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Superconductivity in Ce-based heavy-fermion systems under high pressure
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In this paper, the possibility of a superconducting state mediated by the valence fluctuations in Ce-based
heavy-fermion systems under high pressure is investigated for the extended periodic Anderson model. In this
extended version, an additional local Coulomb repulsion between the localized and conduction electrons is
included. In the framework of the projector-based renormalization method, we derive self-consistent equations
for the superconducting order parameters. Our numerical evaluation for a two-dimensional case specifies that
superconductivity in the heavy-fermion systems has a d-wave character and is mediated by valence fluctuations.
By use of some additional simplifications, a BCS-like equation is found; an effective pairing interaction then
is delivered. The interaction depends strongly on momentum and becomes dominant in the valence transition
regime.
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I. INTRODUCTION

Since the discovery of superconductivity in the heavy-
fermion compound CeCu2Si2 in 1979 [1], the pairing mech-
anism is still a subject of controversy and has become one
of the most attractive problems in condensed matter physics.
Measurements in CeCu2(Si1−xGex )2 show a small supercon-
ducting dome at small applied pressures (�1 GPa) close to
an antiferromagnetic phase [2]. Due to this closeness, one
believes that pairing, in this case, is mediated by spin fluc-
tuations [3–5]. When the pressure is increased, a second su-
perconducting dome with a higher critical temperature opens
at a higher pressure and it is believed that the superconducting
state in this regime is mediated by charge fluctuations [6–8].

The abrupt change of the valence of the Ce ion under
high pressure was qualitatively described by including a large
Coulomb repulsion Uf c between localized f and conduction
electrons [9]. Enhanced charge fluctuations caused by repul-
sive interactions in a multiband system were also proposed
as a possible mechanism of superconductivity in high-Tc

cuprates [10]. Motivated by further study of this mechanism
[11,12] the relationship between valence fluctuation and su-
perconductivity in heavy-fermion systems was initially put on
a theoretical footing by Miyake in 1998 by including an extra
term which represents the Coulomb repulsion Uf c between
the localized f and the conduction c electrons in the periodic
Anderson model (PAM) [13]. Solving this extended periodic
Anderson model (EPAM) in three dimensions by a slave-
boson mean-field approximation, the authors in Ref. [14]
found that valence fluctuations were considerably enhanced
by a moderate strength of Uf c when the Coulomb repulsion
between localized electrons on the same site was assumed
to be infinitely large. The valence fluctuations occur if the
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f -electron level ε f is tuned relative to the Fermi level. In a
mean-field approximation, this special value of ε f is on the
order of half of the bandwidth. Associated with the rapid
valence change, d-wave superconductivity was found and
the authors pointed out the possibility of superconductivity
caused by valence fluctuations. This scenario could explain
various properties found in CeCu2Si2, at least qualitatively
[15]. Solving the one-dimensional EPAM by use of the den-
sity matrix renormalization group (DMRG), the authors in
Ref. [16] also obtained the valence instability. However, it
occurred when Uf c was larger than the conduction bandwidth
and the f -electron energy ε f was deeper than the lower bound
of the conduction band. In this case, only singlet pairing
superconducting correlation functions were considered by
assuming that the investigated system can be described in
analogy to the single-band Tomonaga-Luttinger liquid. The
obtained results showed that in the sharp valence transition
regime, the superconducting correlation functions for singlet
pairing become dominant. This once more affirmed that the
EPAM can be used as a possible explanation of superconduc-
tivity due to the valence fluctuations.

Recently, the EPAM has also been studied in the dynamical
mean field theory (DMFT), combined with exact diagonal-
ization for infinite dimensions [17]. The obtained results are
in agreement with the ones found by the DMRG method.
The work was done by the same group for the EPAM in
two dimensions by applying the fluctuation-exchange approx-
imation. It showed that in the weak-coupling region (modest
strength of Uf c), a charge density wave was also unstable
which may cause superconductivity as well [18]. Therefore, it
is still unclear whether in the weak-coupling or in the strong-
coupling regime superconductivity due to the valence fluctu-
ations occurs in the EPAM. This means that other possible
theoretical methods should also be used to study this problem.

The influence of Uf c on the valence transition was first
discussed in the impurity Anderson model [19]. In a mean-
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field approximation, a discontinuous valence transition was
obtained for some large values of Uf c. For the PAM, there
exist some studies of the effect of Uf c on valence fluctuations
within Hartree-Fock-like approximations, slave bosons, and
large-N expansions [14,20,21]. In all these approaches, Uf c

could explain a rapid change of the number of f electrons
as the f level, ε f , increases. Without Uf c, the PAM was suc-
cessfully solved by a projector-based renormalization method
(PRM) in order to investigate the valence transition in the case
of fixed chemical potential [22,23]. In the case of small values
of ν f , the f occupation drastically changes which shows a
breakdown of a mixed-valence state.

In this paper, we use the PRM [24] to investigate the
valence transition and superconductivity of the EPAM. The
PRM derives a solvable effective Hamiltonian by deriving
and solving renormalization equations using unitary trans-
formations. The method has already been used to study the
valence transition in the PAM [22]. Nevertheless, due to the
complicated process of deriving the renormalization equations
for the strongly correlated systems, various approximations
had to be applied and no solution could be obtained for de-
generacy ν f = 2. To overcome these restrictions and simplify
the renormalization process we use an extended version of
the PRM based on choosing a suitable generator [25–28]. For
this generator, we can restrict ourselves to second-order renor-
malization contributions during the unitary transformations,
and instead of difference equations we obtain differential
equations which can easily be solved.

One of the greatest advantages of the PRM is the possibility
to investigate quantum phase transitions. Already with the
simplest version of the PRM with respect to perturbation
theory, a BCS-like equation was derived for the coupled
electron-phonon system [29]. In contrast to the Fröhlich inter-
action [30] the deduced effective electron-electron interaction
for Cooper pairs did not contain singularities. Recently, the
competition of the excitonic and polaritonic condensations
in a microcavity, like the BCS Cooper pair superfluid state,
was studied by the PRM [28]. In order to describe quan-
tum phase transitions on both sides of the transition, one
often includes infinitesimally small symmetry-breaking fields
in the Hamiltonian. During the renormalization processes,
the symmetry-breaking fields gain weight. Thus, from the
fully renormalized Hamiltonian the order parameters can be
found. In our work, we present an application of the PRM
to possible superconductivity in the two-dimensional EPAM.
Self-consistent equations for determining the superconducting
order parameters are obtained. By use of some simplifications,
a BCS-like equation is found. Our numerical results for the
superconducting energy gaps with d-wave symmetry in the
two-dimensional system then will be discussed.

The paper is organized as follows. In the next section, we
briefly describe the EPAM, which is the PAM including the
Coulomb repulsion between conduction and localized elec-
trons. Section III introduces the PRM and its application to the
EPAM in a superconducting state. The numerical result for d-
wave superconducting energy gaps in two dimensions is also
discussed. Section IV is left to present analytical solutions for
the superconducting energy gaps with some simplifications. In
Sec. V, we discuss the nature of the superconducting mecha-
nism in the system. Finally, Sec. VI concludes our work.

