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Topological properties are associated with nonlocal entanglement and global properties. On the other hand,
in some topological systems, it has been shown that quasilocal operators detect topological transitions. We
show in this work that in the case of noninteracting long-range symmetry-protected topological models,
energy bonds signal topological transitions. Interestingly, we also find that they display some signatures at the
Berezinskii-Kosterlitz-Thouless transition that occurs in a spin chain with first and second neighbor interactions,
if we consider the first excited state instead of the ground state of the system. Moreover, we show that the
ground-state topological transition in the spin Kitaev model in a honeycomb lattice, which displays topological
long-range order, is also detected by the energy bond correlator. Despite the model being interacting, in the
ground state it reduces to a noninteracting model. Even for the spin-liquid phase of the two-dimensional Heisen-
berg model with first and second neighbor interactions, where the system has true long-range entanglement and
topological order, the local bonds do signal the topological phase transition.
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I. INTRODUCTION

In condensed matter physics, finding the appropriate pa-
rameter that characterizes the long-range correlation in a
quantum phase and detects the quantum phase transition
is highly nontrivial. Especially for topological systems, in
which the phase transition falls beyond the framework of
traditional Landau’s theory, there is no obvious clue about
the order parameter that can be gained from the symmetry
of the Hamiltonian. Regarding this, some of the authors have
proposed a nonvariational scheme to derive the order pa-
rameters systematically in a general model, by analyzing the
reduced density matrix spectrum of a model’s subsystem [1].
The scheme has been testified in a number of condensed
matter systems, such as the Heisenberg model [1] and the
fermion Hubbard model [2]. Remarkably, the correlator for
the topological phase in topological insulators, such as the
Su-Schreiffer-Heeger (SSH) model [3–5] and topological su-
perconductors such as the Kitaev chain [6], were also derived
using a modified version of our scheme [7,8]. Comparing to
the common approach of using the topological invariants or
the entanglement spectrum [9] to study topological phases, the
correlators provide us physical insights about the topological
phases in real space.

Intriguingly, we observed that the correlators obtained in
the SSH and the Kitaev model take a very similar form to
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the local Hamiltonian of the model, at a specific value of
the driving parameter. That is, for H = ∑

i hi(λ), where hi

is the local Hamiltonian and λ is the driving parameter, one
can take the correlator as hi(λ0), where λ0 is a specific value
of the driving parameter. We found that the first derivative
of the ground-state expectation value of such a correlator is
able to capture the topological transition in the SSH-Kitaev
model [8]. This raises the question whether such a simple local
or quasilocal bond correlator can be used as an indicator of
the transition in topological models with long-range couplings
in the Hamiltonian or long-range topological orders in the
ground state. To answer this question is the primary moti-
vation of the present work. The computation of topological
invariants or entanglement spectrum can be complicated and
time-consuming since, for the former case, one has to impose
twisted boundary conditions if the Berry phase is considered,
and for the latter case the half block reduced density matrix
has to be calculated. In contrast, the expectation value of
the local bond correlator is straightforward to be computed.
Therefore, if it works, the bond correlator will be a convenient
tool to study the topological phase transitions, due to its
simplicity.

In the following, we consider long-range models with
symmetry-protected topological phases and models with long-
range topological orders. In particular, the bond correlators
for the Kitaev chain with long-range hopping and interac-
tions [10], the spin Kitaev model on a honeycomb lattice [11],
and the one-dimensional (1D) and two-dimensional (2D) J1-
J2 spin-half Heisenberg models [12–14] are investigated. We
find that the bond correlators, or its first derivative, are able to
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detect the transitions in the symmetry-protected topological
models. Moreover, they are also able to detect the topological
transition of the spin two-dimensional Kitaev model on the
honeycomb lattice. Even though the model has in general
topological order, it reduces to a noninteracting model in the
ground state. Interestingly, the bond correlators also show
some nontrivial features at a Berenzinskii-Kosterlitz-Thouless
(BKT) transition, considering the average value of the energy
bond in the first excited state of the interacting spin-1/2 chain
with first and second neighbor interactions. Even for the 2D
J1-J2 model, in which the spin-liquid phase exhibits a true
topological long-range order, the quasilocal bond correlators
also show signatures around the topological phase transition.

