

L1-distance [84] is a distance function that is different from
the Euclidean distance. In general, since there are various
manners to define the length (a.k.a. norm) of a vector, and
every well-defined length of the difference between two vec-
tors can be used as a distance, we can use the L1-norm to give
the so-called L1-distance. For vector v = (x1, x2, . . . , xd ), its
L1-norm is given by

L1(v) = |x1| + |x2| + · · · + |xd |. (2)

Then, by taking the L1-norm of the difference between two
vectors as a distance function, we obtain the L1-distance
between the two vectors. That is to say, for vector v1 =
(x1, x2, . . . , xd ) and v2 = (y1, y2, . . . , yd ), their L1-distance is
given by

L1(v1, v2) = |x1 − y1| + |x2 − y2| + · · · + |xd − yd |. (3)

In this paper, we use the L1-distance to define whether two
objects are “nearest.” If an m-cube and an n-cube are said
to be “nearest” to each other, the L1-distance should be
L1(γm, γn) = |m−n|

2 when m �= n. For m = n, we specially
define two n-cubes being nearest if L1(γ 1

n , γ 2
n ) = 1.

D. Stacking of cubes: straight string,
flat membrane, and beyond

Moreover, in order to specify a region in hypercubic lattice,
we also need a group of notations to denote “flat” objects
composed by n-cubes, like higher dimensional analogs of
straight strings and flat membranes. Here, we define a j-
dimensional analog of a straight string (in the original lattice)
S j as a stack of nearest j-cubes where all the j-cubes share
the same coordinates along orthogonal directions collected in
the set C i

γ j
. The simplest examples are straight lines S1 and

flat membranes S2 as shown in Fig. 3. In this figure, let us
assume D = 3. Then, C i

γ1
= {x̂2, x̂3}, C i

γ2
= {x̂3}. All 1-cubes

(i.e., links) in S1 share same integer-valued coordinates along
both x̂2 and x̂3, and all 2-cubes (i.e., plaquettes) in S2 share
same integer-valued coordinates along x̂3/. When we need to
specify a Si−1 which is located at the convergence of two Si,
we will also use Ci−1 to refer to it.

In a similar manner, we may define flat geometric objects
in the dual lattice of the original lattice. More concretely, a
k-dimensional analog (denoted by Dk) of a flat membrane in
the dual lattice can be defined as a stack of nearest (D − k)-
cubes in the original lattice, where all the (D − k)-cubes share
the same values for coordinates along orthogonal directions
collected in the set Ch

γD−k
. Alternatively speaking, a Dk is just

an Sk if the dual lattice and original lattice are switched. For
instance, A D2 in 3D space is a connected set of parallel
links (i.e., 1-cubes γ1) all of which share the same Ch

γ1
. The

creation operator of fractons in the X-cube model is defined on
a D2 in 3D.

Specially, sometimes we may also use Dk
p to denote a stack

of nearest p-cubes in the original lattice, where all the p-
cubes share the same values for coordinates along orthogonal
directions collected in the set Ch

γp
∪ Csi

γp
. Here, Csi

γp
is a subset of

C i
γp

which satisfies |Csi
γp

| = D − k − p. Different from the pre-
viously defined objects, since Csi

γp
is not completely specified,

a Dk
p cannot be totally determined by γp, k and p, so additional

information is needed to specify a Dk
p. For example, in 3D X-

cube model we will use D1
1, i.e., p = k = 1 and D = 3. Let us

consider a 1-cube γ1 = ( 1
2 , 0, 0), so the two sets of orthogonal

directions are fixed: Ch
γ1

= {x̂1} and C i
γ1

= {x̂2, x̂3}. Therefore
Csi

γ1
= {x̂2} or {x̂3}, leading to two choices: Ch

γ1
∪ Csi

γ1
= {x̂1, x̂2}

or {x̂1, x̂3}. As a result, there are two possible directions for
stacking 1-cubes in D1

1, i.e., {( 1
2 , 0, j)| j = 0, 1, 2, . . . } and

{( 1
2 , i, 0)|i = 0, 1, 2, . . . }. When we need to specify a Dk

p in
the remainder of this paper, additional information will always
be given in the context.

As for boundaries, the boundary ∂S1 is simply given by
the two endpoints of S1; the boundary ∂S2 is a closed string;
It’s a bit difficult to define the boundary of a Dk , but the
vertices of Dk can be naturally obtained by regarding Dk as
a k-dimensional polytope.

III. [D − 3, D − 2, D − 1, D] MODEL SERIES

A. Construction of [D − 3, D − 2, D − 1, D] models

In this section, we first consider models on a D-
dimensional hypercubic lattice where spins are located on
(D − 2)-cubes instead of links, while keeping the basic
form of X-cube Hamiltonian unaltered. By introducing a
4-tuple notation, this consideration is called [D − 3, D − 2,

D − 1, D] models. The Hamiltonian of general form is given
by (J > 0 and K > 0 are always assumed):

HD = −J
∑
{γD}

AγD − K
∑

{γD−3}

∑
l

Bl
γD−3

, (4)

where AγD is the product of spin operators σ x’s located on
the centers of (D − 2) cubes that are nearest5 to hypercube
γD. In this series of models, a B operator is associated with a
dn-cube and a leaf space l with dn = D − 3 and dl = D − 1.
More concretely, Bl

γD−3
is the product of all σ z’s which are

not only nearest to γD−3 but also located inside the leaf
l . The number of leaf spaces associated with each γdn is
always

(D−dn

dl −dn

) ≡ (D−dn )!
(dl −dn )!(D−dl )! = 3!

2! = 3 regardless of D. In
the following sections, we will concentrate on [0,1,2,3] and
[1,2,3,4] these two models to explore their excitation spectra.
Especially there are simple dimension reduction rules for
simple excitations in this model series as shown in Fig. 1. The
details are collected in Table II.

B. The X-cube model as [0,1,2,3]

The well-understood X-cube model is labeled by [0,1,2,3]
in our notation. As the name suggests, X-cube model is
defined on a cubic lattice, with 1/2-spins sitting on links. The
Hamiltonian is of the form [8]

HX-cube = −J
∑

c

Ac − K
∑

v

∑
i

Bi
v (5)

which is alternatively written as Eq. (1) in terms of geometric
notations. Here, the term Ac of a given cube c consists of

5The accurate definition of “nearest” is given in Sec. II C.
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TABLE II. Typical examples of simple excitations (i.e., Es

sector) in [D − 3, D − 2, D − 1, D] models.

D Excitations labels Creation operators

3 (0,0)
∏

γ1∈D2

σ z
γ1

(0,1)
∏

γ1∈S1

σ x
γ1

(0, 2)
∏

γ1∈D1
1

σ z
γ1

4 (0,0)
∏

γ2∈D2

σ z
γ2

(1,2)
∏

γ2∈S2

σ x
γ2

(0, 3)
∏

γ2∈D1
2

σ z
γ2

5 (0,0)
∏

γ3∈D2

σ z
γ3

(2,3)
∏

γ3∈S3

σ x
γ3

(0, 4)
∏

γ3∈D1
3

σ z
γ3

the product of the x components (i.e., σx) of the twelve spins
around the cube c; Bi

v means the product of σz’s that are (i)
inside the 2D plane that is perpendicular to the direction i
and (ii) nearest to the vertex v. The summation of c and v are
respectively over all cubes and vertices, while the summation
of i is over the three spatial dimensions. The model is shown
pictorially in Fig. 4.

With the σ z basis, we can regard the links with σ z = −1
as being “occupied” by strings and the links with σ z = 1
spins as being “unoccupied.” In this manner, the total Hilbert
space can be alternatively represented by all kinds of different
string configurations including both open and closed strings.
Then, by solving the equations Ac = 1, ∀ c and Bi

v = 1, ∀ v,
with the open boundary condition, we can directly derive the
ground state as |si〉: |�〉 = ∏

c
1+Ac√

2
|↑↑↑ . . . ↑〉, where |↑↑↑

. . . ↑〉 refers to the state with zero string. In the remainder
of this paper, |↑↑↑ . . . ↑〉 will be used as a reference state
frequently. The ground state of Eq. (5) is dubbed as “cage-net”
condensation [24]. If we consider the X-cube model on a

FIG. 4. Terms in the X-cube Hamiltonian. As shown in the
figure, the Ac term is composed of the 12 spins (σ x) on the edges
of the cube, while the Bz

v term is composed of the four spins (σ z)
on the legs of a vertex. For simplicity, only one of the three Bi

v

terms (i = x, y, z) on the vertex v is shown, while Bx
v = ∏

σ z and
By

v = ∏
σ z are not shown.

