
PHYSICAL REVIEW B 101, 245122 (2020)

Temperature dependence of the optical properties of silicon nanocrystals

Marios Zacharias * and Pantelis C. Kelires
Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, P.O. Box 50329, 3603 Limassol, Cyprus

and Department of Mechanical and Materials Science Engineering, Cyprus University of Technology,
P.O. Box 50329, 3603 Limassol, Cyprus

(Received 25 March 2020; revised manuscript received 1 May 2020; accepted 18 May 2020;
published 4 June 2020)

Silicon nanocrystals (SiNCs) have been under active investigation in the last decades and have been considered
as a promising candidate for many optoelectronic applications including highly efficient solar cells. Some of
the fundamental properties of interest in these nanostructures is the temperature dependence of their optical
absorption onset and how this is controlled by different passivation regimes. In the present work we employ first-
principles calculations in conjunction with the special displacement method to study the temperature dependence
of the band gap renormalization of freestanding hydrogen-terminated, and oxidized SiNCs, as well as matrix-
embedded SiNCs in amorphous silica, and we obtain good agreement with experimental photoluminescence
data. We also provide strong evidence that the electron-phonon interplay at the surface of the nanocrystal is
suppressed by oxidation and the surrounding amorphous matrix. For the matrix-embedded SiNCs, we show a
high correlation between the temperature dependence of the band gap and the Si-Si strained bonds. This result
emphasizes the immanent relationship of electron-phonon coupling and thermal structural distortions. We also
demonstrate that, apart from quantum confinement, Si-Si strained bonds are the major cause of zero-phonon
quasidirect transitions in matrix-embedded SiNCs. As a final point, we clarify that, unlike optical absorption in
bulk Si, phonon-assisted electronic transitions play a secondary role in SiNCs.
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I. INTRODUCTION

Over the last decades, quantum-confined semiconductors
based on silicon have drawn great scientific attention owing
to their unique electronic and optical properties. In this re-
gard, silicon nanocrystals (SiNCs) have enabled interesting
technological applications, including optoelectronic devices
[1–4], quantum dot sensors [5,6], photodetectors [7–9], and
bioimaging devices [10,11]. Despite the numerous investi-
gations in SiNCs, either freestanding or matrix-embedded,
our understanding on the temperature dependence of their
absorption onset and band gap renormalization remains in-
complete. This topic is of fundamental and practical interest
for optimizing the efficiency of next generation solar cells
[12–16], and silicon-based photonics [17,18].

Various temperature-dependent photoluminescence (PL)
measurements of SiNCs have been reported [19–23]. It has
been found that the energies of PL peaks of matrix-embedded
SiNCs in amorphous silica (a-SiO2) exhibit a Varshni behav-
ior [24], following closely the band gap renormalization of
bulk Si. However, the origin of this observation is still unclear.
Kůsová et al. [23] have reported temperature-dependent PL
spectra of freestanding oxide-passivated SiNCs. Their results
reveal that, as the temperature increases, the PL energy shift
of freestanding SiNCs is significantly larger than the corre-
sponding shift of matrix-embedded SiNCs. This difference
has been attributed solely to compressive strain exerted on
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the nanocrystals by the a-SiO2 matrix, ignoring the effect of
atomic vibrations on the electronic structure.

The interaction of electrons with quantized atomic vibra-
tions, namely, the electron-phonon coupling, is the underlying
mechanism associated with temperature-dependent optical
properties of materials [25]. In particular, electron-phonon
coupling is responsible, among others, for the quantum zero-
point renormalization and temperature dependence of the
electronic energy levels. This latter effect determines the
thermally induced energy shifts of the absorption onset in bulk
and nanostructured semiconductors.

In this study we rely on a recently developed methodology
[26,27], namely, the special displacement method (SDM), and
present first-principles calculations of temperature-dependent
band gaps of SiNCs. We demonstrate that the electron-phonon
coupling leads to a larger band gap renormalization in free-
standing than matrix-embedded SiNCs. To explain this dif-
ference we also calculate Eliashberg spectral functions and
analyze the contribution to the band gap renormalization
from individual phonon modes. Importantly, our results reveal
that surface oxidation and embedding strongly suppress the
coupling of electrons with phonons at the surface of the SiNC.
Our findings also confirm that the band gap renormalization
of the SiNC/a-SiO2 system is in good agreement with the
Varshni-like temperature-dependence of bulk Si.

In addition to modifying the band structure, the electron-
phonon coupling plays an important role in optical absorption
leading to phonon-assisted electronic transitions. For exam-
ple, in indirect gap crystals, optical transitions between the
band extrema require the participation of a phonon to satisfy

2469-9950/2020/101(24)/245122(12) 245122-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7052-5684
https://orcid.org/0000-0002-0268-259X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.245122&domain=pdf&date_stamp=2020-06-04
https://doi.org/10.1103/PhysRevB.101.245122


MARIOS ZACHARIAS AND PANTELIS C. KELIRES PHYSICAL REVIEW B 101, 245122 (2020)

the momentum conservation rule. In nanocrystals made of
indirect gap solids, however, the intensity of the absorp-
tion onset is also determined by zero-phonon quasidirect
recombination that breaks the momentum conservation rule.
This effect has been found to be pronounced in SiNCs,
especially in relatively small size clusters [28–30].

Quantum confinement (QC) is the primary factor control-
ling quasidirect transitions. However, the absorption onset
of SiNC structures is found to be consistently well below
the quantum-confined band gap [31]. Various suggestions
have been made in this respect. These are based on oxygen-
related surface/interface states [31–34], chemical passivation
by other ligands [35], strained Si-Si bonds at the interface
layer [34,36,37], and interface scattering [30].

In this manuscript, we also report results of first-principles
calculations that unambiguously identify some of the main
sources of quasidirect transitions in the SiNC/a-SiO2 system,
and clarify the role of each of its components (NC core,
interface, matrix). This is made possible by the decomposition
of density of states and optical absorption into atomic contri-
butions, probing in this way the optical response of individual
sites and local areas in the system. Our results show that,
apart from QC, the dominant source of quasidirect transitions
originates from strained Si-Si bonds in the core region induced
by embedding.