II. KITAEV CHAIN WITH LONG-RANGE HOPPING
AND INTERACTIONS

The Hamiltonian of the model reads [10]

H =
N∑

j=1

[
−t

N−1∑
l=1

1

rl,ξ
c†

j c j+l + d
N−1∑
l=1

1

Rl,α
c jc j+l

− μ

2

(
c†

j c j − 1

2

)
+ H.c.

]
, (1)

where c j (c†
j ) are spinless fermionic annihilation (creation)

operators and μ is the chemical potential. N is the number of
sites in the chain and is taken as 200 in our simulation, unless
otherwise specified. The hopping and the paring amplitude are
given by t and d , respectively. Without loss of generality, we
consider t = d = 0.5. The parameters rl,ξ and Rl,α are generic
functions of the distance l; ξ and α, respectively, characterize
the long-range nature of the hopping and pairing terms. We
can write the Hamiltonian in the form of H = ∑

j h j (ξ, α, μ).
When only the nearest-neighbor hoppings and pairings are
considered, the model reduces to the usual Kitaev chain and
the system is topological for −1 � μ � 1 [6].

First, let us consider the Hamiltonian in Eq. (1) with
nearest-neighbor pairing and exponentially decaying hopping,
i.e., R1,α = 1, Rl>1,α = ∞, and rl,ξ = exp[(l − 1)/ξ ]. An
augmented topological phase was observed with an increasing
ξ in the model [10]. If we fix ξ = 1 and change the chemical
potential μ from −3 to 2, the system goes from a trivial
(−3 � μ � −1.5) to topological (−1.5 < μ � 0.8) to trivial
phase (0.8 < μ � 2). Figure 1 shows the energy bond corre-
lators Cμ0 = 〈h j (μ0)〉 calculated by taking μ0 = −3, 0, 1.5,
respectively. Note that the correlator involves an extensive
number of terms. We consider a site near the middle of the
chain and a number of neighbors that has a length of the order
of half the chain length. There are small kinks in the correlator
that appear at the topological phase transition points located
at μ ≈ −1.5 and 0.8. If we calculate the first derivative of
the correlators with respect to μ, we can see that the critical
points are detected by the singular peaks in the absolute value
of the first derivative of the correlators. Moreover, the absolute
value of the first derivative of the correlator has the vanishing
amplitude in the phase in which μ0 is taken from.

In Fig. 2, we fix μ = −3 and change the penetration length
0.5 < ξ < 5. The system goes from the trivial to the topo-
logical phase and the transition takes place at ξ ≈ 2.5 [10].
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FIG. 1. The bond correlators Cμ0 with μ0 = −3, 0, 1.5, respec-
tively, and the absolute value of the derivatives of the long-range
Kitaev chain. The pairing is between nearest neighbors and the
hopping decays exponentially. Here we fix ξ = 1 and change the
chemical potential μ.

The energy bond correlators Cξ0 = 〈h j (ξ0)〉 are calculated by
taking ξ0 = 0.5, 1.5, 3, 4. Again, the topological transition is
signaled by the dominating peaks in the first derivative of the
correlators.

Next, we consider only the nearest-neighbor hopping but
a power-law decay in the pairing terms with an exponent α,
i.e., r1,ξ = 1, rl>1,ξ = ∞, and Rα,l = lα . Interestingly, three
topological sectors are found in this case [10]: (1) a Majorana
sector for α > 3/2; (2) a massive Dirac sector for α < 1; and
(3) a crossover sector for α ∈ (1, 3/2).