TABLE III. Typical examples of excitations in [0,1,2,3] model.
Simple excitations are labeled by a pair of integers.

Flipped Creation
Excitations Sectors stabilizers operators

fracton: (0,0) Es Aγ3

∏
γ1∈D2

σ z
γ1

lineon: (0,1) Es Bl
γ0

∏
γ1∈S1

σ x
γ1

connected planeon: (0,2) Es Aγ3

∏
γ1∈D1

1

σ z
γ1

disconnected planeon Ed Aγ3

∏
γ1∈D2

σ z
γ1

3-torus of the size L×L×L, the ground state will be degen-
erate, and the ground state degeneracy (GSD) is given by
log2 GSD = 6L − 3. The linear term here is also a significant
feature of fracton orders, as it means that the GSD grows
subextensively [7,8].

Some representative excitations of the X-cube model are
summarized in Table III. In the X-cube model, there are two
most important classes of excitations—lineons and fractons,
which are respectively originated from the eigenvalue flip of
Bi

v and Ac terms. Let us explain in details. (1) An excited state
with one lineon. The Bi

v = −1 excitations, dubbed “lineons,”
are generated by string operator W (S1) = ∏

γ1∈S1 σ x
γ1

com-
posed of σ x

γ1
along the open string S1 which must be absolutely

straight. The pointlike excitations at the endpoints of a string
are restricted in the line where the string sits, thus the name
“lineons.” In our notation, the end-of-string excitations are
(0,1)-type pointlike excitations and belong to Es. For example,
if the string S1 is along x̂ axis, the eigenvalues of both By

v

and Bz
v at each endpoint of S1 will be flipped, rendering 2K

energy cost. Therefore there are in total three lineons, denoted
by �x, �y, and �z, where the subscripts denote the directions of
straight lines along which lineons can move.

(2) An excited state with two spatially separate lineons.
If �x and �y are able to meet at some point, they fuse into
�z which is still a point, a zero-dimensional manifold. An
excited state with these two spatially separate pointlike pieces
(i.e., �x and �y) belongs to Ẽd which is, by definitions in
Sec. I B, eventually Es. But �x and �y are unable to meet
each other if the two straight lines do not intersect. If this
is the case, the geometric shape of the excited state with a
pair of �x and �y is intrinsically disconnected. As a result,
such an excited state belongs to Ed rather than Ẽd . Likewise,
if there are two �x lineons that move along two parallel
straight lines of x direction, such an excited state is also in
Ed since the geometric shape (two spatially separate points)
are intrinsically disconnected.

(3) An excited state with one fracton. In addition to lineons,
the Ac = Aγ3 = −1 excitations correspond to fractons [i.e.,
(0,0)-type excitations] associated to the cube c. Fractons, as
pointlike excitaitons, belong to Es. More precisely, fractons
are created by operators of the form W (D2) = ∏

γ1∈D2 σ z
γ1

,
where D2 is an absolutely flat two-dimensional membrane in
the dual lattice. The cubes c’s are located at the corners of D2,
each of which requires J energy cost. For example, if D2 is
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FIG. 5. Graphical representation of γD−3 in some [D − 3, D − 2, D − 1, D] models. Here, (b) is the graph representation of the γD−3 =
(0, 0, 0) presented in (a). As we can see, in higher dimensions, the graph representation of a γD−3 is completely the same as in the 3D case: a
γD−3 always connects 3 pairs of γD−2, which means 3 pairs of spins in [D − 3, D − 2, D − 1, D] models.

simply a rectangular, there will be four emerged fractons at the
four corners. One can show that fractons are totally immobile.
More concretely, moving a single fracton by applying spin
operators will create additional new fractons nearby.

(4) An excited state with two fractons. Despite that fractons
are immobile, a pair of two nearby fractons generated by one
membrane can move freely in the 2D plane perpendicular to
the link between the two combined fractons. Thus these pairs,
dubbed “connected planeons”, are identified as (0,2)-type
excitations in Es sector in our notation when the component
fractons are exactly next to each other. If the two component
fractons are separate, the corresponding excitation is called
“disconnected planeons,” which belong to Ed . Two types of
planeons cannot be changed to each other by local operators
since they belong to different sectors of Hilbert space.

C. Simple excitations in the model [1,2,3,4]

In the remainder of this section, we focus on the model
[1,2,3,4]. In this model, for a specific 4-cube γ4 = ( 1

2 , 1
2 , 1

2 , 1
2 )

and a specific 1-cube γ1 = (0, 0, 0, 1
2 ), respectively, we have6

A( 1
2 , 1

2 , 1
2 , 1

2 ) = σ x
(0,0, 1

2 , 1
2 )σ

x
(0,1, 1

2 , 1
2 )σ

x
(1,0, 1

2 , 1
2 )σ

x
(1,1, 1

2 , 1
2 )

σ x
(0, 1

2 ,0, 1
2 )σ

x
(0, 1

2 ,1, 1
2 )σ

x
(1, 1

2 ,0, 1
2 )σ

x
(1, 1

2 ,1, 1
2 )

σ x
(0, 1

2 , 1
2 ,0)σ

x
(0, 1

2 , 1
2 ,1)σ

x
(1, 1

2 , 1
2 ,0)σ

x
(1, 1

2 , 1
2 ,1)

σ x
( 1

2 ,0,0, 1
2 )σ

x
( 1

2 ,0,1, 1
2 )σ

x
( 1

2 ,1,0, 1
2 )σ

x
( 1

2 ,1,1, 1
2 )

σ x
( 1

2 ,0, 1
2 ,0)σ

x
( 1

2 ,0, 1
2 ,1)σ

x
( 1

2 ,1, 1
2 ,0)σ

x
( 1

2 ,1, 1
2 ,1)

σ x
( 1

2 , 1
2 ,0,0)σ

x
( 1

2 , 1
2 ,0,1)σ

x
( 1

2 , 1
2 ,1,0)σ

x
( 1

2 , 1
2 ,1,1), (6)

and

B〈x̂1,x̂2,x̂4〉
(0,0,0, 1

2 )
= σ z

( 1
2 ,0,0, 1

2 )
σ z

(− 1
2 ,0,0, 1

2 )
σ z

(0, 1
2 ,0, 1

2 )
σ z

(0,− 1
2 ,0, 1

2 )
,

B〈x̂2,x̂3,x̂4〉
(0,0,0, 1

2 )
= σ z

(0, 1
2 ,0, 1

2 )
σ z

(0,− 1
2 ,0, 1

2 )
σ z

(0,0, 1
2 , 1

2 )
σ z

(0,0,− 1
2 , 1

2 )
,

B〈x̂1,x̂3,x̂4〉
(0,0,0, 1

2 )
= σ z

( 1
2 ,0,0, 1

2 )
σ z

(− 1
2 ,0,0, 1

2 )
σ z

(0,0, 1
2 , 1

2 )
σ z

(0,0,− 1
2 , 1

2 )
.

(7)

Although the model looks strange at first sight, it is just a
generalization of the 3D X-cube model given by Eq. (5) and
its equivalent form Eq. (1) (another 4D generalization is the

6See the “Example 1” in Sec. II B for an introduction to the leaves
in model [1,2,3,4].

model [0,1,2,4], which is discussed in Sec. IV C). As we can
see that once we choose D = 3 in Eq. (4), the model would
simply reduce to Eq. (1). In other words, the X-cube model
is the simplest case in the series [D − 3, D − 2, D − 1, D].
Furthermore, an AγD always overlaps with a nearest B operator
by even number of spins, as an AγD always covers one of each
pair of spins linked by a nearest γD−3, and a B operator is com-
posed of 2 such pairs. Therefore our generalized models are
still exactly solvable. Figure 5 gives a graph demonstration.

The ground state configuration must satisfy the following
conditions: AγD |φ〉 = |φ〉, Bl

γD−3
|φ〉 = |φ〉,∀ γD, γD−3, l,.

Topological excitations appear in the region where one or a
proper combination of these conditions is violated. In the σ z

basis, we can regard the ground states as condensations of
“D-cage nets”, where “D-cage” is the D-dimensional analog
of the “cage” proposed in Ref. [24]. When the boundary of
the system is open, we can obtain the ground state wave
function as the equal-weight superposition of all D-cages:
|�〉 = ∏

γD

1+AγD√
2

|↑ ↑↑ . . . ↑〉. Here |↑ ↑↑ . . . ↑〉 is a refer-
ence state where spins are all upward along z axis.