The organization of the manuscript is as follows: in Sec. II
we briefly introduce the theory and main equations employed
to investigate temperature-dependent optical properties of
SiNCs, and outline the recipe used to obtain site decompo-
sition of optical absorption. Section III reports all computa-
tional details of the calculations performed in this work. In
Sec. IV we present our results on various SiNC systems. In
particular, in Sec. IV A we report band gaps of H-terminated,
oxidized, and matrix-embedded SiNCs as a function of the
nanocrystal diameter and compare to experiment. In Sec. IV B
we compare our calculations of temperature-dependent band
gaps of H-terminated, oxidized, and matrix-embedded SiNCs
(all with diameter 2 nm) with bulk Si and experimental data.
These calculations are followed by the analysis of phonon
density of states and Eliashberg spectral functions of the three
SiNC systems in Sec. IV C. In Sec. IV D we present the role
of Si-Si strained bonds in the optical properties of matrix-
embedded SiNCs, and in Sec. IV E, for the same structure,
we compare Tauc plots of zero-phonon and phonon-assisted
spectra. In Sec. V we summarize our key findings and indicate
avenues for future work.

II. THEORY

In this section, we briefly describe the theoretical frame-
work of the methodology employed to calculate temperature-
dependent optical properties and the decomposition of the
dielectric function into site contributions. In the following,
we adopt a �-point formalism, since our calculations are for
freestanding and extended matrix-embedded SiNCs.

A. Temperature-dependent optical properties

Within the Williams-Lax [38,39] theory in the harmonic
approximation, the imaginary part of the dielectric function at

photon frequency ω and temperature T is given by [40]

ε2(ω, T ) =
∏

ν

∫
dxν

exp
( − x2

ν/2σ 2
ν,T

)
√

2πσν,T

ε
{xν }
2 (ω). (1)

Here the multidimensional Gaussian integral is taken over
all normal coordinates xν and the superscript denotes the
dielectric function evaluated with the nuclei in configu-
ration {xν}. The widths of the Gaussian distributions are
defined by the mean square displacements of the atoms
along a vibrational mode ν, with frequency ων , and is
given by σ 2

ν,T = (nν,T + 1/2) h̄/Mpων , where Mp is the pro-
ton mass and nν,T = [exp(h̄ων/kBT )−1]−1 represents the
Bose-Einstein occupation. The fundamental approach to nu-
merically evaluate Eq. (1) is to employ Monte Carlo inte-
gration and perform an average of the dielectric functions
calculated for multiple atomic configurations {xν}. Those
configurations are constructed independently by generating
normal coordinates from the multivariate normal distribution∏

ν exp(−x2
ν/2σ 2

ν,T )/
√

2πσν,T .
Recently, it has been shown that one can identify a single

atomic configuration [26,27], namely, the ZG configuration,
to evaluate the integral in Eq. (1). The set of special atomic
displacements that lead to the ZG configuration are obtained
via

�τκα =
√

Mp

Mκ

∑
ν

(−1)ν−1 eν
κα σν,T , (2)

where �τκα is the displacement of atom κ along the Cartesian
direction α, and eν

κα is the component of the phonon polar-
ization vector associated with the normal mode coordinate
xν = σν,T . The calculation of optical spectra with the ZG
configuration yields correctly the adiabatic limit of phonon-
assisted optical absorption as described by Hall, Bardeen, and
Blatt [41], and at the same time incorporates the effect of
electron-phonon renormalization on the band structure.

In the same way with the Williams-Lax optical spectra,
one can calculate temperature-dependent transition energies
by directly replacing the dielectric function in Eq. (1) with the
transition energy [27]. In the thermodynamic limit, the band
gap evaluated for the ZG configuration at temperature T is
given, up to fourth order in atomic displacements, by [26]

Eg(T ) = Eg + 1

2

∑
ν

∂2Eg

∂x2
ν

σ 2
ν,T

(3)

+ 3

4!

∑
μ �=ν

∂4Eg

∂x2
μ∂x2

ν

σ 2
μ,T σ 2

ν,T ,+ 1

4!

∑
ν

∂4Eg

∂x4
ν

σ 4
ν,T ,

where Eg indicates the band gap energy evaluated with the
nuclei of the system at their equilibrium geometry. The
quadratic terms consist of the Fan-Migdal and Debye-Waller
contributions to the electron-phonon renormalization [25,42],
and the fourth order terms [last line of Eq. (3)] represent
two-phonon contributions.

A standard way to investigate the vibrational mode contri-
bution to the band gap renormalization at finite temperatures
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is to calculate the Eliashberg spectral function, defined as

g2Fg(ω, T ) =
∑

ν

1

2

∂2Eg

∂x2
ν

σ 2
ν,T δ(h̄ω − h̄ων ). (4)

Integrating g2Fg(ω, T ) over all phonon energies yields the
sum of the Fan-Migdal and Debye-Waller corrections. This
sum is usually evaluated in state-of-the-art perturbative calcu-
lations [43–50] of temperature-dependent band structures that
rely on the Allen-Heine theory [51].

B. Site decomposition of optical spectra

The imaginary part of the dielectric function in the inde-
pendent particle and electric dipole approximations is given
by [52]

ε2(ω) = 2
4π2e2

m2
eω

2V

∑
vc

|pcv|2δ(εc − εv − h̄ω). (5)

In this expression me and e are the electron mass and charge,
the factor of two is for the spin degeneracy, V is the volume
of the system, and pcv = 〈ψc|∇|ψv〉 is the optical matrix
element representing direct transitions between the valence
and conduction Kohn-Sham states |ψv〉 and |ψc〉 with energies
εv and εc, respectively.

Taking the expansion of the Kohn-Sham states as a linear
combination of atomic orbitals, the optical matrix element is
written as

pcv =
∑

i j

c∗
icc jv〈φi|∇|φ j〉 =

∑
i j

c∗
icc jv p̃i j, (6)

where c jv represents the Kohn-Sham expansion coefficients
of the state |ψv〉, and φ j are the corresponding atomic basis
states. To alleviate the notation we also define the matrix
elements describing transitions between the basis states as
p̃i j = 〈φi|∇|φ j〉.