Consider a cut along α with fix μ = 0. Figure 3 shows the
result of the bond correlators Cα0 = 〈h j (α0)〉 taken at α0 =
0.2, 0.5, 1.25, 2 and the respective absolute value of the first
derivatives. The first derivative shows a blob in the vicinity
of the crossover region but there is no clear signal of the
transition at α = 1 from the massive to massless Majorana
sector. In Fig. 4, we plot the second derivative of the Cα0
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FIG. 2. Correlators Cξ0 and the absolute value of the derivatives
of the correlators of the long-range Kitaev model. The pairing is
between nearest neighbors and the hopping decays exponentially.
Here we fix μ = −3 and change the penetration length ξ .
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FIG. 3. Correlators Cα0 and the absolute value of the derivatives
of the correlators in the long-range Kitaev model. The hopping is
between nearest neighbors and the pairing decays as a power law
with exponent α. Here we fix μ = 0 and change the exponent α.

as a function of α. Physically, the second derivatives of the
energy can be regarded as the susceptibilities, and have been
conventionally used as an indicator of a continuous phase
transition. Intriguingly, from Fig. 4, the second derivatives of
the bond energy correlators are able to signal the transitions to
the Majorana and the Dirac sectors in the system as reflected
by two clear peaks around α = 1 and α = 1.5. We have also
checked that the first derivatives of the correlators detect the
transition from the topological to a trivial phase, considering
a cut as a function of the chemical potential μ for α = 2.

In Fig. 5 we consider the same parameters as in Fig. 1,
except that we take ξ = 2. That is, we consider the model with
exponentially decaying hopping and pairing only between
nearest neighbors. The special points are taken as before as
μ0 = −3, 0, 1.5. However, here we take the correlator C̄μ0

not as a sum of terms from the middle point of the chain
until the end (and therefore a number of terms that is half the
system size) but we take only the chemical potential term at
the middle point of the chain. So, a completely local term.
Notice that the term in the Hamiltonian comes multiplied by
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FIG. 4. Second derivatives of the correlators Cα0 in Fig. 3. The
parameters and the color scheme of the curves are the same as that in
Fig. 3.
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FIG. 5. Derivative of the chemical potential term of the Hamil-
tonian of the long-range Kitaev model. We use the same parameters
as in Fig. 1 except that we take ξ = 2. Note that the correlator C̄μ0

considered here is completely local. The results are for the middle
point of the chain.

the chemical potential at a special point and so the curve with
μ0 = 0 vanishes. The other two values give surprising results
since the correlators and the derivatives are very similar to
the full expression for the bond energy, hi, that includes the
chemical potential term and the hoppings and pairings over an
extensive number of neighbors. This shows that the dominant
contribution is due to the term that is associated with the vari-
able that defines the cut. Since, in this case, the cut is obtained
changing the chemical potential, the result is mainly due to
the term associated with the chemical potential. In this case
this is a local contribution. The information on the long-range
nature of the model is therefore to be completely contained in
the states, as the approach using the reduced density matrix
might suggest, and the average of the operator just reveals the
change of the states as one crosses the transition point. So if a
transition is obtained changing a given parameter, it is enough
to consider the operator associated with this change and, at
least its derivative, may be used to detect the phase transitions.

III. KITAEV MODEL ON A HONEYCOMB LATTICE

In this section, we investigate the energy bond correlator in
the interacting 2D Kitaev model. The Hamiltonian reads [11]

H = −Jx

∑
x bond

σ x
j σ

x
k − Jy

∑
y bond

σ
y
j σ

y
k − Jz

∑
z bond

σ z
j σ

z
k , (2)

where σκ with κ = x, y, z are the Pauli matrices, and Jx, Jy, Jz

are the spin-spin interaction strength along the x, y, z bonds,
respectively. Figure 6(a) shows a schematic illustration of the
model. This is one of the very few interacting models in two
dimensions that the ground state can be solved analytically
by mapping the model to a Majorana fermion model [11] or
by using the Jordan-Wigner transformation in 2D [15]. The
Hamiltonian commutes with the plaquette operators Wp =
σ x

1 σ
y
2 σ z

3σ x
4 σ

y
5 σ z

6 which have eigenvalues of wp = ±1. The
ground state of the system lies in the vortex-free subspace
in which all the plaquette operators have eigenvalues of +1.
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FIG. 6. (a) A schematic diagram of the Kitaev model on the
honeycomb lattice. (b) A schematic phase diagram of the 2D Kitaev
model on the Jx + Jy + Jz = 1 plane. The A phase is gapped and
topological while the B phase is gapless and topologically trivial.
The values inside the brackets indicate the coordinates (Jx, Jy, Jz) of
the corresponding point.