Next, we move on to the excitation spectrum of the model
Hamiltonian given by Eq. (4). We shall begin with the energy
cost of “simple excitations.” When the lattice constant a
goes to 0, these excitations will look like some connected
manifolds, like points, strings, membranes and so on. Elemen-
tary introductions to manifold can be found on Page 219 of
Ref. [83].

Analogous to the original X-cube model, the most
representative simple excitations in the model [1,2,3,4]
can be classified into two classes: (0,0)-type excita-
tions and (1,2)-type excitations. The former are ex-
cited by operators W (D2) = ∏

γ2∈D2 σ z
γ2

, resulting in eigen-
value flip (i.e., 1 → −1) of Aγ4 for γ4’s at the cor-
ners of the D2. The latter are excited by W (S2) =∏

γ2∈S2 σ x
γ2

, resulting in eigenvalue flip (i.e., 1 → −1)
of Bl

γ1
for γ1’s along ∂S2. For the sake of convenience, we

will use the expressions A = −1 and B = −1 to describe
such eigenvalue flip. The general definition of the notations
D2 and S2 can be found in Sec. II. Starting from the next
section, we will discuss the excitation spectrum of this model
systematically. Some excitations are collected in Table IV.

1. (0,0)-type pointlike excitations (fractons)

Firstly, let’s consider the (0,0)-type excitations, i.e., frac-
tons. When we act W (D2) = ∏

γ2∈D2 σ z
γ2

on the ground state,
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TABLE IV. Typical examples of excitations in the model [1,2,3,4]. Note: excitations in Sec. III E are collected separately in Table V.

Excitations Sectors Flipped stabilizers Creation operators

fracton: (0,0) Es Aγ4

∏
γ2∈D2

σ z
γ2

(1,2) Es Bl
γ1

∏
γ2∈S2

σ x
γ2

connected volumeon: (0,3) Es Aγ4

∏
γ2∈D1

2

σ z
γ2

chairon Ec Bl
γ1

∏
γ2∈S2

I
σ x

γ2

∏
γ2∈S2

II
σ x

γ2
, where ∂S2

I ∩ ∂S2
II = C1 �= ∅

yuon Ec Bl
γ1

∏
γ2∈S2

I
σ x

γ2

∏
γ2∈S2

II
σ x

γ2

∏
γ2∈S2

III
σ x

γ2
, where ∂S2

I ∩ ∂S2
II ∩ ∂S2

III = C1 �= ∅
disconnected volumeon Ed Aγ4

∏
γ2∈D2

σ z
γ2

the minimal polytope P that envelops all the spins (σ z’s)
acted on by W (D2) is four-dimensional. Obviously, all 4-
cube operators Aγ4 inside P will contain even number of
σ x’s that are acted on by W (D2), which keeps eigenvalues
of all such operators Aγ4 unaltered, i.e., Aγ4 = 1 for γ4 ∈ P.
Nevertheless, for all γ4’s that sit on the corners (i.e., vertices
of D2) have only one spin per γ4 that is acted on by W (D2),
which flips the eigenvalue of these Aγ4 , i.e., Aγ4 = −1 for
such γ4’s.

For example, we can apply W (D2) = ∏
γ1∈D2 σ z

γ1
on

the ground state, where, according to the definition in
Sec. II, D2 = {(i, j, 1

2 , 1
2 )|i, j = 0, 1, . . . , L}. Geometrically,

D2 forms a square of L×L, L ∈ Z. For any hypercube (m +
1
2 , n + 1

2 , 1
2 , 1

2 ), where m, n = 0, 1, 2, . . . , L − 1, there are al-
ways four spins located at respectively (m, n, 1

2 , 1
2 ), (m +

1, n, 1
2 , 1

2 ), (m, n + 1, 1
2 , 1

2 ) and (m + 1, n + 1, 1
2 , 1

2 ) that are
acted on by W (D2). Therefore the associated operators Aγ4

have their eigenvalues unchanged, i.e., Aγ4 = 1. Only for the
4-cubes at the corners, like γ4 = (− 1

2 ,− 1
2 , 1

2 , 1
2 ), there is just

one spin per γ4 acted on by W (D2), thus Aγ4 = −1 (i.e., we
can say the operator is excited). As a result, it’s straightfor-
ward to conclude that these excitations are of (0,0)-type, as
any movement of such an excitation will create more corners
associated with additional excitations and energy cost. See
Fig. 6(a) for a schematic demonstration.

2. (0,3)-type pointlike excitations (connected volumeons)

In the model [1, 2, 3, 4], a pair of two fractons at two
neighboring corners of a membrane in the dual lattice are not
a planeon anymore. Instead, these pairs become “volumeons”
for an observer in a 4D world. While it should be noticed
that such a pair in general can belong to either Es sector
or Ed sector, and here we only consider the Es-type pair in
which two γ4 associated with the two fractons are nearest
to each other, so we can label it by (0,3). This excited state
is called “connected volumeons,” analogous to “connected
planeons” in Table III. For instance, we can consider acting
the open string operator W (D1

2) = ∏
γ2∈D1

2
σ z

γ2
on the ground

FIG. 6. Fractons and string excitations in the model [1, 2, 3, 4].
(a) demonstrates the distribution of fractons excited by W (D2) =∏

γ2∈D2 σ z
γ2

. Flipped spins sitting on 2-cubes represented by dots are
distributed on the sites of a 2-dimensional array, which is exactly the
D2. The red dots at the corners of the D2 refer to the spins that are
nearest to an excited nearest 4-cube operator Aγd , and the blue dots
refer to the spins whose nearest Aγd ’s are not excited at all. In (b) the
blue plaquettes label untouched spins while the grey plaquettes label
the spins on which W (D2) acts. The string excitation as the domain
wall is highlighted with red lines.
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FIG. 7. A (1, 2)x̂1,x̂2 -type excitation cannot freely escape from the plane x̂1-x̂2. (a) A string excitation (marked by the red line) with restricted
mobility and deformability, labeled by (1, 2)x̂1,x̂2 . By applying proper local operators, a part of the string moves to x̂1-x̂3 plane but at the
unavoidable localized energy price along the crease line in yellow in (b), which leads to the deformability restriction. Alternatively speaking,
the state in (b) is no longer a single-string excitation. It is similar to moving a single fracton, where the consequence is to arrive at a state
with multiple fractons. For comparison, if (a) is produced in pure topological order, (a) can be deformed to (c) such that the shape of a loop is
gradually and freely deformed out of the plane.

state, where D1
2 = {(0, i, 1

2 , 1
2 )|i = 0, 1, 2, 3, . . . , L − 1, L}.7

After that, in the neighborhood of an endpoint of the D1
2, e.g.,

(0, 0, 1
2 , 1

2 ), there are two nearest 4-cube operators Aγ4 with
γ4 = (− 1

2 ,− 1
2 , 1

2 , 1
2 ) and γ4 = ( 1

2 ,− 1
2 , 1

2 , 1
2 ) whose eigenval-

ues are flipped. These two 4-cubes form a pair of nearest
fractons, whose energy is 2J . Define a vector r connecting
the two 4-cubes: r = ( 1

2 − (− 1
2 ),− 1

2 − ( 1
2 ), 1

2 − 1
2 , 1

2 − 1
2 ) =

(1, 0, 0, 0). Then, the pair of fractons can be regarded as a
dipole whose moment point in the direction r, i.e., x̂1.

For the issue of mobility, let us attempt to act σ z
(0,− 1

2 ,0, 1
2 )

to move the pair out of the line where the string is located
at. As we can see, since σ z

(0,− 1
2 ,0, 1

2 )
flips the sign of Aγ4

for γ4 ∈ {( 1
2 ,− 1

2 , 1
2 , 1

2 ), (− 1
2 ,− 1

2 ,− 1
2 , 1

2 ), ( 1
2 ,− 1

2 ,− 1
2 , 1

2 ),
(− 1

2 ,− 1
2 , 1

2 , 1
2 )}, σ z

(0,− 1
2 ,0, 1

2 )
can move the pair along x̂4 di-

rection. Since (0,− 1
2 , 0, 1

2 ) and (0,− 1
2 , 1

2 , 0) are symmetric
about the string, the pair can also be moved along the x̂3

direction. As a result, the mobility of the pair is restricted in
the three-dimensional leaf space 〈x̂2, x̂3, x̂4〉 with x1 = 0.