Now we split the system into two groups of atoms, A and
B, so that the total optical matrix element can be decomposed
into the following contributions:

pcv = pAA
cv + pBB

cv + pAB
cv + pBA

cv , (7)

where

pAB
cv =

∑
i∈A, j∈B

c∗
icc jv p̃i j . (8)

Here the self matrix elements, pAA
cv and pBB

cv , represent optical
transitions between basis states that are associated entirely
with atoms in the same group, while the cross-coupling matrix
elements, pAB

cv and pBA
cv , represent optical transitions between

basis states that are associated with atoms in different groups.
By substituting Eq. (7) into Eq. (6) and expanding the

square modulus we can obtain the decomposition of the
dielectric function into site contributions. The result is

ε2(ω) = εAA
2 (ω) + εBB

2 (ω) + cct, (9)

where, for example, the dielectric function

εAA
2 (ω) = 2

4π2e2

m2
eω

2V

∑
vc

|pAA
cv |2δ(εc − εv − h̄ω) (10)

FIG. 1. Structures of (a) H-terminated freestanding (FS) and
(b) matrix-embedded (ME) SiNCs with diameter d = 2 nm. Si atoms
in the nanocrystals and passivating H atoms are shown in green and
white. Matrix Si and O atoms are colored blue and gray, respectively.

corresponds to optical absorption from atoms in group A only,
and “cct” refers to the various cross coupling terms. We note
that the above prescription to decompose optical absorption
into site contributions can be generalized straightforwardly to
an arbitrary number of groups.

III. COMPUTATIONAL DETAILS AND METHODS

All first-principles calculations are based on density func-
tional theory using numeric atom-centered orbitals as basis
functions in the PBE generalized gradient approximation [53]
as implemented in the electronic structure package FHI-aims
[54]. The sampling of the Brillouin zone of each nanocrystal
was performed using the � point, and a vacuum of at least
20 Å was considered in all Cartesian directions to avoid
spurious interactions between periodic images. Ground state
geometries were obtained via BFGS optimization [55] until
the residual force component per atom was less than 10−2

eV/Å.
The dangling bonds of freestanding SiNCs are passivated

with hydrogen atoms, as shown in Fig. 1(a). Oxidized free-
standing SiNCs were obtained by replacing two hydrogens
with one oxygen atom followed by geometry optimization.
Configurations containing only double-bonded oxygens were
considered. Unlike Si-O-Si bridge bonds, Si == O double
bonds are known to vary significantly the electronic structure
of relatively small SiNCs [31]. For example, our calculations
on freestanding SiNCs with d = 1.2 nm (Si45H58) reveal that
the formation of Si == O and Si-O-Si bonds cause a band gap
reduction of 845 meV and 214 meV, respectively.

Initial matrix-embedded SiNCs were obtained by a well
tested Monte Carlo (MC) approach, as described in detail
elsewhere [33,37]. They consist of small spherical NCs with
a size of 1.4 nm (99 Si atoms) and 2.0 nm (215 Si atoms),
embedded in a-SiO2 matrices containing 400 and 2450 oxide
atoms, respectively. To make the first-principles calculations
tractable in the latter case, we constructed from the original
network a smaller cell containing 659 atoms, in which the
large NC is coated with an oxide layer of only 292 atoms,
representing the rest of the oxide, and passivated with 152 H
atoms, as shown in Fig. 1(b). These initial structures were
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first thoroughly annealed and relaxed with ab initio Molecular
Dynamics at 800 K. Then, they were cooled to 0 K and
brought into their ground state via geometry relaxation. The
final structures contain only Si-O-Si bridge bonds, which
have been shown to form the lowest energy configuration at
the interface [37]. We note that no Si == O double bonds
could be stabilized under relaxation, even after artificially
imposing them, which indicates their high formation energy
in embedded NCs [56,57].

All calculations of temperature-dependent optical prop-
erties were performed on SiNCs with diameter d = 2 nm.
The structures with the nuclei at their relax positions are
shown in Fig 1. The Williams-Lax theory in the harmonic
approximation together with SDM [26,27] [Eq. (2)] were
employed to calculate dielectric functions and band gaps at
finite temperatures. Optical matrix elements were calculated
within the independent particle approximation by taking the
isotropic average over the Cartesian directions. Vibrational
frequencies ων and eigenmodes eν

κα were obtained via the
frozen-phonon method [58,59] as implemented in PHONOPY
[60]. ZG configurations were generated via Eq. (2). For the
ZG displacement in the H-passivated matrix-embedded SiNC
we excluded the modes associated with displacements of
H atoms. This choice avoids to a large extent the spurious
contributions to the band gap renormalization coming from
the artificial passivation to the system. All calculations of
temperature-dependent band gaps and spectra were performed
using the ZG configuration and its antithetic pair [26] to
ensure that contributions from the linear terms in atomic dis-
placements reduce to zero. The derivatives ∂2Eg/∂x2

ν required
to obtain the Eliashberg spectral function in Eq. (4) were
calculated by finite differences [61]. This procedure required
2 × 3P frozen-phonon calculations, where P is the number of
atoms in the system.

To elucidate the origin of the phonon density of states and
band gap renormalization in different structures we decom-
pose the atoms of the nanocrystal into two groups: surface and
core atoms. The core contains Si atoms having as neighbors
only Si0, i.e., Si atoms not bonded to any O or H atoms. The
surface of freestanding SiNCs contains H, O, and passivated
Si atoms (suboxides Si+1, Si+2, and Si+3). The surface of the
matrix-embedded SiNC contains matrix atoms (suboxide Si+4

and O), and passivated Si atoms (suboxides Si+1, Si+2, and
Si+3).

To account for the effect of thermal expansion on the band
gap of SiNCs we performed the following steps: (i) We took
the volume of all nanocrystals to be equal to the convex hull
volume formed by the outermost Si atoms. (ii) We mimicked
volume expansion by increasing the distance of all Si atoms
from the center of the nanocrystal by the same fraction.
That is, we increased the volume without inducing distortion
to the bond angles, and thus keeping the structures similar.
(iii) For the case of matrix-embedded SiNCs, we neglected
the thermal expansion of the matrix and left the positions
of amorphous silica atoms at their relaxed coordinates. The
rationale behind this choice is that the thermal expansion
coefficient of amorphous silica [62] (0.5 × 106 K−1) is five
times less than that of bulk Si [63] (2.6 × 106 K−1). (iv)
We took the thermal expansion coefficient of SiNCs to be 2.5
times larger than that of bulk Si [64].