II. EXTENDED PERIODIC ANDERSON MODEL

The extended periodic Anderson model (EPAM) reads

H = (ε̄ f − μ)
∑
i,σ

f̂ †
iσ f̂iσ +

∑
k,σ

(ε̄k − μ)c†
kσ ckσ

+ V
1√
N

∑
k,i,σ

( f̂ †
iσ ckσ eikRi + H.c.)

+ Uf c

∑
i,σσ ′

nc
iσ n̂ f

iσ ′ , (1)

which describes a coupled system of conduction and localized
f electrons. The excitation energies of the f and conduction
electrons are denoted by ε̄ f and εk. μ is the chemical poten-
tial. The hybridization Vk between localized and delocalized
electrons is given by the third term. Finally, the last term
represents the local Coulomb repulsion Uf c between f and
conduction electrons. Note that already an infinitely large
Coulomb repulsion between localized f electrons at the same
site was assumed. Thus, whereas c†

kσ (ckσ ) are the usual
fermionic creation (annihilation) operators for the conduction
electrons, the operators f̂ †

iσ ( f̂iσ ) are the so-called Hubbard
operators [25]

f̂ †
iσ = f †

iσ

∏
σ̃ ( �=σ )

(
1 − n f

iσ̃

) =: f †
iσDiσ . (2)

Here, Diσ is a local projection operator on f states which
guarantees that a local site i is either empty or singly occupied
with an f electron with spin index σ . The Hubbard operators
obey unusual anticommutation relations, e.g.,

[ f̂ †
iσ , f̂iσ ]+ = Diσ . (3)

The spin index of the electrons, σ , is assumed to be equal for
f and c electrons for simplicity.

To simplify the further calculation, we include the mean-
field parts of the Uf c term in the one-particle energies. With

nc
iσ n̂ f

iσ ′ = nc
iσ

〈
n̂ f

iσ ′
〉 + n̂ f

iσ ′
〈
nc

iσ

〉 + δ
(
nc

iσ

)
δ
(
n̂ f

iσ ′
)
,

we can rewrite the Hamiltonian (1) as

H = ε f

∑
i,σ

f̂ †
iσ f̂iσ +

∑
k,σ

εk c†
kσ ckσ

+V
1√
N

∑
k,i,σ

( f̂ †
iσ ckσ eikRi + H.c.)

+Uf c

∑
i,σσ ′

δ
(
nc

iσ

)
δ
(
n̂ f

iσ ′
) − Uf cN〈nc〉〈n̂ f 〉, (4)

where δ(nc
iσ ) = nc

iσ − 〈nc
iσ 〉, etc., and

ε f = ε̄ f + Uf c〈nc〉 − μ,

εk = ε̄k + Uf c〈n̂ f 〉 − μ.

III. APPLICATION OF THE PRM

A. Renormalization equations in the superconducting phase

In our work on valence transition in the EPAM, the theo-
retical PRM was already discussed in some detail [25]. The
starting point is the separation of the Hamiltonian into an
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unperturbed part H0 and a perturbation H1. Thereby, the
perturbation H1 is responsible for transitions between the
eigenstates of the unperturbed Hamiltonian H0. The main idea
of the PRM is to eliminate all transitions induced by H1. This
is done by starting from transitions with the largest transition
energies and successively proceed to the transitions with the
lowest energies. Thereby, a diagonal or at least a quasidiago-
nal Hamiltonian is obtained. Formally, the transformation to
a renormalized Hamiltonian Hλ, from which all transitions
with energies larger than some cutoff λ have been eliminated,
is done by use of a unitary transformation

Hλ = eXλH e−Xλ , (5)

where Xλ is the generator for the transformation.
Next, the PRM will be applied to the extended periodic

Anderson model (4) in order to discuss the possibility of a
superconducting phase close to the valence transition. The
EPAM is gauge symmetry invariant. Therefore, one has to in-
clude infinitesimally small gauge-symmetry-breaking fields.
An ansatz for the renormalized Hamiltonian Hλ at cutoff λ

reads Hλ = H0,λ + H1,λ, where

H0,λ = ε f ,λ

∑
k,σ

f̂ †
kσ f̂kσ +

∑
k,σ

γk,λ( f̂ †
kσ f̂kσ )NL

+
∑
k,σ

εk,λ c†
kσ ckσ + HSC

0,λ + Eλ (6)

and

H1,λ = PλH1 = Pλ

∑
k,σ

Vk,λ ( f̂ †
kσ ckσ + H.c.)

+ Pλ

∑
kq,σ

Uk,k+q,λak,k+q,σ . (7)

Note that all parameters of Hλ may now depend on λ as a
consequence of the elimination of all excitations with energies
larger than λ. Moreover, in the unperturbed renormalized
part H0,λ an energy shift Eλ and an additional hopping term
γk,λ between different f sites was generated [second term in
Eq. (6)], where

( f̂ †
kσ f̂kσ )NL = 1

N

∑
i, j( �=i)

f̂ †
iσ f̂ jσ eik(Ri−R j ) (8)

describes the nonlocal (NL) f particle-hole excitations. The
fourth part HSC

0,λ in H0,λ breaks the gauge symmetry. It has the
following form:

HSC
0,λ = −

∑
αβ,k

(
�

αβ

k,λ
α

†
k↑β

†
−k↓ + H.c.

)
.

Here, all possible two-particle and two-hole excitations of
conduction and localized electrons have to be included as a
consequence of the hybridization term in HSC

0,λ. The four fields

�
αβ

k,λ
(α, β = c or f ) will play the role of the superconducting

energy gaps and depend on λ.
Finally, the perturbation H1,λ consists of two contributions.

Aside from the hybridization, a new density-like term of
conduction and f electrons is generated in the renormalization

procedure where

ak,k+q,σ = 1

N
δ(c†

kσ ck+q,σ )
∑
i,σ

δ( f̂ †
iσ ′ f̂iσ ′ )e−iqRi . (9)

Pλ is a general projection operator in the Liouville space,
which eliminates all high-energy transitions larger than λ.
As already mentioned, the elimination procedure starts from
the original model H, which will henceforth be denoted by
H = Hλ=� and proceeds to the fully renormalized model at
λ = 0. For λ = 0, the perturbation H1,λ will completely be
used up for the renormalization of the parameters of H0,λ=0.
The initial values of the λ-dependent parameters are fixed by
the initial model. Thus, at cutoff � we have

ε f ,� = ε f , γk,� = 0, εk,� = εk, Vk,� = V,

Uk,k+q,� = Uf c, E� = −NUf c〈nc〉〈n̂ f 〉, (10)

and for the gauge-symmetry-breaking fields

�
αβ

k,�
→ 0+. (11)

In order to derive the renormalization equations for the
λ-dependent parameters, let us consider a renormalization
step from λ to a somewhat smaller cutoff λ − �λ. The
unitary transformation reads according to Eq. (5) Hλ−�λ =
eXλ,�λH e−Xλ,�λ , where Xλ,�λ is the corresponding generator of
the transformation. For the following, we restrict ourselves
to a weak-coupling theory. Thereby, the influence of HSC

0,λ

on Xλ,�λ will be neglected. Thus, Xλ,�λ agrees with the
corresponding expression from Ref. [25],

Xλ,�λ =
∑
k,σ

αk(λ,�λ)( f̂ †
kσ ckσ − H.c.)