3. (1,2)-type string excitations of six flavors

Next we consider excitations associated with flipped eigen-
values of Bl

γ1
. For each γ1, there are three associated leaves

labeled by l . We find that there are six flavors of (1,2)-type
excitations—string excitations8 that are created and moved
within a certain plane only, i.e., x̂1-x̂2, x̂1-x̂3, x̂1-x̂4, x̂2-x̂3,
x̂2-x̂4, and x̂3-x̂4. An example is given in Fig. 6(b) [see also
Fig. 7(a)]. We use the symbol “(1, 2)x̂i,x̂ j ” with two integers
1 � i < j � 4 to specify flavors.

More concretely, let us apply an open membrane operator
W (S2) = ∏

γ2∈S2 σ x
γ2

on the ground state. For γ1’s at the in-
terior of S2, by noting that there always exists exactly one

7Here “string” means that all spins acted on by the operator form
an open string. The precise definition of D1

2 is given in Sec. II).
8Both words “string” and “loop” will be used for the name of such

excitations.

pair of spins linked by each γ1 being acted on by W (S2),
the associated operators Bl

γ1
will keep their eigenvalues (i.e.,

B = 1) unaltered after W (S2) is applied. Only for γ1 ∈ ∂S2,
i.e., γ1’s that form the boundary of S2, the eigenvalues of
the associated operators Bl

γ1
will be flipped, i.e., B = −1,

as shown in Fig. 6(b). That is to say, these Bl
γ1

operators
with flipped eigenvalues constitute string excitations, of which
the energy cost (i.e., excitation energy) is proportional to the
length of the string.

Analogous to X-cube model, W (S2) here can be classified
into 6 “flavors” according to 6 different planes (i.e., x̂1-x̂2,
x̂1-x̂3, x̂1-x̂4, x̂2-x̂3, x̂2-x̂4, and x̂3-x̂4) where S2 is located, and
W (S2) of different flavors will flip different combinations
of Bl

γ1
’s. In general, after applying W (S2) with S2 being

inside the x̂i-x̂ j plane, there will be exactly two flipped Bl
γ1

terms at each γ1 along ∂S2, i.e., B
〈x̂i,x̂ j ,x̂k〉
γ1 and B

〈x̂i,x̂ j ,x̂h〉
γ1 . Here,

i, j, k, h ∈ {1, 2, 3, 4} and i, j, k, h are all different from each
other. For example, by acting W (S2) on the ground state,
where S2 = {(n + 1

2 , m + 1
2 , 0, 0)|m, n = 0, 1, 2, . . . , L − 1},

for an arbitrary γ1 along the boundary of S2, the eigenvalues
of both B〈x̂1,x̂2,x̂3〉

γ1
and B〈x̂1,x̂2,x̂4〉

γ1
will be flipped. As a result,

we find that the energy cost of this string excitation labeled
by (1, 2)x̂1,x̂2 in the model [1,2,3,4] is 2KL, where L is the
length of the string. Before moving forward, let us summarize
the “stabilizers” whose eigenvalues are flipped for (1,2)-type
excitations of each flavor (γ1 ∈ ∂S2):

(1) (1, 2)x̂1,x̂2 : B〈x̂1,x̂2,x̂3〉
γ1

and B〈x̂1,x̂2,x̂4〉
γ1

[note: an example is
given in Fig. 7(a)];

(2) (1, 2)x̂1,x̂3 : B〈x̂1,x̂2,x̂3〉
γ1

and B〈x̂1,x̂3,x̂4〉
γ1

;
(3) (1, 2)x̂1,x̂4 : B〈x̂1,x̂2,x̂4〉

γ1
and B〈x̂1,x̂3,x̂4〉

γ1
;

(4) (1, 2)x̂2,x̂3 : B〈x̂1,x̂2,x̂3〉
γ1

and B〈x̂2,x̂3,x̂4〉
γ1

;
(5) (1, 2)x̂2,x̂4 : B〈x̂1,x̂2,x̂4〉

γ1
and B〈x̂2,x̂3,x̂4〉

γ1
;

(6) (1, 2)x̂3,x̂4 : B〈x̂1,x̂3,x̂4〉
γ1

and B〈x̂2,x̂3,x̂4〉
γ1

For the issue of mobility and deformability, the string
excitation has a novel property here: it is restricted in the
2D plane where S2 lies. Without loss of generality, as shown
in Fig. 7, let us try to move the string excitation out of the
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plane where S2 lies, by folding S2 in x̂1-x̂2 plane into S2
I in

x̂1-x̂3 plane and S2
II in x̂1-x̂2 plane. The crease line denoted by

C1 is along x̂1 direction. Nevertheless, this process will cost
additional energy localized along C1. Therefore moving or
deforming the (1,2)-type excitation out of the original plane
is forbidden. Alternatively speaking, folding the loop in (a)
only results in the state in (b) which is not a single loop state,
thus deformation out of plane is forbidden. So, what does free
deformation look like? In a pure topological order, a loop in
(a) can be sent to (c) by local operators such that the loop
gradually evolves into x̂1-x̂2 plane without any obstruction. In
Sec. III D, we will see that the excited state represented by
Fig. 7(b) actually belongs to Ec sector.

However, can the string excitation move and deform freely
within the plane where it is located? It is easy to see that by
applying W (S2) one can change the geometric shape of the
string within the same plane. Moreover, no additional energy
cost is required as long as the total length L is unchanged. In
this sense, the string excitation can move and deform freely
within a 2D subspace, so that such string excitations in our
notation are labeled by (1,2). For instance, let us apply

W (S2
I ) =

∏
γ2∈S2

I

σ x
γ2

(8)

on the ground state, where S2
I = {(n + 1

2 , m + 1
2 , 0, 0)|m, n =

0, 1, 2, . . . , L − 1}. For an arbitrary 1-cube, say ( 3
2 , 1, 0, 0)

inside S2
I , we can easily check that W (S2

I ) acts on two nearest
spins at ( 3

2 , 1
2 , 0, 0) and ( 3

2 , 3
2 , 0, 0), so there will be no excited

Bl
( 3

2 ,1,0,0)
. While for γ1 = ( 1

2 , 0, 0, 0) on the boundary of S2
I ,

since W (S2
I ) only acts on one nearest spin (at ( 1

2 , 1
2 , 0, 0)),

so two Bl
( 1

2 ,0,0,0)
terms will be excited. Immediately after

applying W (S2
I ) on the ground state, we apply

W (S2
II ) =

∏
γ2∈S2

II

σ x
γ2

, (9)

where S2
II = {(h + 1

2 , 0, k + 1
2 , 0)|h, k = 1, 2, . . . , L − 1}.

For γ1 = ( 1
2 , 0, 0, 0) ∈ ∂S2

I ∩ ∂S2
II , there will be still two

excited Bl
( 1

2 ,0,0,0)
terms, which are respectively B〈x̂1,x̂2,x̂4〉

( 1
2 ,0,0,0)

and

B〈x̂1,x̂3,x̂4〉
( 1

2 ,0,0,0)
.

D. Complex excitations in the model [1,2,3,4]

1. Chairons of 12 flavors

In the above discussions, we have analyzed three types of
simple excitations in the model [1,2,3,4]: fractons (0,0), vol-
umeons (0,3), and strings (1,2). All these excitations belong
to the category of “simple excitations” (Es) as they are just
simple geometric objects like points and strings. Surprisingly,
we find that in the model [1,2,3,4], there also exist complex
excitations (Ec) whose geometric structure is quite fruitful and
is absent in the X-cube model in 3D. As mentioned above,
the excited state in Fig. 7(b) is obtained by folding the string
excitation (1, 2)x̂1,x̂2 at the price of additional energy cost.
As a matter of fact, the resulting shape in Fig. 7(b) with
both red and yellow lines can be considered as a complex
excitation. It is called “chairon” due to its “chair” shape.

As the chairon example in Fig. 7(b) demonstrates, the most
remarkable feature of complex excitations is that the energy
is not distributed along manifoldlike objects. For instance,
when we consider a convergence of yellow and red lines in
Fig. 7(b), it’s obvious that the bifurcation of lines cannot be
homeomorphous to a 1D Euclidean space [83]. Therefore we
cannot simply label such an excitation by “string” or “loop”,
as a result of their nonmanifold nature. Originated from the
different flavors of (1,2)-type excitations, chairons can also
carry different flavors. By direct calculation, we can find that
there are 4×(3

2

) = 12 flavors of chairons in total in the model
[1,2,3,4].