FIG. 2. (a) Band gap of silicon nanocrystals (SiNCs) as
a function of average diameter d . Calculated band gaps of
H-terminated (SinHm), oxidized SiNCs (SinOHm), and matrix-
embedded (Sin/a-SiO2) SiNCs are shown as red discs, green discs,
and blue squares, respectively. The solid curves are fits of the
form E0 + a/db to the calculated band gaps of H-terminated SiNCs
(red) and oxidized SiNCs (green) [67]. The dashed curves represent
vertically shifted theoretical fits such that E0 corresponds to the GW
corrected band gap of bulk Si [70]. Experimental data of matrix-
embedded SiNCs in a-SiO2 (black squares) and freestanding SiNCs
with oxidized surface (black discs) are from Refs. [22] and [65].
(b) Decomposition of the electronic density of states (EDOS) of the
matrix-embedded SiNC into contributions from Si core atoms (black
solid line), passivated surface Si atoms (black dashed dotted line),
O matrix atoms (gray solid line), and Si matrix atoms (black dashed
line). The Fermi level is set at the middle of the gap. A Gaussian
broadening of 70 meV was used.

IV. RESULTS

A. Size-dependent band gap of SiNCs

Figure 2(a) shows the calculated band gaps of H-
terminated freestanding SiNCs/SinHm (red discs), oxidized
freestanding SiNCs/SinOHm−2 (green discs), and two em-
bedded SiNCs in a-SiO2 (blue squares) as a function of
the nanocrystal diameter d . Experimental data of embedded
SiNCs in a-SiO2 (black squares) [22] and freestanding SiNCs
with oxidized surface (black discs) [65] are shown for com-
parison. Our results show that the band gap of freestanding
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FIG. 3. (a) Temperature dependence of the band gap renormalization of freestanding (FS) and matrix-embedded (ME) SiNCs up to
350 K. Calculated band gaps using the ZG displacement [26] for H-terminated (Si217H150), oxidized (Si217O7H136) and matrix-embedded
(Si215/a-SiO2) SiNCs are shown as red discs, green discs and blue squares, respectively. The diameter of the nanocrystals employed for our
calculations is 2 nm. Magenta squares represent the band gaps of matrix-embedded SiNCs including also the effect of thermal expansion (TE).
Orange diamonds represent data of bulk Si reported in Ref. [27]. Experimental data of oxidized freestanding SiNCs (black discs) is from Ref.
[23] and of matrix-embedded SiNCs in a-SiO2 (black squares) is from Refs. [20–22,73]. All curves represent fits to Eq. (11). (b) Variation of
the zero-point renormalization of the matrix-embedded SiNC with the number of deterministic ZG configurations. The horizontal dashed line
indicates the zero-point renormalization of 86 meV calculated using only one antithetic pair of ZG configurations. (c) Band gap renormalization
versus volume expansion of H-terminated SiNCs (red discs) and matrix-embedded SiNCs in a-SiO2 (blue squares). The vertical dashed line
indicates the volume expansion at 300 K. (d) Comparison of temperature-dependent band gaps of the H-terminated SiNC (top panel) and
matrix-embedded SiNCs in a-SiO2 (bottom panel) calculated using the SDM (solid lines) and finite differences (dashed lines). The shaded
area can be taken as the uncertainty of the band gap renormalization calculated for matrix-embedded SiNCs in a-SiO2. Experimental data of
matrix-embedded SiNCs is as for (a).

SiNCs opens with decreasing nanocrystal size. As expected,
this trend follows the QC theory and compares favorably with
other electronic structure calculations [66–69]. The significant
reduction of oxidized and matrix-embedded SiNCs from the
QC values is also clear. For example, our calculations on
nanocrystals with d = 2 nm reveal a band gap reduction
of 0.27 eV and 0.43 eV after oxidation and embedding,
respectively. The latter value is in close agreement with 0.4 eV
extracted from experimental data of SiNCs with d = 2.5 nm.

The solid curves in Fig. 2(a) represent fits to the data of
freestanding SiNCs and are of the form E0 + a/db, where
E0 = 0.66 eV is the calculated PBE band gap of bulk Si
and a, b are fitting parameters. The fit to SinHm band gaps
gives a = 3.04 and b = 1.19, which compare nicely with the
theoretical values of 3.73 and 1.39 obtained in Ref. [67]. In
both cases the exponent b is different from 2 showing that
the effective mass model is inadequate to describe the energy
levels of nanocrystal clusters [71,72]. The fit to SinOHm band
gaps gives a = 1.88 and b = 0.83. We attribute the further
decrease of a and b to the new electronic states that appear
near the band edges as a result of the formation of a Si ==
O double bond [31]. The systematic underestimation of the
measured band gaps is mainly due to the PBE approximation
to the exchange-correlation energy used in our calculations.
As illustrated by the dashed green and red curves in Fig. 2(a),
this underestimation is adjusted by a “scissor” shift equal to
0.5 eV that mimics the GW quasiparticle corrections to the
band gap of bulk Si [70].

Figure 2(b) shows the decomposition of the electronic
density of states (EDOS) near the band gap of the matrix-

embedded SiNC with d = 2 nm. The main contribution to
the EDOS is from Si core and surface atoms. At vari-
ance with Si matrix atoms, O atoms participate in the
formation of the band edges leading to the reduction of
the band gap energy from its QC value [34]. However,
this is not the primary factor contributing to the band
gap closing and thereby to quasidirect transitions close to
the absorption edge; as we demonstrate in Secs. IV D and
IV E embedding causes large strains to Si-Si bonds that
alter significantly the electronic band structure and optical
absorption.