+
∑
kq,σ

βk,k+q(λ,�λ)ak,k+q,σ , (12)

where

αk(λ,�λ) = Ak,λθ (λ − |Ak,λ|)
κ (λ − |Ak,λ|)2

Vk,λ�λ,

βk,k+q(λ,�λ) = Bk,k+q,λθ (λ − |Bk,k+q,λ|)
κ (λ − |Bk,k+q,λ|)2

Uk,k+q,λ�λ,

(13)

with

Ak,λ = ε f ,λ + D(γk,λ − γ̄λ) − εk,λ,

Bk,k+q,λ = εk,λ − εk+q,λ, (14)

where γ̄λ = (1/N )
∑

k γk,λ. The constant κ in (13) de-
notes an energy constant to ensure that αk(λ,�λ) and
βk,k+q(λ,�λ) are dimensionless. Both coefficients αk(λ,�λ)
and βk,k+q(λ,�λ) in Xλ,�λ are proportional to the energy
shell �λ. In a recent review article [31] it was shown that such
a choice of Xλ,�λ leads to a declining decay of the coupling
parameters, in our case of Vk,λ and Uk,q,λ, when λ decreases.

In the limit �λ → 0 only the linear terms in Xλ,�λ

contribute to the right-hand side of Hλ−�λ. Defining Xλ =
Xλ,�λ/�λ one finds

dHλ

dλ
= [Xλ,Hλ]. (15)
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Next, one has to evaluate the commutator on the right-hand
side. Here, not only operator expressions occur which are
already present in Hλ but also higher-order terms. In order
to trace them back to the operator terms of Hλ an additional
factorization approximation has to be employed. In particular,
also factorizations have to be included which lead back to
the superconducting pairing functions, i.e., 〈α†

k↑β
†
−k↓〉 �= 0

(α, β = c or f ). Finally, comparing the generic differential
of the left-hand side with the results from the evaluation
of the right-hand side, one arrives at the renormalization
equations. Defining α̃k,λ = αk(λ,�λ)/�λ and β̃k,k+q,λ =
βk,k+q(λ,�λ)/�λ they read

dεk,λ

dλ
= 2DVk,λα̃k,λ + 2

N

∑
q

C f f
ρ (q)Uk,k+q,λβ̃k+q,k,λ, (16)

dε f ,λ

dλ
= − 1

N

∑
k

(γk,λ − γ̄λ)α̃k,λ〈 f̂ †
kσ

ckσ + H.c.〉

− 2

N

∑
k

Vk,λα̃k,λ[1 + 〈c†
kσ ckσ 〉]

− 2(1 − 2〈n f 〉)

N2

∑
qk,σ ′

Uk,k+q,λβ̃k+q,k,λ

×〈c†
k+q,σ ′ck+q,σ ′ 〉, (17)

dγk,λ

dλ
= −2Vk,λα̃k,λ, (18)

dVk,λ

dλ
= Ak,λα̃k,λ, (19)

dUk,k+q,λ

dλ
= Bk,k+q,λβ̃k,k+q,λ, (20)

d�cc
k,λ

dλ
= D

(
�

f c
k,λα̃k,λ + �

c f
k,λα̃−k,λ

)
− 1

N

∑
q

Uk,k+q,λ(α̃−k,λ〈 f̂−(k+q),↓ck+q,↑〉

+ α̃k,λ〈c−(k+q),↓ f̂k+q,↑〉), (21)

d�
f f
k,λ

dλ
= −(

�
f c
k,λα̃−k,λ + �

c f
k,λα̃k,λ

)
+ 1

N

∑
q

Uk,k+q,λ(α̃k,λ〈 f̂−(k+q),↓ck+q,↑〉

+ α̃−k,λ〈c−(k+q),↓ f̂k+q,↑〉), (22)

d�
f c
k,λ

dλ
= −�cc

k,λα̃k,λ + D�
f f
k,λ

α̃−k,λ

+ 1

N

∑
q

Uk,k+q,λ(α̃k+q,λ〈 f̂−(k+q),↓ f̂k+q,↑〉

− α̃k+q,λ〈c−(k+q),↓ck+q,↑〉). (23)

In Eq. (16), the function C f f
ρ (q) is a wave-vector-dependent

density-density correlation function for the f electrons

C f f
ρ (q) = 1

N

∑
i j,σσ ′

〈
δn̂ f

iσ δn̂ f
jσ ′

〉
eiq(Ri−R j ). (24)

Moreover, in deriving the above equations, the local projector
Diσ on the right-hand side of the anticommutator relation (3)
was approximated by its expectation value 〈Diσ 〉 =: D.

Suppose the expectation values in (16) are known. Then,
using the initial values (10) the set of differential equations
(16) can be solved. This gives the fully renormalized param-
eter. Using that H1,λ vanishes for λ → 0, the fully renormal-
ized Hamiltonian reads Hλ→0 = H0,λ→0 =: H̃ with

H̃ = ε̃ f

∑
k,σ

f̂ †
kσ f̂kσ +

∑
k,σ

γ̃k( f̂ †
kσ f̂kσ )NL

+
∑
k,σ

ε̃k c†
kσ

ckσ + H̃SC
0 + Ẽ (25)

and

H̃SC
0 = −

∑
αβ,k

(
�̃

αβ

k α
†
k↑β

†
−k↓ + H.c.

)
,

where the tilde symbols again denote the fully renormalized
quantities at λ → 0.

B. Expectation values

Note that the expectation values in the renormalization
equations are in principle defined with the Hamiltonian Hλ

since the factorization approximation was done at cutoff λ.
However, it has turned out that they are best evaluated with the
full Hamiltonian H (for details see Ref. [31]). Here, we em-
ploy the invariance of traces toward unitary transformations.
Thus, for operator variables A follows

〈A〉 = Tr(Ae−βH)

Tre−βH = Tr(Ãe−βH̃)

Tre−βH̃
, (26)

where we have defined Ã = limλ→0 A(λ) with A(λ) =
eXλ A e−Xλ . Thus, additional renormalization equations for
A(λ) have to be derived using the same unitary transformation
as before. For the one-particle operators in the expectation
values, we make the following ansatz [25],

c†
kσ (λ) = xk,λc†

kσ + yk,λ f̂ †
kσ ,

f̂ †
kσ (λ) = −Dyk,λc†

kσ + xk,λ f̂ †
kσ , (27)

where the λ dependence of c†
kσ (λ) and f̂ †

kσ (λ) was shifted
to the coefficients xk,λ and yk,λ. Note that the λ-dependent
operators fulfill the correct anticommution relations, provided

|xk,λ|2 + D|yk,λ|2 = 1 (28)

is fulfilled for any k and λ, and the anticommutator (3),
[ f̂ †

iσ , f̂iσ ]+ = Diσ , is again approximated by D = 〈Diσ 〉. The
operator structure of c†

kσ (λ) and f̂ †
kσ (λ) was taken over from

the lowest-order expressions in H1,λ, and the values of xk,λ

and yk,λ for the initial model (λ = �) are given by

xk,� = 1, yk,� = 0. (29)