Let us focus on the chairon in Fig. 7(b) and concretely carry
out the stabilizer operators whose eigenvalues are flipped and
then discuss its consequences. For all 1-cubes γ1 along the
red line within x̂1-x̂2 plane, B〈x̂1,x̂2,x̂3〉

γ1
= −1, B〈x̂1,x̂2,x̂4〉

γ1
= −1.

For all 1-cubes γ1 along the red line within x̂1-x̂3 plane,
B〈x̂1,x̂2,x̂3〉

γ1
= −1, B〈x̂1,x̂3,x̂4〉

γ1
= −1. For all 1-cubes γ1 along the

yellow crease line C1, B〈x̂1,x̂2,x̂4〉
γ1

= −1, B〈x̂1,x̂3,x̂4〉
γ1

= −1. these
operators form the set {Ô}complex. Since only two operators
per γ1 along the yellow line are excited, one may conclude
that energy density along the yellow line is still 2K . As a
result, energy is uniformly distributed along both yellow and
red lines.

The mobility and deformability of chairons are relatively
difficult to be described, in contrast to simple excitations
where the integer m is good enough. According to our dis-
cussion on the mobility and deformability of (1,2)-type exci-
tations, the two U-shaped segments [i.e., red lines in Fig. 7(b)]
of a chairon are freely deformable within the 2D planes where
they are located at without additional energy cost, as long as
their lengths stay the same. But the deformability of the crease
line is kind of unspeakable, as it’s length and shape are both
related to the deformation of the U-shaped segments. As a
whole, the chairon can move along the direction of the crease
line. However, regarding a chairon as an one-dimensional
excitation would be an oversimplification of it’s mobility and
deformability for sure.

2. Yuons of four flavors

Except for chairons, we also find another kind of complex
excitations in the model [1,2,3,4], which can be dubbed as
“yuon,” since a yuon is a Y-shaped object composed of
three U-shaped strings, as shown in Fig. 8. A yuon can be
excited by further acting W (S2

III ) after applying W (S2
I ) and

W (S2
II ) in Eq. (8) and Eq. (9), where S2

III = {(n + 1
2 , 0, 0, m +

1
2 )|m, n = 0, 1, 2, . . . , L − 1}. Although no B term along the
convergence line would be excited now, as we have already
applied 3 operators on the ground state, three connected
U-shaped excitations will still remain, which forms a yuon.
Therefore the space that can embed a yuon must be at least
four dimensional. A schematic comparison among an (1,2)-
type excitation, a chairon and a yuon in the model [1,2,3,4] is
given in Fig. 8. Similar to chairons, we find that there are 4
flavors of yuons in the model [1,2,3,4].

Since chairons and yuons have already covered all kinds
of intersection of (1,2)-type excitations, we expect these two
kinds of excitations can be regarded as the most elemen-
tary building blocks for all kinds of complex excitations in
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FIG. 8. Pictorial comparison among a (1,2)-type excitation, a chairon and a yuon in the model [1,2,3,4].

the model [1,2,3,4]. In Sec. IV C, we will discuss about
the model [1,2,3,5], which has different kinds of “building
blocks.”

E. Excited states with multiple spatially separate loops
in the model [1,2,3,4]

In the model [1,2,3,4] discussed here, we may discuss an
excited state with multiple spatially separate loops each of
which has six flavor options. Some typical excited states with
two or three loops are listed in Table V. There are several
remarks on this table.

(1) In pure Abelian topological order, the fusion of two
loops does not depend on where the two loops are initially
located. Case 0 demonstrates the fusion in a pure Z2 topo-
logical order. However, in fracton topological order, Table V
shows three different cases for the two-loop fusion due to the
(partial) restriction of mobility and deformability in the model
[1,2,3,4].

(2) In Sec. III B, we have studied an excited state with
lineons �x and �y in the 3D X-cube model (i.e., the model
[0,1,2,3]). If the two lineons are able to meet at some point,
the fusion output is another lineon labeled by �z that can move
along the straight line that is along z direction and passes the
intersection point. Nevertheless, in case 3, two loops that are
able to meet can only fuse to a chairon that has a connected
nonmanifold shape, rather than another new loop.

(3) We will see shortly in Sec. IV C, in the model [0,1,2,4],
two lineons, if located properly, will fuse into a fracton rather
than another lineon.

F. Gravity analog: energy density and spacetime curvature

In the lattice of the arbitrary dimension higher than 3,
as our argument does not rely on specific dimensions, we
would expect our results still persist. That is to say, a
[D − 3, D − 2, D − 1, D] model would contain (0,0)-type,
(0, D − 1)-type and (D − 3, D − 2)-type excitations. More
excitations in [D − 3, D − 2, D − 1, D] models for D =
3, 4, 5 are listed in Table II. Moreover, in higher dimen-
sional cases, there are similar situations that when we
act F D−2(CD−3) = ∏

γD−2∈SD−2
I

σ x
γD−2

∏
γD−2∈SD−2

II
σ x

γD−2
, where

SD−2
I ∩ SD−2

II = ∂SD−2
I ∩ ∂SD−2

II = CD−3, Bl
γD−3

terms along
CD−3 will be excited for certain l’s. Such a phenomenon
naturally reminds us of gravity, considering that there are
already some works concerning about this problem [29,30],
Especially, in the six-dimensional model [3,4,5,6], when the
scale considered is much larger than the lattice constant, we
would see condensations of flat closed 4-manifold in the
ground state. When we gradually heat up the system, energy
density will rise where the 4-manifold curve. Nevertheless,
despite the direct correspondence between curvature and en-
ergy density, the curvature which matters here is extrinsic
curvature, while in general relativity the correspondence is

TABLE V. Typical examples of excited states with spatially separate loops in the model [1,2,3,4]. The two loops labeled by (*) are in the
same x̂1-x̂2 plane; The two loops labeled by (**) are in different x̂1-x̂2 planes. Case 1 to Case 4 are two-loop states in the model [1,2,3,4], while
Case 5 is a three-loop state. “Case 0” is added for comparison, which happens in pure Z2 topological order.

1st loop 2nd loop 3rd loop Sectors Fusion output

Case 0 any position any position × I vacuum

Case 1 (1, 2)x̂1,x̂2 (1, 2)x̂1,x̂2 (*) × I vacuum

Case 2 (1, 2)x̂1,x̂2 (1, 2)x̂1,x̂2 (**) × Ed intrinsically disconnected

Case 3 (1, 2)x̂1,x̂2 (1, 2)x̂1,x̂3 × Ec : chairon

Case 4 (1, 2)x̂1,x̂2 (1, 2)x̂3,x̂4 × Ed intrinsically disconnected

Case 5 (1, 2)x̂1,x̂2 (1, 2)x̂1,x̂3 (1, 2)x̂1,x̂4 Ec : yuon
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between intrinsic curvature and stress-energy tensor. As a
result, the relation between our lattice models and gravity is
still vague.

IV. GENERAL CONSTRUCTION OF LATTICE MODELS

A. Lattice Hamiltonians

As our previous sections demonstrated, we can promote
(0,1)-type excitations to (i, i + 1)-type excitations by lifting
the dimensions of all the n-cubes where spins and other opera-
tors are located at by i. Naturally, one may be curious about, if
it’s possible to define spins and operators on different kinds of
n-cubes, without any redundant constraints? To deal with this
problem, we come up with a further generalization procedure.
In this procedure, the dimension of the objects on which the
operators and spins are defined, can be adjusted indepen-
dently. Since we are focusing on fracton models, other than
the dimensions of spins, lower-dimensional cube operators,
higher-dimensional cube operators and the total space, we also
need the dimension of leaf spaces to specify such a model.
For instance, for the X-cube model, we have spin dimension
ds = 1, lower-dimensional cube operator dimension dn = 0,
higher-dimensional cube operator dimension dc = 3, space
dimension D = 3 and leaf dimension dl = 2. Generally, it
seems that we need five dimension indexes [dn, ds, dl , dc, D]
to specify a member in the model “family”. Given such a 5-
tuple [dn, ds, dl , dc, D], the Hamiltonian of the corresponding
member model is

H[dn,ds,dl ,dc,D] = −J
∑
{γdc }

Aγdc
− K

∑
{γdn }

∑
l

Bl
γdn

, (10)

where the definition of the terms is given below.
(1) A Bl

γdn
term is the product of z components of the

2ds−dn
(dl −dn

ds−dn

)
spins whose coordinates are obtained by shifting

(ds − dn) coordinates of γdn along the directions in C l
γdn

by ± 1
2 .