B. Temperature-dependent band gap of SiNCs

In Fig. 3(a) we compare our calculations of the
temperature-dependent band gap renormalization of SiNCs
with experiments from Refs. [20–23,73], up to T = 350 K. To
facilitate comparison with data obtained from photolumines-
cence measurements we define the band gap renormalization
as �Eg(T ) = Eg(T ) − Eg(0). The effect of electron-phonon
coupling (EPC) is included in our calculations using SDM.
Red discs, green discs and blue squares represent calcula-
tions of fully H-terminated, oxidized, and matrix-embedded
SiNCs with d = 2 nm, respectively. The oxidized SiNC
(Si217O7H136) was prepared by replacing 14 hydrogen with
7 oxygen atoms to form Si == O double bonds that are uni-
formly distributed in the outer-shell of the nanocrystal.

As shown in Fig. 3(a), oxidation of the nanocrystal leads to
a significantly smaller variation of the band gap with temper-
ature. For example, our results reveal a decrease in the band
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gap renormalization of 135 meV at 300 K, amounting to 43%
of the band gap renormalization calculated for the fully H-
terminated SiNC. This difference is explained by the fact that
the oxidized nanocrystal exhibits a weaker electron-phonon
coupling at the surface; this aspect is analyzed in detail in
Sec. IV C. Our calculated temperature-dependent band gaps
of the oxidized SiNC compare well with measurements [23]
made on freestanding oxide-passivated SiNCs with d = 2.44
nm (black discs). We note that we did not explore how the
formation of Si-O-Si bridge bonds, or other oxidation combi-
nations [31], affect the temperature dependence of the band
gap. Such a study requires systematic and extended analysis,
and will be presented elsewhere.

Figure 3(a) also shows that electron-phonon renormal-
ization of the band gap is further reduced by placing the
nanocrystal inside the a-SiO2 cage. The interpretation of this
result is given in Sec. IV C. Our data (blue squares) exhibits a
very similar behavior to the band gap renormalization calcu-
lated for bulk Si [27] (orange diamonds). Compared to experi-
mental data [20–23,73] (black squares) reported for nanocrys-
tals with diameter 1.5–4.5 nm the agreement is very good.
As already shown for bulk Si in Ref. [74], this agreement
can be improved by taking into account GW corrections to
the electron-phonon coupling. For completeness, we include
in our calculations the additional change in the band gap
resulting from the thermal expansion of the nanocrystal inside
the matrix [magenta squares in Fig. 3(a)]. Also in this case,
the theoretical data lie within the experimental range.

All curves in Fig. 3(a) represent fits to the band gap renor-
malization �Eg(T ) of SiNCs using an alternative expression
to Varshni’s law, given by [76]

�Eg(T ) = −a�

2

[
p

√
1 +

(
2T

�

)p

− 1

]
, (11)

where a, �, and p are model parameters representing the gra-
dient of the high-temperature asymptote, the effective phonon
temperature and the exponent of the temperature power law.
This expression was chosen to (i) describe more accurately
the nonlinear dependence of the band gap at very low temper-
atures [77], and (ii) facilitate comparison with available ex-
perimental data [21]. The values of a, �, and p obtained from
our analysis and the corresponding experimental parameters
from Refs. [21] and [75] are summarized in Table I.

As a sanity check, we performed calculations to test the
accuracy of SDM for the case of finite size nanocrystal clus-
ters. Figure 3(b) shows the change of the average zero-point
renormalization (ZPR) of the band gap with the number of
ZG displacements generated for the matrix-embedded SiNC,
d = 2 nm. The zero-point renormalization of the band gap is
defined as �EZPR = Eg(0) − Eg. The ZG displacements were
generated such that the numerical error in the evaluation of
the ZPR is reduced with configurational averaging [26]. Our
results confirm that �EZPR = 86 meV is already well con-
verged using a single antithetic pair of ZG displacements. The
calculated �EZPR for all nanocrystals and bulk Si obtained
using SDM are listed together with experimental data of bulk
Si in Table I.

Figure 3(c) shows the band gap change as a function
of homogeneous volume expansion of the freestanding H-

TABLE I. Fitting parameters a, � and p entering Eq. (11) to de-
scribe the temperature dependence of the band gap renormalization
of freestanding (FS) and matrix-embedded (ME) SiNCs and bulk
Si. TE indicates that the effect of thermal expansion is included.
Experimental values of matrix-embedded SiNCs and bulk Si are from
Refs. [21] and [75], respectively.

a � p �EZPR

(meV K−1) (K) (meV)

FS: Si217H150 1.29 118 2.26 230
FS: Si217O7H136 1.07 486 1.68 141
ME: Si215/a-SiO2 0.25 365 3.00 86
ME with TE 0.15 534 2.45 86
Bulk Si 0.26 425 2.47 57
FS (expt.) 1.32 365 2.99 —
ME (expt.) 0.17–0.4 68–400 2.5–2.8 —
Bulk Si (expt.) 0.3176 406 2.33 64

terminated (red discs) and matrix-embedded (blue squares)
SiNCs. The approach we employed to mimic the volume
expansion of SiNCs is provided in Sec. III. The band gap of
both structures increases linearly with volume. For the free-
standing structure, the linear fit gives a slope of 0.2 meV/Å3,
and the band gap opening is attributed solely to the expansion
of the average Si-Si bond length. For the matrix-embedded
nanocrystal, the linear fit gives a relatively much larger slope
of 1 meV/Å3. This difference is explained by the presence
of matrix oxygen atoms at the interface. In particular, as
the nanocrystal expands inside the matrix, the overlap be-
tween the orbitals of oxygen and outermost silicon atoms
increases. Since oxygen orbitals contribute to the electronic
density of states at the band edges [Fig. 2(b)], then the
decrease/distortion of Si-O-Si bridge bonds at the surface of
the nanocrystal leads effectively to an additional band gap
opening. To account for the effect of volume expansion to the
band gap renormalization in matrix-embedded SiNCs we take
the thermal expansion coefficient of the nanocrystal equal to
6.5 × 106 K−1; see for details in Sec. III. This amounts to a
volume increase of 20 Å3 at 300 K as indicated by the vertical
dashed line in Fig. 3(c). We also note that by taking the bulk
modulus of the nanocrystal to be equal to 105 GPa [78], the
average compressive stress exerted on the nanocrystal by the
matrix at 300 K can be estimated to be 1.6 GPa. This value
is in line with the corresponding average stress calculated in
Ref. [79] using Monte Carlo simulations.