An excitation is to create vortices (wp = −1) as described by
non-Abelian anyons.

For |Jz| � |Jx| + |Jy|, |Jx| � |Jy| + |Jz|, and |Jy| � |Jz| +
|Jx|, the system is in the gapless phase, which is topological
and the excitation satisfies the non-Abelian anyons. Other-
wise, the system is in a gapped trivial phase [11,15]. A
schematic phase diagram on the Jx + Jy + Jz = 1 plane is
shown in Fig. 6(b). The trivial and topological phases are
denoted as the A and B phase, respectively. In the following,
we consider Jz as the driving parameter along Jx = Jy on the
plane. The system goes from the gapless topological B phase
to the gapped trivial A phase. A topological quantum phase
transition occurs at Jz = 0.5.

Consider the correlators defined by the ground-state expec-
tation values of the energy bond operator taken at two specific
points of the phase diagram, i.e., (Jx0, Jy0, Jz0) = (0, 0, 1)
and (0.5,0.5,0), respectively. Explicitly, the correlators can be
expressed as

Cz = 〈
σ z

r σ z
r+z

〉
, (3)

Cxy = 〈
0.5σ x

r σ x
r+x + 0.5σ y

r σ
y
r+y

〉
, (4)

where r and r + κ (κ = x, y, z) is the position vector to the
middle site and that of its nearest-neighbor site along the
corresponding direction, respectively. Using the Hellmann-
Feynman theorem, we have

〈
σ x

r σ x
r+x

〉 = 1

L2

∑
qx,qy

⎛
⎝εq cos qx + �q sin qx√

ε2
q + �2

q

⎞
⎠,

〈
σ y

r σ
y
r+y

〉 = 1

L2

∑
qx,qy

⎛
⎝εq cos qy + �q sin qy√

ε2
q + �2

q

⎞
⎠,

〈
σ z

r σ z
r+z

〉 = 1

L2

∑
qx,qy

⎛
⎝ εq√

ε2
q + �2

q

⎞
⎠, (5)

where

εq = Jz − Jx cos qx − Jy cos qy, (6)

�q = Jx sin qx + Jy sin qy. (7)
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FIG. 7. The bond correlators and the absolute value of its first
derivatives in the 2D honeycomb lattice Kitaev model as a function
of Jz.

The system size along one direction is L = Lx = Ly and is
taken to be 1001 in our simulation. The momentum wave
vector qx(y) = 2mπ/L with m = −(L − 1)/2 · · · (L − 1)/2.

The result of the bond correlators and the absolute value
of its first derivative are shown in Fig. 7. The first deriva-
tive of the correlators shows singular peaks at the model’s
topological quantum phase transition point, and thus can be
used to signal the transition. Furthermore, the absolute value
of the first derivative of the correlator goes to zero in the
corresponding phase from which (Jx0, Jy0, Jz0) are chosen.

IV. ONE-DIMENSIONAL J1-J2 MODEL

Another model we have considered is the 1D Heisenberg
model with first and second neighbor interactions, also called
the J1-J2 model. The Hamiltonian of the model is given by

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j, (8)

where S j = (Sx
j , Sy

j , Sz
j ) is the spin-1/2 operator, 〈i, j〉 and

〈〈i, j〉〉 denote the nearest and the next-nearest neighbors, re-
spectively. The system undergoes a BKT quantum phase tran-
sition at J2/J1 = 0.24 [16,17]. For J2/J1 < 0.24, the system
has a gapless Heisenberg-like ground state with power-law de-
cay spin-spin correlations. For J2/J1 > 0.24, the ground state
is doubly degenerate and the spectrum has a spin gap with
power-law decay bond-bond correlations. At the Majumdar
Ghosh point where J2/J1 = 0.5, the ground state is a product
state of singlet pairs and is twofold degenerated for any sys-
tem size [18–20]. In the gapped phase the antiferromagnetic
correlations between second neighbors become dominant.