Here, C l
γdn

≡ L ∩ C i
γdn

.
(2) An Aγdc

term is the product of x-components of the
2dc−ds

( dc

dc−ds

)
spins whose coordinates are obtained by shifting

(dc − ds) coordinates of γdc along the directions in Ch
γdc

by ± 1
2 .

Take the model [1,2,3,4] as an example. For a given
γ1 = (0, 0, 0, 1

2 ), we can see that C i
(0,0,0, 1

2 )
= {x̂1, x̂2, x̂3},

while Ch
(0,0,0, 1

2 )
= {x̂4}. For the three leaf spaces 〈x̂1, x̂2, x̂4〉,

〈x̂1, x̂3, x̂4〉 and 〈x̂2, x̂3, x̂4〉 associated with (0, 0, 0, 1
2 ), we

have C〈x̂1,x̂2,x̂4〉
(0,0,0, 1

2 )
= {x̂1, x̂2}, C〈x̂1,x̂3,x̂4〉

(0,0,0, 1
2 )

= {x̂1, x̂3} and C〈x̂2,x̂3,x̂4〉
(0,0,0, 1

2 )
=

{x̂2, x̂3} respectively, so we can obtain the Bl
(0,0,0, 1

2 )
as in

Eq. (7). Similarly, for the 4-cube ( 1
2 , 1

2 , 1
2 , 1

2 ), A( 1
2 , 1

2 , 1
2 , 1

2 ) can
be simply obtained as in Eq. (6).

In the following part of this section, we will use Sc to refer
to the set of the nearest spins of the dc-cube c, Sn to refer
to the set of the nearest spins of the dn-cube n, and S l

n to
refer to the set of the nearest spins of the dn-cube n inside
the dl -dimensional leaf space l (here l is associated with n).
Apparently, then we have ∪

l
S l

n = Sn.

Though we are trying to make the choice of different
dimension indexes independent to each other, we still need
to respect some orders of the dimensions. Firstly, we find that

dn and dc cannot be equal to ds, otherwise the cube operators
would be trivialized. Besides, according to the dimension
order of X-cube model, we expect dn to be smaller than
ds while dc should be larger than ds. Furthermore, dl > ds,
dl < D and dc � D are obviously required. However, it should
be noted that the condition ds is between dc and dn is not really
necessary in defining an exactly solvable fracton order model.
For simplicity, we will focus on cases where the condition is
satisfied in this paper.

Since we expect our models to be exactly solvable, we
require every higher dimensional cube operator shares even
or zero number of nearest spins with any lower dimensional
cube operator. Since lower-dimensional cube operators are
embedded in different leaf spaces, this condition means that∣∣S l

n ∩ Sc

∣∣ mod 2 = 0 ∀l, n, c. (11)

Acccording to the symmetry of the cubic lattice, we can
calculate |S l

n ∩ Sc| for any pair of nearest γdn and γdc in the
lattice. Therefore we only need to consider the number of
spins shared by γdc c1 = ( 1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
dc

, 0, 0, . . . , 0︸ ︷︷ ︸
D−dc

) and γdn n1 =

( 1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
dn

, 0, 0, . . . , 0︸ ︷︷ ︸
D−dn

). Apparently, for a spin s1 that is nearest

to both c1 and n1, the first dn coordinates of s1 must be 1
2 and

the last (D − dc) coordinates must be 0, only the values of the
(dc − dn) coordinates in the middle are variable.

To calculate |S l
n ∩ Sc|, we only need to care about the

uncertain middle part of the coordinates of s1, which is com-
posed of (dc − dn) numbers. Each subsequence consists of
these (dc − dn) numbers with (ds − dn) digits being 1

2 and the
others being 0 corresponds to a spin which is simultaneously
nearest to c1 and n1. As a result, a shared spin will take
the form s1 = ( 1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
dn

, . . .︸︷︷︸
dc−dn

, 0, 0, . . . , 0︸ ︷︷ ︸
D−dc

). For leaf l associated

with n1, which contains α directions with uncertain coordi-
nates (i.e., in the middle part of s1), we have |S l

n1
∩ Sc1 | =(

α

ds−dn

)
. However, as we expect the parity of |S l

n1
∩ Sc1 | to

be independent of the choice of leaf, α should be insensitive
to the choice of leaf space, which means all leaves must
have the same number of uncertain digits (here we ignore the
case where the change of α does not influence the parity of
|S l

n1
∩ Sc1 | for simplicity). Therefore the last part of sequence

s1 = ( 1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
dn

, . . .︸︷︷︸
dc−dn

, 0, 0, . . . , 0︸ ︷︷ ︸
D−dc

) must vanish, i.e., D − dc must

be 0. Then we have α = dl − dn ∀ l . And the exactly solvable
condition is just∣∣S l

n ∩ Sc

∣∣ mod 2 =
(

dl − dn

ds − dn

)
mod 2 = 0 (12)

together with

dn < ds < dl < dc = D. (13)

Since then, we only need a 4-tuple [dn, ds, dl , dc] (or
[dn, ds, dl , D]) to specify an exactly solvable model.

B. Family tree

Based on our 4-tuple notation of models, we can under-
stand the actual meaning of the label “[0,1,2,3]” of X-cube
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model. With such a notation manner, we can easily obtain
that X-cube is the simplest model in this series. As a result,
we can use it as the starting point of a “family tree” of the
generalized models, which is depicted in Fig. 1. As an exam-
ple of the novel properties of the models on the tree, we will
demonstrate that there are new kinds of complex excitations in
[D − 4, D − 3, D − 2, D]-type of models in the next section.
Here we would like to give a preliminary description of the
ground states and energy spectrum of the models on the tree.

Because the Hamiltonian of a general model is similar to
[D − 3, D − 2, D − 1, D] model, which is given in Eq. (4), the
ground states of a general model will obey a set of conditions
of the following form:

Aγdc
|φ〉 = |φ〉, Bl

γdn
|φ〉 = |φ〉 ∀ γdc , γd−n, l. (14)

As always, with the σz-basis, we can see that every configu-
ration is an eigenvector of an arbitrary B operator, and the total
Hilbert space can be spanned by all the configurations. Fur-
thermore, the B conditions in Eq. (14) require the eigenvalue
of any B operator for all configurations in a ground state to be
1. That is to say, for any γdn in a ground state configuration,
either of the following conditions must be satisfied: (1) no
nearest spin is altered; and (2) for each pair of nearest spins
linked by the γdn , there is exactly one spin of the pair being
altered (for models where ds − dn � 2 a “pair” should be
promoted to a set of 2ds−dn spins).

Then, the A condition in Eq. (14) can be seen as re-
quiring all the ground state configurations which can be
transformed to each other by acting A operators share the
same weight. Therefore we can find that the unique ground
state of a general model with open boundary conditions is

|�〉 = ∏
γdc

1+Aγdc√
2

|↑ ↑↑ . . . ↑〉, where |↑ ↑↑ . . . ↑〉 refers to
the reference state. Besides, please note that here the form of
Aγdc

also implicitly depends on ds. With periodic boundary
condition, the ground states of the tree models are expected to
be degenerate. We have found signs that suggest the ground
state degeneracy of these models may be more complicated
that the known subextensive growth. Relevant results will be
involved in our future work Ref. [85].

For models on the family tree (see Fig. 1), all simple
excitations can be classified into two classes: (dn, ds)-type ex-
citations and (0,0)-type excitations. Moreover, since segments
of complex excitations can be regarded as the convergence of
several (dn, ds)-type excitations, and the energy density along

the segments can be determined by the number of converged
(dn, ds)-type excitations, we only need to consider the energy
cost of such convergences to determine the energy cost of a
complex excitation. As in Sec. III C, here we can conclude
the data of the most important simple excitations in a general
model as below.

(1) Aγdc
= −1 excitations, (0,0)-type, generated by∏

γds ∈Ddc−ds σ z
γds

. The excitations sit on the vertices of the

Ddc−ds .
(2) Bl

γdn
= −1 excitations, (dn, ds)-type, generated by∏

γds ∈Sds σ x
γds

. The excitations sit on the boundary of Sds .
As for the energy cost, simply we can find that the energy

cost of such a (0,0)-type excitation is always J , so the energy
cost of different groups of fractons are respectively 2J , 4J, . . .,
2dc−ds−1J . Most of the groups are fractons, except for the last
one which are (0, ds + 1)-type excitations (or disconnected
excitations).