Figure 3(d) shows the temperature-dependent band gap
renormalization of the H-terminated freestanding (top panel)
and matrix-embedded (bottom panel) SiNCs calculated using
SDM (solid lines) and finite differences [61] (dashed lines).
These methodologies are used to evaluate the temperature
dependence of the band gap within the nonperturbative adi-
abatic and perturbative adiabatic Allen-Heine theory [25,51],
respectively. The advantage of nonperturbative over perturba-
tive approaches is that higher order electron-phonon coupling
terms, beyond second-order perturbation theory, are included
in the calculation of temperature-dependent observables [see,
for example, the terms in the last line of Eq. (3)]. Regarding
the band gap renormalization of bulk Si, these terms are
known to be negligible [26,46]. However, this is not the case
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FIG. 4. Phonon density of states (PDOS) of the H-terminated
freestanding SiNC (red), oxidized freestanding SiNC (green),
matrix-embedded SiNC in a-SiO2 (blue), and bulk Si (black). The
shaded areas define the frequency range of the vibrational modes
associated mainly with displacements of surface (light gray) and
core atoms (dark gray). Percentages in round [square] brackets show
the contribution to the vibrational modes associated with displace-
ments of the indicated group of atoms in the freestanding [matrix-
embedded] SiNC.

for H-terminated freestanding SiNCs. Our finite difference
calculations reveal �EZPR = 340 meV and a high temperature
asymptote a = 2.36 meV K−1, which are well above than the
corresponding values calculated using SDM (see Table I).
We attribute this difference to the presence of light mass H
atoms at the surface of the freestanding SiNC. In particular,
vibrational modes that are associated with large displacements
of H atoms couple to modes of the nanocrystal, or to each
other, leading to a nonnegligible higher order electron-phonon
coupling renormalization. Further analysis of this aspect re-
quires a separate set of elaborate calculations, and is beyond
the scope of this manuscript. Our perturbative calculations
for the matrix-embedded SiNC give �EZPR = 182 meV and
a = 0.54 meV K−1, which are more than twice the corre-
sponding nonperturbative values (see Table I). The difference
between our perturbative and nonperturbative calculations can
be explained by the remaining spurious displacements of the
artificially imposed H atoms that contribute to the band gap
renormalization. This uncertainty in our calculations is shown
as a blue shaded area in Fig. 3(d).

C. Phonon DOS and Eliashberg spectral functions

To explain the different behavior between the temperature-
dependent band gaps of the three SiNCs employed in our
calculations, we proceed with the analysis of their phonon
density of states (PDOS) and the temperature dependence of
their Eliashberg spectral functions (ESFs).

Figure 4 shows our calculated PDOS of the H-terminated
(red curve), oxidized (green curve), and matrix-embedded
(blue curve) SiNCs. For comparison purposes, we also include
data of bulk Si (black dashed curve). We conclude that surface
oxidation has a minor effect on the PDOS of freestanding

FIG. 5. Temperature dependence of the Eliashberg spectral func-
tion up to 300 K versus phonon frequency calculated for the free-
standing fully H-terminated SiNC, the freestanding oxidized SiNC,
and the matrix-embedded SiNC in a-SiO2 from top to bottom,
respectively. Thin arrows indicate the direction of increasing temper-
ature and thick arrows highlight the suppression of electron-phonon
coupling (EPC) after oxidation, and after placing the nanocrystal
inside the matrix.

SiNCs. Instead, placing the nanocrystal inside the matrix
leads to distinct changes in the PDOS, and in particular for
phonon frequencies larger than 500 cm−1, i.e. beyond the
phonon frequency range of bulk Si. In the same figure we also
indicate the frequency ranges (shaded areas) and percentage
contribution of the vibrational modes associated mainly with
displacements of surface atoms (light gray), and core atoms
(dark gray). Details for this classification are provided in
Sec. III.

Figure 5 shows the temperature dependence of the ESFs
up to 300 K calculated for the three SiNCs in the phonon
frequency range 0–1000 cm−1. We exclude from our analysis
the vibrational modes with frequencies higher than 1000
cm−1, since their contribution to the total ZPR is less than
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1%. Furthermore, these high frequency modes have much
lower occupation probability according to the Bose-Einstein
distribution. It is evident from our calculated ESFs that the
band gap renormalization of the two freestanding SiNCs is
dominated by the low frequency vibrational modes associated
with displacements of surface atoms. On the contrary, the
largest contribution to the band gap renormalization of the
matrix-embedded SiNC comes from the modes associated
with displacements of core atoms. It is also pronounced that
oxidation, although does not cause any significant changes
in the PDOS, it suppresses the coupling of electrons with
surface phonons, justifying the sizable difference between the
band gap renormalization of oxidized and fully H-terminated
SiNCs, reported in Fig. 2(a). The underlying mechanism
responsible for this behavior is the participation of oxygen
orbitals to the formation of the electron states close to band
edges [31], thereby modifying the associated electron-phonon
coupling matrix elements [25]. Even more remarkably, the
interaction of electrons with surface phonons is strongly
suppressed when the nanocrystal is embedded in amorphous
silica. This suggests that the large difference between the
temperature-dependent photoluminescence shifts measured
for oxide-passivated and matrix-embedded SiNCs in Ref. [23]
is mainly due to the strong suppression of electron-phonon
coupling at the surface of the nanocrystal. We attribute to the
same effect, the observation that the band gap renormalization
of matrix-embedded SiNCs follows closely the Varshni be-
havior of bulk Si data. In fact, as demonstrated in Ref. [80] the
dominant contribution to the electron-phonon coupling in bulk
Si originates from the phonon modes in the frequency range
415–515 cm−1, which coincides to a large extent with the
frequency range of the modes associated with displacements
of the core atoms in the matrix-embedded SiNC.

D. Role of Si-Si strained bonds in the optical properties
of matrix-embedded SiNCs

In this section, we analyze the role of Si-Si strained bonds
in the optical absorption and band gap renormalization of
matrix-embedded SiNCs.