Let us define the correlators by considering the specific
points where (J1,0, J2,0) = (1, 0) and (0,1), respectively. We
have

C1 = 〈S j · S j+1〉, C2 = 〈S j · S j+2〉. (9)
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(a) (b)

(c) (d)

FIG. 8. (a) and (b) show the bond correlator C1 and its first
derivative, respectively, for various system sizes. (c) and (d) show the
bond correlator C2 and its first derivative, respectively. Insets show a
zoom-in of the curves around the BKT transition point.

We first consider the average taken with respect to the ground
state of the system and the results are shown in Fig. 8. The
simulation is performed with numerical Lanczos exact diag-
onalization (ED) for a system size L = 12 and L = 24, and
with density-matrix renormalization group (DMRG) [21,22]
for L = 24, 64, 96. We dynamically use up to 2000 DMRG
many-body states so that the truncation error is smaller than
10−10 [23]. Periodic boundary condition is adopted for both
ED and DMRG calculations. For a small system, disconti-
nuities are observed around the Majumdar-Ghosh point. At
this special point, the ground state is twofold degenerated
under the periodic boundary condition and a numerically
obtained ground state will give a random value in the ob-
servables. Kinks in the correlators and thus peaks or dips
in the first derivatives of the correlators are also observed
at some other values of J2/J1; for example, around 0.9 for
L = 12. They seem to be suppressed for a larger system
L = 24. We may attribute those discontinuities to the level
crossing between the ground state and the lowest excited
state in the energy spectrum as shown in the energy spec-
trum in Fig. 9. For the BKT transition point at J2/J1 =
0.24, no signature of the phase transition is found in the
correlators.

It is not surprising that the energy bond correlators calcu-
lated from the ground state do not detect the BKT transition
at J2/J1 = 0.24. As we can see from the energy spectrum
in Fig. 9, the BKT transition arises from the level crossing
in the first excited states of the Sz

total = 0 sector. Instead of
the ground state, we can consider the bond operators aver-
age with respect to the first excited state. Figure 10 shows
the bond correlator C1 + C2, which corresponds to the local
Hamiltonian at J2,0/J1,0 = 1, calculated using the first excited
state as a function of J2/J1. Discontinuities are observed at
the BKT transition point and some other values of J2/J1.
In the figure, we compared the bond correlator of different
system sizes. The discontinuities away from J2/J1 = 0.24
seem to be smeared out while the one at the BKT transition

FIG. 9. Energy spectrum as a function of J2/J1 for the 1D J1-J2

model in the Sz
total = 0 sector obtained from ED. Only the first four

eigenenergies are shown.

remains, but becomes less pronounced, as the system size
increases.

In the Sz
total = 0 sector, the first excited state for J2/J1 <

0.24 has a total spin S = 1. However, for J2/J1 > 0.24, the
first excited state has a total spin of S = 0. Alternatively, one
can determine the phase transition point by directly checking
the total spin of the first excited states in the Sz

total = 0 sector.
For examples, one can consider the bond correlator

CS(r) = 〈S+
j S−

j+r − Sz
jS

z
j+r〉, (10)

where S±
j = Sx

j ± iSy
j . Figure 11 shows the correlator calcu-

lated with respect to the ground state and the first excited state.
No signature for the transition is observed in the ground-state
average. However, if we calculate CS with respect to the
first excited state, it shows a clear discontinuity at the BKT
transition point J2/J1 = 0.24.

V. TWO-DIMENSIONAL J1-J2 MODEL

We considered the J1-J2 model described by the Hamil-
tonian in Eq. (8) on a square lattice. The model was first
introduced to describe the breakdown of Néel order in cuprate
superconductors [12–14] and has been extensively studied in
the past several decades (see, for examples, Refs. [24–29]).

0.0 0.2 0.4 0.6 0.8 1.0
J2/J1

−0.50
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C
1
+

C
2

1st excited state

L = 12

L = 24

FIG. 10. The correlator C1 + C2 calculated with respect to the
first excited state in the 1D J1-J2 model.
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FIG. 11. The correlator CS in Eq. (10) as a function of J2/J1 in
the 1D J1-J2 model calculated with respect to the ground state (left)
and the first excited state (right).