The renormalization equations for xk,λ and yk,λ are again
derived from the transformation step between cutoff λ and
λ − �λ. We obtain the following differential equations:

dxk,λ

dλ
= Dyk,λα̃k,λ,

dyk,λ

dλ
= −xk,λα̃k,λ. (30)
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Their solutions for λ → 0 with the initial conditions (28) lead
to the fully renormalized quantities x̃k and ỹk. Using Eqs. (27),
we can evaluate the expectation values

〈c†
kσ ckσ 〉 = |x̃k|2〈c†

kσ ckσ 〉H̃ + |ỹk|2〈 f̂ †
kσ f̂kσ 〉H̃,

〈 f̂ †
kσ f̂kσ 〉 = D|ỹk|2〈c†

kσ ckσ 〉H̃ + |x̃k|2〈 f̂ †
kσ f̂kσ 〉H̃,

〈 f̂ †
kσ ckσ + H.c.〉 = −2Dx̃kỹk

[〈c†
kσ ckσ 〉H̃ − D−1〈 f̂ †

kσ f̂kσ 〉H̃
]
.

(31)

The superconducting pairing functions are given by

〈c−k↓ck↑〉 = x̃2
k〈c−k↓ck↑〉H̃ + ỹ2

k〈 f̂−k↓ f̂k↑〉H̃
+ 2x̃kỹk〈 f̂−k↓ck↑〉H̃,

〈 f̂−k↓ f̂k↑〉 = D2ỹ2
k〈c−k↓ck↑〉H̃ + x̃2

k〈 f̂−k↓ f̂k↑〉H̃
− 2Dx̃kỹk〈 f̂−k↓ck↑〉H̃,

〈 f̂−k↓ck↑〉 = (
x̃2

k − Dỹ2
k

)〈 f̂−k↓ck↑〉H̃
− x̃kỹk(D〈c−k↓ck↑〉H̃ − 〈 f̂−k↓ f̂k↑〉H̃). (32)

What remains is to evaluate the expectation values formed
with H̃. Obviously, H̃ is not diagonal due to the supercon-
ducting part H̃SC in expression (25). Therefore, we employ
a Bogoliubov transformation using again the approximation
[ f̂i,σ , f̂ †

iσ ]+ ≈ D. Thus, H̃ can be rewritten as

H̃ =
∑
k,±

E±
k (ζ±†

k ζ±
k + η

±†
k η±

k ) + const., (33)

where ζ
±(†)
k and η

±(†)
k are new fermionic annihilation (cre-

ation) operators of the quasiparticles. Their eigenenergies are

E±
k = [(uk ±

√
�k )/2]1/2 with �k = u2

k − 4vk, (34)

where

uk = ε̃2
k + ω̃2

k + ∣∣D�̃
f f
k

∣∣2 + ∣∣�̃cc
k

∣∣2 + D
(∣∣�̃ f c

k

∣∣2 + ∣∣�̃c f
k

∣∣2)
and

vk = (
ε̃2

k + ∣∣�̃cc
k

∣∣2)(
ω̃2

k + ∣∣D�̃
f f
k

∣∣2)
+ Dε̃kω̃k

(∣∣�̃ f c
k

∣∣2 + ∣∣�̃c f
k

∣∣2) + ∣∣D�̃
c f
k

∣∣2|D�̃
f c
k |2

− D2
(
�̃cc

k �̃
c f ,∗
k �̃

f c,∗
k �̃

f f
k + �̃cc,∗

k �̃
c f
k �̃

f c
k �̃

f f ,∗
k

)
.

From the diagonal Hamiltonian (33), one evaluates the free
energy in a simple form,

F = − 1

β
ln Tr e−βH = − 1

β
ln Tr e−βH̃

= − 2

β

∑
k,±

ln[1 + e−βE±
k ] + const., (35)

from which the superconducting pairing functions can be
found. For example,

〈c−k↓ck↑〉H̃ = − ∂F

∂�̃cc,∗
k

=
∑
k′,±

[1 − 2 f (E±
k′ )]

∂E±
k′

∂�̃cc,∗
k

.

Here, f (Ek ) denotes the Fermi function for the energy
Ek. With the explicit expression of E±

k in Eq. (34) one

finds

〈c−k↓ck↑〉H̃
=

∑
±

1 − 2 f (E±
k )

4E±
k

{(
1 ± uk√

�k

)
�̃cc

k

∓ 2√
�k

[(
ω̃2

k + ∣∣D�̃
f
k

∣∣2)
�̃cc

k − D2�̃
c f
k �̃

f c
k �̃

f f ,∗
k

]}
.

The remaining pairing functions in (32) can be found as
well. As before, the tilde symbols in Eq. (36) denote the
renormalized parameters in the limit λ → 0, and

ω̃k = ε̃ f + D(γ̃k − ˜̄γ ) (36)

is the k-dependent excitation energies of the f electrons ( ˜̄γ =
1/N

∑
k γ̃k).

The normal expectation values in (31) can be easily found
as well. By neglecting all superconducting terms, one finds

〈c†
kσ ckσ 〉H̃ = 1

eβε̃k + 1
= f (ε̃k ),

〈 f̂ †
kσ f̂kσ 〉H̃ = f (ω̃k )

1 + 1
N

∑
p f (ω̃p)

. (37)

Note that the denominator in the second relation follows from
the exclusion of doubly occupied f sites [22,25].

Expressions (31) and (32) together with (36) and (37) allow
us to evaluate all expectation values formed with H, as long
as the fully renormalized parameters of H̃ are known. On
the other hand, to find the renormalized parameters of H̃
by solving the renormalization equations (24) the expectation
values are needed. Thus, the total composed set of equations
for the expectation values and for the renormalization of Hλ

has to be solved simultaneously. Starting by given expectation
values, one first can evaluate the renormalized parameters of
H̃. With H̃, one then is able to evaluate a better approximation
for the expectation values, and so on. Having arrived at a self-
consistent solution, the obtained final Hamiltonian H̃ allows
us to describe all superconducting properties.

C. Numerical results

In this section, the self-consistent solutions for the su-
perconducting phase for a system with N = 16 × 16 lattice
sites are discussed. As discussed before, we start from some
guess for the normal expectation values 〈n̂ f 〉, 〈c†

kmckm〉, and
〈 f̂ †

kmckm + H.c.〉 and for the superconducting pairing func-
tions 〈c−k↓ck↑〉, 〈c−k↓ f̂k↑〉, and 〈 f̂−k↓ f̂k↑〉. Solving the differ-
ential equations (16)–(24) with the initial conditions (10) and
(11), the renormalized Hamiltonian (25) in the superconduct-
ing state will be obtained. Next, we recalculate all expectation
values including the superconducting pairing functions by use
of the Bogoliubov diagonalization (33). The entire renormal-
ization procedure has to be repeated until a self-consistent
solution is gained. The symmetry for the order parameters
has to be put in by hand by choosing an appropriate k depen-
dence of the initial pairing functions. For example, to find a
solution with dx2−y2 -wave symmetry we choose 〈α−k↓βk↑〉 =
A0

αβ (cos kx − cos ky), where α, β denote the c- or f -electron
operators. For the choice 〈α−k↓βk↑〉 = A0

αβ (cos kx + cos ky),
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FIG. 1. Maximum value of superconducting order parameter �̃
f f
k

and of the f occupation number 〈n̂ f 〉 as functions of the bare f
energy ε f for two values of Uf c. The other parameters are T = 10−3

and V = 0.1. Note that only 〈n̂ f 〉 values are shown between 0.92
and 1.

we would imply s-wave symmetry. Note that only solutions
with d-wave symmetry are found which will be discussed in
the following.