The spectrum of convergences of (dn, ds)-type excitations
(i.e., segments of complex excitations) is more difficult to
calculate. Generally, for a specific γdn n1, we can find that the
number of excited Bl

n1
operators is determined by the number

of pairs of spins around the n1 which contain exactly one
altered spin. For simplicity, such a pair will be regarded as
“excited.” Therefore we can label a convergence of (dn, ds)-
type excitations at n1 as an i-convergence, where i is the
number of excited pairs linked by n1. As an i-convergence
always has the same energy as a

((dl −dn

ds−dn

) − i
)
-convergence,

we only need to consider i �
⌊ (dl −dn

ds−dn
)

2

⌋
in this paper. Since

there are
(dc−dn

ds−dn

)
pairs of spins linked by a given γdn , and a

leaf always contains
(dl −dn

ds−dn

)
such pairs, we can see that the

energy cost of an i-convergence is just the number of different
combinations of

(dl −dn

ds−dn

)
pairs (i.e., leaves) which contain odd

number of excited pairs. For a given i we can find that there

are
∑� i−1

2 �
x=0

( i
2x+1

)( (dc−dn

ds−dn

) − i(dl −dn

ds−dn

) − 2x − 1

)
such combinations, so

the energy cost of an i-convergence on a γdn is

Ei =
� i−1

2 �∑
x=0

(
i

2x + 1

)( (dc−dn

ds−dn

) − i(dl −dn

ds−dn

) − 2x − 1

)
K. (15)

For instance, we can consider the model [1,2,3,5]. Since
(dl −dn

ds−dn
)

2 = 5
2 � 2, there is only one kind of convergences

TABLE VI. Typical examples of excitations in the model [0,1,2,4].

Excitations Sectors Flipped stabilizers Creation operators

fracton: (0,0) Es Aγ4

∏
γ1∈D3

σ z
γ1

lineon: (0,1) Es Bl
γ0

∏
γ1∈S1

σ x
γ1

connected planeon: (0,2) Es Aγ4

∏
γ1∈D1

1

σ z
γ1

fracton: (0,0) Es Bl
γ0

∏
γ1∈S1

I

σ x
γ1

∏
γ1∈S1

II

σ x
γ1

, where ∂S1
I ∩ ∂S1

II = C0 �= ∅

disconnected planeon Ed Aγ4

∏
γ1∈D3

σ z
γ1
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TABLE VII. Typical examples of excitations in the model [1,2,3,5].

Flipped
Excitations Sectors stabilizers Creation operators

(0,0) Es Aγ5

∏
γ2∈D3

σ z
γ2

(1,2) Es Bl
γ1

∏
γ2∈S2

σ x
γ2

connected volumeon (0,3) Es Aγ5

∏
γ2∈D1

2

σ z
γ2

β-Chairon Ec Bl
γ1

∏
γ2∈S2

I
σ x

γ2

∏
γ2∈S2

II
σ x

γ2
, where ∂S2

I ∩ ∂S2
II = C1 �= ∅

Cloverion Ec Bl
γ1

∏
γ2∈S2

I
σ x

γ2

∏
γ2∈S2

II
σ x

γ2

∏
γ2∈S2

III
σ x

γ2
, where ∂S2

I ∩ ∂S2
II ∩ ∂S2

III = C1 �= ∅
Xuon Ec Bl

γ1

∏
γ2∈S2

I
σ x

γ2

∏
γ2∈S2

II
σ x

γ2

∏
γ2∈S2

III
σ x

γ2

∏
γ2∈S2

IV
σ x

γ2
, where ∂S2

I ∩ ∂S2
II ∩ ∂S2

III ∩ ∂S2
IV = C1 �= ∅

disconnected volumeon Ed Aγ5

∏
γ2∈D3

σ z
γ2

of (1,2)-type excitations need to be discussed, that is the
2-convergences. For instance, ( 1

2 , 0, 0, 0, 0) links 4 pairs
of spins, ( 1

2 ,± 1
2 , 0, 0, 0), ( 1

2 , 0,± 1
2 , 0, 0), ( 1

2 , 0, 0,± 1
2 , 0)

and ( 1
2 , 0, 0, 0,± 1

2 ), while a leaf like 〈x1, x2, x3〉 con-
tains two of such pairs. So we can find that of the(5−1

3−1

) = 6 kinds of possible combinations of pairs, there are∑� 2−1
2 �

x=0

( 2
2x+1

)( (5−1
2−1

) − 2(3−1
2−1

) − 2x − 1

)
= 4 combinations that con-

tain odd number of excited pairs, so there are 4 Bl
( 1

2 ,0,0,0,0)

terms being excited. Such a 2-convergence can exist as a
segment of a complex excitation (β-chairon, see Sec. IV C)
in the model [1,2,3,5], and its energy cost is proportional to
its length. More excitations in the model [1,2,3,5] is given in
Table VII.

C. Simple excitations in the model [0,1,2,4] and [1,2,3,5]

In this section, we will take the two models “[0,1,2,4]” and
“[1,2,3,5]” on the family tree to exemplify the novel properties
of models outside the [D − 3, D − 2, D − 1, D] series.

Let’s start with the model [0,1,2,4]. It’s easy to check that,
unlike the model [1,2,3,4], the model [0,1,2,4] does not con-
tain any spatially extended excitations, which makes its spec-
trum much simpler. As in the X-cube model, (0,1)-type exci-
tations, i.e., lineons, are generated at the ends of straight string
operators consisted of σ x’s, and fractons are generated at the
corners of cube (i.e., D3) operators consisted of σ z’s. How-
ever, there is indeed something exotic in the model [0,1,2,4]:
for example, since the model is defined on a four-dimensional
lattice, the convergence of two straight strings can only dual to
another convergence, so the 2-convergence becomes a fracton.
While in X-cube model, since there is a duality between
plaquettes and links, the pointlike excitation at such a conver-
gence can be moved along the line perpendicular to the con-
vergence. In some sense, due to the higher space dimension,
a kind of lineons in [0,1,2,3] model are frozen in the model
[0,1,2,4]. Let us point out some key properties of lineons and
fractons in the model [0,1,2,4] summarized in Table VI.

(1) All topological nontrivial excitations in [0,1,2,4] are
pointlike (here excited states composed of discrete points are
also recognized “pointlike”), belonging to Es or Ed sectors.

(2) In contrast to [0,1,2,3], fractons can be formed by either
flipping A or B stabilizers. There are one kind of fractons
labeled by A, but there are six kinds of fractons labeled by
B stabilizers due to the six different leaf space indices �.9

(3) Two lineons can fuse into a fracton. There are four
types of lineons that can move along parallel straight lines
of x̂1, x̂2, x̂3, x̂4 orthogonal directions. Picking two different
types of lineons from four (totally 6 choices), if the two
straight lines where the two lineons can move intersect at
some point, the two lineons fuse into a fracton with flipped
stabilizers Bl

γ0
where leaf space indices � exactly have six

corresponding choices. In Sec. III B, we have reviewed that,
in the model [0,1,2,3], the fusion output of two lineons if
they can meet from orthogonal directions is, however, another
lineon.