It is generally believed that the ground-state phase diagram
has a Néel antiferromagnetic (AFM) order in the small J2/J1

region, and a stripe AFM in the large J2/J1 region. In between
the two phases, there is a spin-liquid phase in the region
of 0.4 � J2/J1 � 0.6. However, we shall point out that the
nature of this intermediate phase is still under debate but it has
been determined that there is a finite topological entanglement
entropy, and therefore, topological order [26].

We tested our scheme of detecting the phase transition
in this model. Enlightened by the 1D case, we compute
both the ground state and the first excited state, by using
DMRG method. As in most literature, the cylinder geometry
is adopted, with open and periodic boundaries in the x and
y direction, respectively. We dynamically use up to 4000
DMRG many-body states, and, in most cases, the truncation
error is smaller than 10−7. The bond correlators on the 2D
cylinder can be defined as

Cx
1 = 〈Sx0,y0 · Sx0+1,y0〉, Cy

1 = 〈Sx0,y0 · Sx0,y0+1〉,
C2 = 〈Sx0,y0 · Sx0+1,y0+1〉, (11)

where (x0, y0) = (Lx/2, Ly/2) is the center site of the lattice.
Figure 12 shows the result of the bond correlators Cx

1 , Cy
1 ,

FIG. 12. The bond correlators (left panel) and the first derivatives
(right panel) as a function of J2/J1 for the J1-J2 model on a square
lattice. Here Lx = 12 and Ly = 6.

FIG. 13. The correlator CS in Eq. (10) as a function of J2/J1 for
the J1-J2 model on a square lattice. Here Lx = 12 and Ly = 6.

and C2 and their first derivatives. For the ground state, all the
presented quantities behave smoothly in the range of J2/J1

considered and no signatures of the transition were found. On
the other hand, for the first excited state, bond correlators do
show some anomalies. Similar to Eq. (10) in the 1D case, we
also consider the local bond correlator to check whether a state
has zero total spin. The result of the first excited state is shown
in Fig. 13. Here, only one anomaly between J2/J1 = 0.49
and 0.50 can be observed. By carefully comparing our results
and the results in Ref. [29], this anomaly corresponds to the
transition between the spin-liquid and the stripe AFM phase.

The ground state of the 2D J1-J2 model is still under con-
troversy. From our current results we cannot conclude that the
bond correlators have successfully detected all quantum phase
transitions in this model. In addition, the second anomaly
in Fig. 12 may correspond to higher excited level crossings,
or may be just a finite-size effect. A clear answer to these
uncertainties, which is not our aim in this work, requires
proper finite size with results from larger lattices and heavy
numerics.

VI. CONCLUSION

We examined the capability of the bond correlators in de-
tecting topological phase transitions in various models which
possess symmetry-protected topological phases or long-range
topological orders. We first considered the Kitaev chain with
long-range hopping and interactions. The topological phase
transitions in the system were detected by the peaks or dips
in the first derivative of the bond correlators with respect
to the driving parameters. The rate of change in the bond
correlators selected from the corresponding phase was also
found to be minimum. We also considered the interacting
spin Kitaev model on a honeycomb lattice. Interestingly,
similar observations about the bond correlators were obtained.
Moreover, for the BKT transition in the 1D J1-J2 model,
nontrivial features in the bond correlators were also found by
taking the average value with respect to the first excited state.
For the 2D J1-J2 model on the square lattice, the local bond
correlators show some anomalies as well. Although we cannot
conclude that these anomalies correspond to quantum critical
points, the local bonds show the potential to detect a phase
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with true topological long-range order and finite topological
entanglement entropy.

It is generally believed that a measurement of the system’s
global properties is required to characterize a topological
phase transition. However, in this work, we showed that local
bond operators can be potential candidates of signaling the
topological transitions in the models being studied. In fact,
there also exist studies suggesting that local operators can
be used to detect the topological transition. For example, by
measuring the charge imbalance, the transition of the Hal-
dane phase can be detected [30,31]. Another example is the
presence of Majorana states in topological superconductors
that can be detected by local Majorana polarization [32,33].
For future works, it will be useful to understand the physical
reason behind why the local bond correlators work or when

they will fail. This could help us further grasp the topological
nature of the transition from the bond energy perspectives.
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