Due to the rather small number of k points for the lat-
tice viewed in the calculations, only the maximum values
of k-dependent quantities will be discussed. In Fig. 1, the
maximum value of the superconducting gap �̃

f f
max and the

density 〈n̂ f 〉 of the f electrons are shown as a function
of the bare f energy ε f for two values of Uf c. As one
can see, in both cases a superconducting phase close to the
valence transition regime is found. In particular, note that
the superconducting phase already occurs in a region, where
the f valence 〈n̂ f 〉 deviates only slightly from the integer
valence 〈n̂ f 〉 = 1. As is known, in this case the renormalized
f energy ε̃ f is located still slightly below the Fermi level.
For values of 〈n̂ f 〉 lower than 〈n̂ f 〉 = 0.9 the superconducting
phase disappears again. This result is in agreement with a
slave-boson mean-field treatment in Ref. [14] where the super-
conducting transition temperature with d-wave symmetry has
a peak at a value ε∗

f , which is slightly smaller than the value for
ε f with the steepest slope of 〈n̂ f 〉. For ε f > ε∗

f , the transition
temperature drops rapidly down. Moreover, as in the one-
dimensional lattice [25], also for the two-dimensional lattice
the phase transition becomes sharper for larger values of Uf c.
Also, the superconducting phase becomes enhanced for larger
values of Uf c. Thus, our results confirm that superconductivity
becomes more stable by stronger density correlations ∼Uf c

between localized and conduction electrons. Increasing Uf c

in the EPAM is crucial for finding a sharp valence transition
and d-wave superconductivity close to the valence transition
regime. This behavior can be explained in Sec. IV below.
Finally, note that the valence transition regime and thus the
superconducting phase shift to smaller values of ε f , when Uf c

is increased. This is not found in the slave-boson mean-field
treatment mentioned above.

In Fig. 2, the energy gap �̃
f f
max is shown as a function of

ε f for different temperatures. Similarly to the one-dimension

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3
εf

0

0.002

0.004

0.006

Δ m
ax

ff

T=0.0001
T=0.0010
T=0.0015

~

FIG. 2. Maximum value of �̃
f f
k as a function of the bare f energy

ε f for several values of temperature T at Uf c = 1, V = 0.1.

case, also in two dimensions a sharper valence transition
is found when the temperature decreases [25]. Thus, as ex-
pected, a more pronounced valence transition for lower tem-
perature also leads to an enhanced superconducting regime.

The pressure dependence in real systems might be sim-
ulated by changing either the bare f energy ε f or the hy-
bridization V between localized and conduction electrons.
Therefore, in Fig. 3, the maximum value of �̃

f f
k is also plotted

as a function of the hybridization V . Similarly to Figs. 1
and 2, where a superconducting dome is found as a function
of ε f , in Fig. 3 a superconducting phase also appears in a
restricted range of V . This behavior can easily be understood
due to the influence of valence fluctuations. By increasing
the hybridization, the renormalized f level approaches the
Fermi level from below and leads to quasiparticles which have
both a strong localized and conduction electron character.
The chance of forming Cooper pairs between f holes is thus
enhanced [9].

0 0.1 0.2 0.3
V

0

0.002

0.004

0.006

Δ m
ax

ff

εf=-0.44
εf=-0.47
εf=-0.50

~

FIG. 3. Maximum value of �̃
f f
k as a function of the hybridization

V for several values of the bare f energy ε f . The other parameter are
Uf c = 1, T = 10−3.
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(a)

(b)

FIG. 4. Maximum values of (a) the superconducting energy gaps
and (b) the pairing functions as a function of T (Uf c = 1, V = 0.1,
and ε f = −0.5).

If V is large enough, a large number of holes in the f
levels suppress the attractive pairing interaction of isolated
pairs of 4 f 0 “holes” [9]. Furthermore, the “window” in which
superconductivity becomes stable is shifted to smaller V
values as ε f is increased. Thus, when ε f is located far below
the Fermi level, the hybridization has to become larger so that
f electrons can interact with conduction electrons in order to
form Cooper pairs.

In Fig. 4, the T dependence of the superconducting gap
and the pairing functions, �

αβ
max and 〈α−k↓βk↑〉max, is shown

for all possible combinations of Cooper pairs, i.e., α, β =
c, f . As expected, the overall temperature dependence of all
quantities is equivalent. The physical picture which arises is
the following. Superconductivity only exists for f occupation
〈n̂ f 〉 between 〈n̂ f 〉 = 0.9 and 1. Thus, the density of f holes
is still small, which leads to quite small pairing functions
〈 f̂−k↓ f̂k↑〉 for Cooper pairs created by f holes [green symbols
in Fig. 4(b)]. For 〈n̂ f 〉 > 0.9, the f -hole density is small,
which means that it is difficult to find enough f holes, which
can interact to form Cooper pairs. This is in contrast to the sit-
uation for conduction electrons which are delocalized. There-
fore, the probability for the pairing of conduction electrons
is dominant as shown by the black symbols in Fig. 4(b). For
the superconducting gap functions in Fig. 4(a) the situation
is reversed. In order to break the Cooper pairs between the f

holes, more energy has to be supplied than for pairs formed
by conduction electrons.

IV. ANALYTICAL SOLUTION

A. Normal-state parameters

For the two-dimensional lattice under consideration, self-
consistent superconducting solutions for the set of renormal-
ization equations can be found only for rather small systems.
In order to make sure that a N = 16 × 16 system is large
enough to mimic the thermodynamic limit, we want to con-
sider a simplified solution of the renormalization equations.
The results can be applied to larger systems.

To simplify the calculations, let us assume from the begin-
ning that the superconducting phase is closely connected to
the valence transition regime. According to Sec. III, such a
phase is found for f occupations 〈n̂ f

i 〉 between 0.9 and 1; i.e.,
the f occupation is slightly below integer filling. Thus, the
f -electron density-density correlation function

C f f
ρ (q) = 1

N

∑
i j,σσ ′

〈
δn̂ f

iσ δn̂ f
jσ ′

〉
eiq(Ri−R j )

almost vanishes since the local density fluctuations are small.
Thus, we neglect the second term in Eq. (16) from the begin-
ning and Eqs. (16), (18), and (19) reduce to

dεk,λ

dλ
= 2DVk,λα̃k,λ,

dγk,λ

dλ
= −2Vk,λα̃k,λ,

dVk,λ

dλ
= Ak,λα̃k,λ. (38)

Note that these renormalization equations are the same as in
the normal state. Thus, for an analytical solution, we shall
proceed as in Ref. [32]. There, as a first approximation the λ

dependence of the renormalized f level was neglected from
the beginning. Note that the spirit of this approximation is
similar to that used in the slave-boson mean-field theory.
Thus, we approximate λ

ε f ,λ − Dγ̄λ ≈ ε̃ f − D ˜̄γ ≈ ε̃ f , (39)

where the average f dispersion ˜̄γ will also be neglected.
To solve the renormalization equations (38), we first com-

bine the first two equations to

dγk,λ

dλ
= − 1

D

dεk,λ

dλ
.