Figure 6(a) shows the spectra decomposition into groups
of atoms of the matrix-embedded SiNC calculated with the
nuclei at their equilibrium geometry. Details of the method
are available in Sec. II B. The top panel shows the total
imaginary part of the dielectric function (blue solid line)
and its decomposition into nanocrystal (black solid line) and
matrix (black dashed line) self contributions. It is evident
that the optical spectrum is dominated by the nanocrystal
site, while the matrix contribution is essentially zero. This
suggests that although matrix oxygen states participate in the
formation of the absorption edge [Fig. 2(b)], they do not
participate actively in the absorption process. The bottom
panel of Fig. 6(a) shows the spectra decomposition of the
nanocrystal into suboxide contributions. Our results reveal
that for energies well above the absorption onset the largest
contribution to ε2(ω) originates from the core Si0 atoms (gray
solid line), which are not bonded to any O atoms. Closer to the
absorption onset [inset of Fig. 6(a)], the core atoms contribute
as much as the inner-interface Si+1 atoms (gray dashed line),
while the central Si+2 and outer Si+3 atoms (green solid line)

are very weak absorbing elements. The above findings lead
us to the conclusion that the band gap decrease from the QC
values in matrix-embedded SiNCs is due to silicon states,
mainly in the nanocrystal core, while oxygen states play a
secondary role. As we demonstrate below, this effect has its
origins in the large bond length strains induced by embedding,
previously suggested by Ref. [37], both at the interface and
deeper in the core.

Figure 6(b) shows the equilibrium Si-Si bond lengths in
freestanding (red discs) and matrix-embedded (blue discs)
SiNCs, d = 2 nm, as we move radially outwards from the
center of the nanocrystal. The average equilibrium Si-Si bond
length in the matrix-embedded SiNC is indicated by the
horizontal black dashed line cutting the vertical axis at 2.375
Å. This value differs by only 0.005 Å from the corresponding
value calculated for the freestanding SiNC. It can be readily
seen that the vast majority of Si-Si bond lengths in the
freestanding SiNC are very close to the average value, giving
a standard deviation �l = 0.007 Å. On the contrary, for the
matrix-embedded SiNC, the variation of Si-Si bond lengths
from the average is substantial, giving a standard deviation
�l = 0.037 Å. In Fig. 6(b), we also include the Si-Si bond
lengths in ZG geometries of the matrix-embedded system
at T = 0 K (gray discs) and T = 300 K (black discs). The
corresponding standard deviations are 0.062 Å and 0.068 Å.
These large differences in the standard deviations exemplify
the large strain induced by embedding and thermal effects,
and can be correlated with the band gap closing in matrix-
embedded SiNCs.

To clarify this observation, Fig. 6(c) shows the relation-
ship between the calculated band gap renormalization of the
matrix-embedded SiNC and the Si-Si bond length variance
�l2. We define the bond length variance at temperature T as

�l2(T ) = 1

S

S∑
i=1

[
li(T ) − l0

i

]2
, (12)

where li(T ) and l0
i are the bond lengths in ZG and equilibrium

geometries, respectively, and S is the number of total bond
lengths. Our choice of a quadratic deviation measure is ratio-
nalized by the fact that, the electron-phonon renormalization,
for relatively low temperatures, is predominantly quadratic
in atomic displacements [first line of Eq. (3)]. Therefore, we
proceed with the following simple relationship

�Eg(T ) = �EZPR + ∂2Eg

∂�l2
�l2(T ), (13)

to correlate the band gap change and bond length distor-
tion. The fit of Eq. (13) to the calculated band gaps (equi-
librium and four temperatures up to 300 K) gives a slope
∂2Eg/∂�l2 = −33 meV/10−3 Å2, �EZPR = 86 meV, and a
Pearson’s linear correlation coefficient R = −0.9988. This
result confirms the linear variation of �Eg(T ) with �l2 em-
phasizing the major importance of Si-Si strained bonds on the
electronic structure of matrix-embedded SiNCs.

In Fig. 6(c) we also show that the corresponding data
calculated for bulk Si using ZG configurations (orange di-
amonds) [27] almost overlap with those obtained for the
matrix-embedded SiNC. This finding further supports the
conclusion that the band gap renormalization of the matrix-
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FIG. 6. (a) Top panel: Decomposition of the imaginary part of the dielectric function ε2(ω) of the matrix-embedded SiNC (blue solid line)
into site contributions from nanocrystal (black solid line) and matrix (black dashed line) atoms. Bottom panel: Decomposition of the imaginary
part of the dielectric function ε2(ω) of the embedded nanocrystal (black solid line) into site contributions from suboxides: Si0 (gray solid line),
Si1 (gray dashed line) and Si2 + Si3 (green solid line). A Gaussian broadening of 50 meV was used in all plots. (b) Si-Si bond length in
freestanding (red) and matrix-embedded (blue) SiNCs as a function of the radial distance from the center of the nanocrystal. The variation of
Si-Si bond length in the matrix-embedded SiNC after applying ZG displacements is also shown for T = 0 K (gray) and T = 300 K (black).
The horizontal black line indicates the average Si-Si bond length (2.375 Å) in the matrix-embedded SiNC with the nuclei clamped at their
equilibrium positions. (c) Band gap renormalization versus Si-Si bond length variance [Eq. (12)] calculated for matrix-embedded SiNCs (blue
squares) that correspond to equilibrium and ZG geometries for four temperatures. The blue line represents the linear regression [Eq. (13)] to
the data with slope ∂2Eg/∂�l2 = −33 meV/10−3 Å2. Data for bulk Si (orange diamonds) are included for comparison.

embedded SiNC behaves very similarly to that of its bulk
counterpart.

E. Quasidirect optical absorption in SiNCs

In this section we analyze the Tauc plots [81] of SiNCs
and investigate the origin of quasidirect optical transitions
[28,30] in these nanoscale structures. We present calculations
of the imaginary part of the dielectric function from which the
absorption properties follow directly.

In bulk semiconductors with an indirect band gap, optical
transitions between the states of the valence band maximum
(VBM) and conduction band minimum (CBM) are forbid-
den in the absence of phonons owing to the momentum
conservation rule [52]. This is indeed the case for bulk Si
for which it has been shown, from first-principles [40,82],
that phonon-assisted transitions are required to reveal absorp-
tion for photon energies below the fundamental direct gap.
However, it is well known that structural perturbations can
relax the momentum conservation rule leading to zero-phonon
transitions between the band edges [28,30,83]. In particular,
deviations from translational invariance of the crystal can
cause the overlap between the electron and hole wavefunc-
tions allowing for quasidirect (vertical) transitions with finite
probability.