Then we consider the model [1,2,3,5]. The Hamiltonian of
[1,2,3,5] is

H[1,2,3,5] = −J
∑
{γ5}

Aγ5 − K
∑
{γ1}

∑
l

Bl
γ1

. (16)

The simple excitations in the model [1,2,3,5] are mostly
the same as in [1,2,3,4], except the mobility of groups of
fractons. As basic fractons are located at the vertices of D3’s
now, pairs of fractons at the vertices of D2

2’s become (0,0)-type
excitations, while the tetrads of fractons at the vertices of D1

2’s
belong to (0,3)-type.10

Similar to Sec. III C, here we can classify the (1,2)-type
excitations W (S2) in the model [1,2,3,5] into

(5
2

) = 10 flavors,
according to the plane (i.e., x̂1-x̂2, x̂1-x̂3, x̂1-x̂4, x̂1-x̂5, x̂2-x̂3,
x̂2-x̂4, x̂2-x̂5, x̂3-x̂4, x̂3-x̂5, x̂4-x̂5) where S2 is located at. Gen-
erally, when we act a W (S2) on the ground state, where S2

is located at a x̂i-x̂ j plane, then at a γ1 along the boundary

of S2, eigenvalues of B
〈x̂i,x̂ j ,x̂k〉
γ1 , B

〈x̂i,x̂ j ,x̂h〉
γ1 and B

〈x̂i,x̂ j ,x̂p〉
γ1 will be

flipped. Here i, j, h, k, p ∈ {1, 2, 3, 4, 5}, and i, j, h, k, p are
all different from each other. For instance, by acting W (S2

I )
on the ground state, where S2

I = {(n + 1
2 , m + 1

2 , 0, 0, 0)|m,

9See the “Example 2” in Sec. II B
10See the “Example 3” in Sec. II B for an introduction to the leaves

in model [1,2,3,5].
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FIG. 9. A β-chairon in the model [1, 2, 3, 5]. As in Fig. 6, here
the grey plaquettes refer to spins on which a W (S2) is applied. The
energy density along red lines is lower than the yellow line, according
to our analysis in Sec. IV D. That is to say, energy is ununiformly
distributed for a β-chairon.

n = 0, 1, 2, . . . , L − 1}, for an arbitrary γ1 along the bound-
ary of S2

I , the eigenvalue of B〈x̂1,x̂2,x̂3〉
γ1

, B〈x̂1,x̂2,x̂4〉
γ1

and B〈x̂1,x̂2,x̂5〉
γ1

will be flipped. As a result, we obtain that the energy cost of a
string excitation in the model [1,2,3,5] is 3KL, where L is the
length of the string. More information of the excitations in the
family tree models are summarized in Tables VI and VII.

D. Complex excitations in the model [1,2,3,5]
(“chairon,” “cloverion,” and “xuon”)

As in the model [1,2,3,4], we can find a series of com-
plex excitations as building blocks of general complex ex-
citations in the model [1,2,3,5]. Some typical examples are
collected in Table VII. At first, if we further apply W (S2

II )
after W (S2

I ) (W (S2
I ) is given in the previous section), where

S2
II = {(n + 1

2 , 0, m + 1
2 , 0, 0)|m, n = 0, 1, 2, . . . , L − 1}, we

will have a chairon excitation, which is schematicly presented
in Fig. 9. Though the shape of the chairon is the same as in
the model [1,2,3,4], at ( 1

2 , 0, 0, 0, 0) ∈ ∂S2 ∩ ∂S2
II , now we

have B〈x̂1,x̂2,x̂4〉
( 1

2 ,0,0,0,0)
, B〈x̂1,x̂2,x̂5〉

( 1
2 ,0,0,0,0)

, B〈x̂1,x̂3,x̂4〉
( 1

2 ,0,0,0,0)
and B〈x̂1,x̂3,x̂5〉

( 1
2 ,0,0,0,0)

being

flipped. As now there are 4 flipped B terms at ( 1
2 , 0, 0, 0, 0),

we can find that unlike in the model [1,2,3,4] or pure topo-
logical order, here the energy is distributed along the excita-
tion unevenly. As a result, we can name the chairon in the

model [1,2,3,4] as α-chairon, and the chairon in the model
[1,2,3,5] as β-chairon, to stress their different distributions
of energy. More generally, different types of chairons can be
distinguished by the number of flipped stabilizers along the
excitation: if the number is a constant, then we call it an
α-chairon. Otherwise, it’s a β-chairon. Again, by counting
the possible combinations of different dimensions, we find
that there are

(5
1

)×(4
2

) = 30 flavors of β-chairons in the model
[1,2,3,5].

Furthermore, by acting W (S2
III ) after W (S2

I ) and
W (S2

II ), where S2
III = {(n + 1

2 , 0, 0, m + 1
2 , 0)|m, n =

0, 1, 2, . . . , L − 1}. For γ1 = ( 1
2 , 0, 0, 0, 0) ∈ ∂S2

I ∩ ∂S2
II ∩

∂S2
III , we will have B〈x̂1,x̂2,x̂5〉

( 1
2 ,0,0,0,0)

, B〈x̂1,x̂3,x̂5〉
( 1

2 ,0,0,0,0)
and B〈x̂1,x̂4,x̂5〉

( 1
2 ,0,0,0,0)

being excited, that is to say, the 3 W (S2) operators generate
a complex excitation with more complicated topology than
β-chairon. But here the energy density along the excitation
is uniform. Since the projection of the excitation onto a
2D plane has three “petals,” this kind of excitations can be
dubbed as “cloverions.” Analogous to the β-chairon, we can
obtain that there are

(5
1

)×(4
3

) = 20 flavors of cloverions in the
model [1,2,3,5].

But unlike the model [1,2,3,4], here we can further apply
W (S2

IV ) to obtain an extra kinds of complex excitations,
where S2

IV = {(n + 1
2 , 0, 0, 0, m + 1

2 )|m, n = 0, 1, 2, . . . , L −
1}. All B operators associated with ( 1

2 , 0, 0, 0, 0) are unflipped
by the W (S2

IV ) now, but four U-shaped strings generated by
the four W (S2) operators will compose a complex excitation
of a new kind. This kind of complex excitations can be
dubbed as “xuon”, as it is an X-shaped object consisted
of four U-shaped strings. Obviously, there are only

(5
1

) = 5
flavors of xuons in the model [1,2,3,5]. A schematic com-
parison between β-chairons, cloverions and xuons is given
in Fig. 10. Except for [1,2,3,5] and other two 5D models
on the family tree (see Fig. 1)), we also have [0,1,4,5],
[0,2,4,5] and [0,3,4,5] models that are exactly solvable.
Some representative excitations in more 5D models are listed
in Table VIII.

V. CONCLUDING REMARKS

In this paper, we have demonstrated that various kinds of
novel excitations can be constructed in a large class of exactly
solvable models of fracton topological order, like spatially ex-
tended excitations with restricted mobility and deformability,

FIG. 10. Pictorial comparison among a β-chairon, a cloverion and a xuon in the model [1,2,3,5]. The crease line with higher energy density
in β-chairon is highlighted with purple.
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TABLE VIII. Typical examples of excitations in more 5D models. Simple excitations are simply labeled by their mobility types in this
table, so different excitations may share the same label. Names of other types of excitations are omitted for simplicity.

Models Excitations Sectors Flipped stabilizers Creation operators

[0,1,4,5] (0,0) Es Aγ5

∏
γ1∈D4

σ z
γ1

(0,1) Es Bl
γ0

∏
γ1∈S1

σ x
γ1

Ed Aγ5

∏
γ1∈D4

σ z
γ1

[0,2,4,5] (0,0) Es Aγ5

∏
γ2∈D3

σ z
γ2

(0,0) Es Bl
γ0

∏
γ2∈S2

σ x
γ2

Ed Aγ5

∏
γ2∈D3

σ z
γ2

[0,3,4,5] (0,0) Es Aγ5

∏
γ3∈D2

σ z
γ3

(0,0) Es Bl
γ0

∏
γ3∈S3

σ x
γ3

Ed Aγ5

∏
γ3∈D2

σ z
γ3

[2,3,4,5] (0,0) Es Aγ5

∏
γ3∈D2

σ z
γ3

(2,3) Es Bl
γ2

∏
γ3∈S3

σ x
γ3

Ec Bl
γ2

∏
γ3∈S3

I
σ x

γ3

∏
γ3∈S3

II
σ x

γ3
, where ∂S3

I ∩ ∂S3
II = C2 �= ∅

Ed Aγ5

∏
γ3∈D2

σ z
γ3

which unveils an intriguing scenario of interplay of topology
and geometry in fracton order.

There are several future directions related to fracton
physics of spatially extended excitations.

(1) For instance, it is worth to examine more exactly solv-
able instances that are outside the family tree, like [0,1,4,5],
[0,2,4,5], [0,3,4,5] model in 5D, and other 12 6D models,
and discuss their properties, e.g., exotic complex excitations,
fusion rules, entanglement entropy, and effective field theory.

(2) As we have discussed in the main text, it is also
interesting to explore the relation between geometry in fracton
order and curved space caused by gravity.

(3) By noting that volumeons denoted by (0,3) can be
constructed in some models of 4D or higher dimensions, one
may conjecture that our universe may have extra dimensions
while elementary particles in the Standard Model are in fact
volumeons that are actually restricted inside our 3D visible

space. In this sense, it is very interesting to construct a higher
dimensional lattice models that support volumeons which are
massive Dirac fermions! Moreover, the relationship between
the existence of complex excitations and the type of the order
is also an exciting question.

(4) Finally, it is also interesting to study self-localization
theory of spatially extended excitations with different degrees
of mobility and deformability restriction.
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