This differential equations has the solution

γk,λ = εk,� − εk,λ

D
, (40)

where we have used the initial condition (10). With (40), can
rewrite the last equation of (38) as

α̃k,λ = 1

ε̃ f + εk,� − 2εk,λ

dVk,λ

dλ
, (41)

where the quantity Ak,λ was replaced by Ak,λ = ε̃ f + Dγk,λ −
εk,λ due to approximation (39). Finally, inserting (41) into the
first equation of (38), one arrives at

d

dλ

{
ε2

k,λ − (ε̃ f + εk,�)εk,λ + DV 2
k,λ

} = 0.
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The integration leads to a quadratic equation for εk,λ. Using
the initial conditions (10) for λ = �, the solution reads

ε2
k,λ − (ε̃ f + εk )εk,λ + DV 2

k,λ = ε2
k − (ε̃ f + εk )εk + DV 2

k .

(42)

For λ → 0, the quasiparticles of the fully renormalized
Hamiltonian H̃ do not change its (c or f ) character as a
function of the wave vector k. Therefore, ε̃k jumps between
the two solutions of the quadratic equation (42) in order to
minimize its deviations from the original εk,

ε̃k = ε̃ f + εk,�

2
− sgn(ε̃ f − εk,�)

2
Wk,

Wk =
√

(εk,� − ε̃ f )2 + 4DV 2. (43)

The second quasiparticle band is given by

ω̃k := ε̃ f + Dγ̃k = ε̃ f + εk,�

2
+ sgn(ε̃ f − εk,�)

2
Wk. (44)

Thus, for the normal-state properties, we have obtained a
renormalized Hamiltonian which reads

H̃ =
∑
k,σ

ε̃kc†
kσ ckσ +

∑
k,σ

ω̃k f̂ †
kσ f̂kσ + Ẽ , (45)

where the expression for Ẽ is given in Ref. [32]. Note that
in approximation (45), the renormalized Hamiltonian H̃ de-
scribes a system of uncoupled quasiparticles where the f -like
quasiparticle excitations are no longer correlated.

The expectation values 〈n̂ f 〉 and 〈c†
kσ

ckσ 〉 are formed with
the full Hamiltonian H. Note that H and H̃ are connected
by a unitary transformation. Therefore, the expectation values
can also be evaluated from the free energy formed with H̃. In
particular, the relation

F = − 1

β
ln Tr e−βH = − 1

β
ln Tr e−βH̃ =: F̃

= − 2

β

∑
k

[ln(1 + e−βε̃k ) + ln(1 + e−βω̃k )] + Ẽ

holds. Following the analysis of Ref. [31], one finds by
functional derivative

〈c†
kσ ckσ 〉 = 1

2 (1 + �k ) f (ε̃k ) + 1
2 (1 − �k ) f (ω̃k ) (46)

and〈
n̂ f

σ

〉 = 1

2N

∑
k

(1 − �k ) f (ε̃k ) + 1

2N

∑
k

(1 + �k ) f (ω̃k ),

(47)

where �k = sgn(ε̃ f − εk,�)(ε̃ f − εk,�)/Wk. In addition, a
self-consistent equation for the yet unknown renormalized f
level ε̃ f can be found,

ε̃ f − ε f = 1

N

∑
k

sgn(ε̃ f − εk )
|Vk|2[ f (ε̃k ) + f (ω̃k )]

Wk
.

For later use, we need the decomposition of the renormalized
one-particle operators c†

kσ (λ → 0) and f̂ †
kσ (λ → 0) into c†

kσ

and f̂ †
kσ . According to Eq. (27), we have

c†
kσ (λ → 0) = x̃kc†

kσ + ỹk f̂ †
kσ ,

f̂ †
kσ (λ → 0) = −Dỹkc†

kσ + x̃k f̂ †
kσ . (48)

Comparing with Eqs. (46) and (47) leads to

|x̃k|2 = 1 + �k

2
, |ỹk|2 = 1 − �k

2D
.

B. Superconducting parameters

In order to find analytical solutions for the renormalization
equations (21)–(23), let us take advantage of the fact that the
main renormalization occurs when both the f band and the c
band are located close to the Fermi level. Suppose that for this
case the renormalization of the excitation energies is already
completed; the quantity Ak,λ, which governs the hybridization
part (13) of the unitary transformation (12), may be replaced
by Ãk = Ak,λ→0 = ω̃k − ε̃k. With

α̃k,λ ≈ Ãkθ (λ − |Ãk|)
κ (λ − |Ãk|)2

Vk,λ, (49)

the differential equation (38) for Vk,λ then leads to

Vk,λ = V exp
Ã2

k

κ (� − |Ãk|)
.

Here, the constant κ ensures that the exponent is dimension-
less. The quantity α̃k,λ, thus, reads

α̃k,λ = V θ (λ − |Ãk|)
Ãk

δ(λ − |Ãk|). (50)

Note that α̃k,λ as a function of λ shows a peaklike behavior
around λ ≈ Ãk = ω̃k − ε̃k. This peaklike structure is mostly
pronounced for the lowest possible value of Ãk, i.e., close to
the valence transition regime, when both ω̃k and ε̃k are small.
This feature of α̃k,λ can be used for the integration of the
renormalization Eqs. (21)–(23). For the superconducting gap
functions one finds

�̃cc
k = − 2DV

Ãk
�̃

f c
k

+ 2V

Ãk

1

N

∑
q

Uk,k+q〈 f̂−(k+q),↓ck+q,↑〉, (51)

�̃
f f
k = 2V

Ãk
�̃

f c
k − 2V

Ãk

1

N

∑
q

Uk,k+q〈 f̂−(k+q),↓ck+q,↑〉, (52)

�̃
f c
k = (

�̃cc
k − D�̃

f f
k

) V

Ãk
− V

N

∑
q

U ′
k,k+q

Ãk+q

× (〈 f̂−(k+q),↓ f̂k+q,↑〉 − 〈c−(k+q),↓ck+q,↑〉). (53)

Here, we have used the relations �̃
f c
k = �̃

c f
k and

〈 f̂−(k+q),↓ck+q,↑〉 = 〈c−(k+q),↓ f̂k+q,↑〉 and the λ-independent
terms reduced from Uk,k+q,λ,

Uk,k+q ≈ Uf c θ (|Ãk| − |B̃k,k+q|)

× exp

(
− |B̃k,k+q|2

κ (|Ãk| − |B̃k,k+q|)
)

,

U ′
k,k+q ≈ Uf c θ (|Ãk+q| − |B̃k,k+q|)

× exp

(
− |B̃k,k+q|2

κ (|Ãk+q| − |B̃k,k+q|)
)