Figure 7 shows the Tauc plots [ε2ω
2]1/2 (black) and [ε2ω

2]2

(blue) representing indirect and direct allowed transitions in
the matrix-embedded SiNC. We combine on the same plot
the spectra calculated with the atoms at equilibrium positions
(dashed curve) and with the atoms at thermal positions defined
by the ZG displacement for T = 300 K (solid curve). It can be
readily seen that the Tauc plots for direct transitions reveal
optical absorption for energies higher than the calculated
band gap at Eg = 1.435 eV. These plots can be very well

fitted in the energy range 3.4–4.0 eV by linear regressions
(red lines) representing the expression [ε2ω

2]2 ∝ (h̄ω − Edir
g ),

where Edir
g is the first direct gap. The linear regressions cross

the energy axis at Edir
g = 3.332 eV and Edir

g (300) = 3.271 eV
which are well above than Eg. At variance with this result,
Tauc plots for indirect transitions exhibit an absorption onset
close to the band gap energy, as illustrated in the inset of
Fig. 7. In this case, linear fits to [ε2ω

2]1/2 ∝ (h̄ω − Eg) in
the range 1.3–2.0 eV give Eg = 1.327 eV and Eg(300) =
1.209 eV. We note that these values are less than the corre-
sponding calculated band gaps by about 0.1 eV due to the
artificial Gaussian broadening applied to our spectra.

It is evident that unlike crystalline silicon [40], the equi-
librium spectrum of SiNCs is driven by zero-phonon transi-
tions that behave similarly to indirect recombination channels
leading to optical absorption for energies below Edir

g . Further-
more, the phonon-assisted spectrum at T = 300 K is almost
a rigid shift of the equilibrium spectrum in the energy range
1.3–2.0 eV, reflecting essentially the band gap difference
between Eg(300) and Eg. This latter behavior is manifest
in bulk semiconductors with a direct band gap [26], where
vertical transitions dominate. Taking these two observations
together, we identify that optical absorption below the pseudo
direct gap in nanoscale silicon structures is dominated by
quasidirect absorption, while phonon-assisted transitions play
a less important role.

In the inset of Fig. 7, we also include the spectrum of the
H-terminated freestanding SiNC calculated with the nuclei at
their relaxed QC positions (dashed-dotted curve). This shows
essentially that the absorption onset of the matrix-embedded
SiNC deviates from its QC value by more than 0.5 eV. There-
fore, besides QC, a substantial contribution to the quasidirect
transition probability in SiNCs originates from strained Si-Si
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FIG. 7. Tauc plots [ε2ω
2]1/2 (black spectra) and [ε2ω

2]2 (blue
spectra) of the matrix-embedded SiNC, d = 2 nm, for indirect and
direct transitions. The inset shows the Tauc plots close to the absorp-
tion onset. The dashed and solid lines represent spectra calculated
with the nuclei at their relaxed equilibrium positions (zero-phonon)
and for T = 300 K (phonon-assisted), respectively. The thin red lines
represent the corresponding linear fits in the range of photon energies
1.3–2.0 eV and 3.4–4.0 eV for [ε2ω

2]1/2 and [ε2ω
2]2, respectively.

The dashed-dotted line in the inset represents the zero-phonon spec-
trum of the freestanding SiNC, d = 2 nm, calculated with the nuclei
at their relaxed QC positions. A Gaussian broadening of 50 meV was
used for all spectra.

bonds and oxygen surface states, as evidenced in Secs. IV D
and IV A. These effects reflect further structural modifications
that enhance the relaxation of the k-conservation rule, thereby
allowing for additional zero-phonon optical transitions be-
tween the VBM and CBM.

V. CONCLUSIONS

In this manuscript we have performed a first-principles
study of temperature-dependent optical properties of SiNCs.
In a nutshell, we have demonstrated using SDM that the
electron-phonon renormalization of the band gap of SiNCs
strongly depends on the different passivation regimes. Starting
from H-terminated freestanding SiNCs we have shown that
the large zero-point renormalization and the band gap vari-
ation with temperature originates from the coupling of elec-
trons with surface phonons. This surface effect is suppressed
by oxidation and almost vanishes by inserting the nanocrystal
inside the a-SiO2 matrix. The present results help to clarify
the experimental measurements regarding the energy shifts
between the temperature-dependent PL peaks of oxidized

freestanding and matrix-embedded SiNCs. Furthermore, our
data for the band gap renormalization of matrix-embedded
SiNCs exhibits good agreement with the experiment and
follows closely the Varshni behavior of bulk Si.

Importantly, our analysis reveals that the electronic struc-
ture of SiNCs is highly correlated with the strain of Si-Si
bonds. In fact, in the case of matrix-embedded SiNCs, we
have demonstrated a strong linear dependence between the
band gap and the bond length variance induced by atomic
vibrations. This result suggests the inherent relationship
between electron-phonon coupling and thermally averaged
structural perturbations that can be explored with nonpertur-
bative approaches, like SDM.

Beyond studying the temperature dependence of the band
gap, we investigate the effect of phonon-assisted electronic
transitions on the optical spectra of SiNCs. At variance with
bulk Si, the spectrum close to the absorption onset of SiNCs
is dominated by zero-phonon quasidirect transitions, while
phonon-assisted recombination is less important. We also
clarify that the origin of quasidirect transition probability in
SiNCs is not only due to quantum confinement, but also due
to strained Si-Si bonds (primarily) and oxygen-related surface
states (secondarily).

Finally, it should be possible to extend our present work
to explore how the formation of oxygen bridge bonds, or
other oxidation combinations can explicitly affect electron-
phonon coupling in SiNCs. Furthermore, we expect that the
calculation of temperature-dependent band gaps of other im-
portant nanostructures, such as Ge, SiGe, and TiO2 passivated
nanocrystals should be within reach. Our study can also be
upgraded with calculations of full photoluminescence spectra
accounting for excitonic effects and exciton-phonon coupling
[84] via the combination of Bethe-Salpeter approach and
SDM.

All electronic structure calculations performed in this study
are available on the NOMAD repository [85].
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