. (54)
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Our aim is to find a closed set of equations for the gap
functions �̃cc

k , �̃ f f
k , and �̃

f c
k . Therefore, on the right-hand side

of Eqs. (51)–(53), the superconducting pairing functions have
to be expressed by the gap functions. In Eqs. (51)–(53) they
are formed with the full Hamiltonian. Thus, using Eqs. (31)
together with expressions (48) for x̃k and ỹk, the pairing
functions can first be written as linear combinations of pairing
functions 〈c−k↓ck↑〉H̃, 〈 f̂−k↓ f̂k↑〉H̃, and 〈 f̂−k↓ck↑〉H̃, which
are formed with H̃. Finally, using Eq. (36) and similar ex-
pressions for the remaining superconducting pairing functions
〈 f̂−k↓ f̂k↑〉H̃ and 〈 f̂−k↓ck↑〉H̃, one finds that in lowest order
the latter pairing functions are directly proportional to the
corresponding gap functions,

〈c−k↓ck↑〉H̃ = g1,k�̃
cc
k , 〈 f̂−k↓ f̂k↑〉H̃ = Dg2,k�̃

f f
k ,

〈 f̂−k↓ck↑〉H̃ = Dg3,k�̃
f c
k , (55)

where

gi,k =
∑
±

1 − 2 f (E±
k )

4E±
k

(1 ± ψi,k ). (56)

Here, we have denoted ψ1,k = −(uk − 2ω̃2
k )/

√
φk, ψ2,k =

(uk − 2ε̃2
k )/

√
φk, and ψ3,k = (uk − 2ω̃kε̃)/

√
φk. Taking to-

gether Eqs. (51)–(55), we have arrived at a closed set of
equations for the gap functions �̃cc

k , �̃
f f
k , and �̃

f c
k which can

numerically be evaluated for larger systems than was done by
the original equations of the previous section.

C. Numerical evaluation

In this subsection, we discuss our numerical results for the
superconducting energy gaps for a large system by solving
self-consistently Eqs. (51)–(53) with the analytical results of
Eqs. (43) and (45) and Eqs. (46) and (47). This problem is
done in two steps. In the first step, Eqs. (43) and (45) and
Eqs. (46) and (47) are solved self-consistently by arbitrary
initial choices for the expectation values 〈nc〉 (density of
the conduction electrons) and 〈n̂ f 〉 (density of the localized
electrons). After a self-consistent solution is found, the ob-
tained results are used to continue to solve Eqs. (51)–(53)
self-consistently to obtain the superconducting energy gaps.
In order to find d-wave superconductivity, we choose �̃

αβ

kxky
=

Aαβ

0 (cos kx − cos ky) (where α, β denote c or f ) as initial
values of the superconducting energy gaps with amplitudes
2Aαβ

0 . The self-consistent procedure is stopped, when con-
vergence is achieved. In the subsection, we keep the total
occupation number of electrons n = 〈nc〉 + 〈n̂ f 〉 = 1.75 and
the dispersion relation of noninteracting conduction electrons
εk = −2t (cos kx + cos ky) as used before. We set 2t = 1 as
a unit of energy in order to have the same bandwidth of
the conduction electrons as in the one-dimensional case [25].
Therefore, the present results and the one-dimensional results,
which have been discussed in the previous section, can be
compared. A two-dimensional system with N = 320 × 320
sites is investigated. The temperature is set to be very small,
T = 10−3. The former typical values, Uf c = 1, V = 0.1, and
n = 1.75, are still kept.

At first, in Fig. 5 the dispersion relations of the two
quasiparticle bands are shown for ε f = −0.53. The red (plus)

FIG. 5. Renormalized energies of the conduction electrons, ε̃k,
and of the localized electrons, ω̃k, as functions of momentum k in
the first quarter of the Brillouin zone at ε f = −0.53 for Uf c = 1,
V = 0.1, and T = 10−3.

symbols are for c electrons and the green (cross) symbols are
for f electrons. Because of the hybridization, each quasipar-
ticle band has a jump at the crossover between ε̃ f and the
unrenormalized c dispersion εk,�. For ε f = −0.53, the jump
is located close to the Fermi level in which both conduction
and localized electrons contribute to the formation of the
Fermi surface. This picture describes the situation at a valence
fluctuation regime.

In addition to the result of the dispersion relations in Fig. 5,
the result for the superconducting energy gap �̃

f f
k is shown

in Fig. 6 as function of momentum k in the first quarter of
the Brillouin zone for the same parameters as in Fig. 5. Note

FIG. 6. Superconducting energy gap, �̃
f f
k , with dx2−y2 -wave

symmetry as a function of momentum k in the first quarter of the
Brillouin zone at ε f = −0.53 for Uf c = 1, V = 0.1, and T = 10−3.
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FIG. 7. Maximum value of the superconducting energy gaps as a
function of L for a two-dimensional system with N = L × L lattice
sites at ε f = −0.53 for Uf c = 1, V = 0.1, and T = 10−3.

that the nodes of �̃
f f
k are right in the diagonal direction of

the Brillouin zone and the relation �̃
f f
kxky

= −�̃
f f
kykx

if fulfilled.
Here the result is shown only for the superconducting energy
gap built by the localized electrons. However, dx2−y2 symme-
try is also valid for the other possible superconducting energy
gaps �̃cc

k and �̃
f c
k as well as for the superconducting pairing

functions 〈c−k↓ck↑〉, 〈c−k↓ f̂k↑〉, and 〈 f̂−k↓ f̂k↑〉. The maximum
of the superconducting energy gap is located at the Fermi level
which corresponds to the jump in the dispersion relation of the
quasiparticle bands. In other words, the superconducting state
is dominant in the valence transition regime, in which some
f electrons become delocalized. The maximum position of
the superconducting energy gap is shifted in correspondence
to the shift of the jump position of the quasiparticle bands
in momentum space. This means that if the Fermi line is a
square with the corners at (±π, 0) and (0,±π ), the maximum
of the superconducting energy gap is located in the vicinity
of (±π, 0) or (0,±π ), which follows from the initial choice
of the dx2−y2 symmetry for the superconducting energy gap
in self-consistent iteration. Furthermore, note that the su-
perconducting state is only found in a small region in the
momentum space, where the value of the superconducting
energy gap is large. Therefore, the assumption we have used in
(50) is applicable. The nonmonotonic behavior in Fig. 6 of the
superconducting energy gap as function of k is similar to that
of the superconducting energy gap in the high-temperature
superconductors, which might be mediated by magnetic fluc-
tuations [33–36]. In the present study, the superconductivity
is believed to be mediated by valence fluctuations.

By varying the number of lattice sites we have also exam-
ined the size effect of the superconducting energy gaps in our
problem. For instance, the maximum values of �̃

αβ

k (α and β

denote c or f ) are shown as functions of L (N = L × L) in
Fig. 7 for the same parameters as in Figs. 5 and 6. For small
L, the maximum of each superconducting energy gap first
somewhat decreases and then slowly increases till it reaches a
size-independent value as large L. Therefore, already a small
system is able to mimic the thermodynamic limit.

V. DISCUSSION OF THE RESULTS

Next, we want to discuss the origin of the superconducting
pairing mechanism. First note that according to Fig. 1 the
superconducting phase does not occur right at the valence
transition regime but somewhat below. That is, superconduc-
tivity already sets in when the renormalized f energy ε̃ f is still
located somewhat below the Fermi surface εF and the f level
is still almost filled, 〈n̂ f 〉 � 1. To understand this feature one
first has to realize that the excitation spectrum for ε̃k and ω̃k is
dominated at the valence transition by a hybridization gap of
order V . In the valence transition regime, ε̃ f lies close to the
Fermi energy and both ε̃ f and εF lie inside the hybridization
gap. On the other hand, the superconducting energies E+

k , E−
k

would reduce to |ε̃k| and |ω̃k| in the case of vanishing super-
conducting gaps �̃

αβ

k . Thus, no superconducting excitations
become important for k values close to the hybridization gap
since Ãk = ω̃k − ε̃k ∼ O(V ) would be too large. The situation
becomes different when ε̃ f lies somewhat below the Fermi
surface. In this case, the superconducting excitation energy

E−
k ≈

√
ω̃2

k + O(�̃αβ

k )2 reduces to a gap energy of order |�̃αβ

k |
for the Fermi wavevector kF where ω̃k vanishes, which is close
to the hybridization gap.

To find a superconducting gap equation for this case, let
us approximate the weights in Eq. (48) as follows: x̃k ≈ 1
and ỹk ≈ 0 for k close to kF . This follows from the fact that
valence transitions are yet not dominant in this regime. Thus
according to Eqs. (32) the superconducting pairing function
formed with the full Hamiltonian H can be approximated by

〈c−k↓ck↑〉 = 〈c−k↓ck ↑〉H̃ = g1,k�̃
cc
k ,

〈 f̂−k↓ f̂k↑〉 = 〈 f̂−k↓ f̂k↑〉H̃ = Dg2,k�̃
f f
k ,

〈 f̂−k↓ck↑〉 = 〈 f̂−k↓ck↑〉H̃ = Dg3,k�̃
f c
k . (57)

With Eqs. (57) the relations (51)–(53) for the superconducting
gap functions reduce to

�̃cc
k = −2DV

Ãk

(
�̃

f c
k − 1

N

∑
q

Uk,k+qg3,k+q�̃
f c
k+q

)
, (58)

�̃
f f
k = 2V

Ãk

(
�̃

f c
k − D

N

∑
q

Uk,k+qg3,k+q�̃
f c
k+q

)
, (59)

�̃
f c
k = V

Ãk

(
�̃cc

k − D�̃
f f
k

)

− V

N

∑
q

U ′
k,k+q

Ãk+q

(
Dg2,k+q�̃

f f
k+q − g1,k+q�̃

cc
k+q

)
. (60)

From Eqs. (58) and (59) we can eliminate the prefactor (�̃cc
k −

D�̃
f f
k ) in Eq. (60) and arrive at

�̃
f c
k = 1

RkN

∑
q

[
2V 2D(1 + D)

Ã2
k

Uk,k+qg3,k+q�̃
f c
k+q

− V

Ãk+q
U ′

k,k+q

(
Dg2,k+q�̃

f f
k+q − g1,k+q�̃

cc
k+q

)]
, (61)

where Rk = 1 + 4DV 2/Ã2
k. Using ε̃2

k > ω̃2
k and E−

k ∼
O(|�̃αβ

k |) for k ≈ kF , one easily finds that the relations g2,k �
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g1,k and g2,k � g3,k are always fulfilled. In this case, we have
g2,k ≈ [1 − 2 f (E−

k )]/2E−
k . This simplifies Eq. (61); thus

�̃
f c
k = − DV

RkN

∑
q

U ′
k,k+q

Ãk+q
g2,k+q�̃

f f
k+q. (62)

We then arrive at

�̃
f f
k = − 2DV 2

ÃkRkN

∑
q

U ′
k,k+q

Ãk+q
g2,k+q�̃

f f
k+q (63)

and

�̃cc
k = 2D2V

ÃkRkN

∑
q

U ′
k,k+q

Ãk+q
g2,k+q�̃

f f
k+q. (64)

Note that Eq. (63) is a gap equation for the gap function �̃
f f
k

for the f electrons. This makes sense since the effective f
dispersion ω̃k is crossing the Fermi surface leading to the
superconducting transition. Comparing Eqs. (62)–(64), one
finds the following very simple relations:

�̃
f c
k = Ãk

2V
�̃

f f
k , �̃cc

k = −D�̃
f f
k . (65)

With D = 1 − 〈n f 〉/2 ≈ 1/2 and Ãk ∼ O(V ) one immedi-
ately sees that the absolute values of �̃

f c
k and �̃cc

k are approxi-
mately half of that of �̃

f f
k . This seems to be in nice agreement

with the numerical results in Fig. 7.
To discuss the superconducting feature mediated by the

valence fluctuations in the study, we rewrite Eq. (63) in the
following form,

�̃
f f
k = − 1

N

∑
q

V eff
k,k+qg2,k+q�̃

f f
k+q, (66)

where

V eff
k,k+q = 2DV 2U ′

k,k+q

ÃkÃk+qRk
(67)

plays a role of the effective two-particle pairing interaction.
Equation (66) looks similar to the BCS-type self-consistent
equation for the superconducting order parameter in mo-
mentum space. V eff

k,k+q becomes dominant if U ′
k,k+q is large

and ÃkÃk+qRk is small. The former situation happens if
the Coulomb interaction between the localized electrons and
conduction electrons is large leading to the sharp valence
fluctuation, whereas the latter corresponds to the small values
of Ãk, i.e., at the momentum at which both quasiparticle bands
are located close to the Fermi level and close to each other, or
in the valence fluctuation regime. The superconducting phase,
therefore, appears and becomes enhanced due to the strong
valence fluctuations. Moreover, V eff

k,k+q in Eq. (67) is strongly
dependent on momentum; a d-wave symmetrical solution for
the superconducting energy gap in momentum space, thus, is
stabilized [37].

VI. CONCLUSION

To conclude, we have discussed the possibility of super-
conductivity which is induced by enhanced valence fluctua-
tions in the Ce-based heavy-fermion systems under high pres-
sure. The enhancement of the valence fluctuations is modeled
by including a Coulomb repulsion term between the con-
duction and the localized electrons in the periodic Anderson
model (PAM). This two-dimensional extended PAM (EPAM)
is investigated by a recently developed projector-based renor-
malization method (PRM). In order to apply the PRM to the
superconducting state, small gauge-symmetry-breaking fields
are included in the EPAM. The renormalized Hamiltonian
of the EPAM in the superconducting state is found. After
being diagonalized by the use of the Bogoliubov method, this
Hamiltonian allows determining the superconducting pairing
functions of all possible Cooper pairs. By the use of some
additional simplifications, a BCS-like equation is found. The
resulting effective pairing interaction depends strongly on
momentum and becomes dominant in the valence transition
regime. Our numerical evaluation verifies that superconduc-
tivity in the heavy-fermion systems has a d-wave character
and is mediated by valence fluctuations.
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