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Magnetic impurities in Kondo insulators: An application to samarium hexaboride
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Impurities and defects in Kondo insulators can have an unusual impact on dynamics that blends with effects
of intrinsic electron correlations. Such crystal imperfections are difficult to avoid, and their consequences
are incompletely understood. Here we study magnetic impurities in Kondo insulators via perturbation theory
of the s-d Kondo impurity model adapted to small-band-gap insulators. The calculated magnetization and
specific heat agree with recent thermodynamic measurements in samarium hexaboride (SmB6). This qualitative
agreement supports the physical picture of multichannel Kondo screening of local moments by electrons and
holes involving both intrinsic and impurity bands. Specific heat is thermally activated in zero field by Kondo
screening through subgap impurity bands and exhibits a characteristic upturn as the temperature is decreased.
In contrast, magnetization obtains a dominant quantum correction from partial screening by virtual particle-hole
pairs in intrinsic bands. We point out that magnetic impurities could impact de Haas–van Alphen quantum
oscillations in SmB6, through the effects of Landau quantization in intrinsic bands on the Kondo screening of
impurity moments.
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I. INTRODUCTION

Impurities within Kondo insulators are distinct from the
typical electron and hole-type impurities in semiconductors
[1]. A popular physical picture is that the formation of a
Kondo insulating ground state is predicated on a coherent
lattice of localized moments that develop singlet correlations
with mobile electrons [2]. When impurities break translational
symmetry and disturb the coherence of the ground state,
they become “Kondo holes” in the Kondo lattice. The theory
of nonmagnetic Kondo holes has been studied extensively,
revealing a novel impurity band at dilute concentrations and
a collapse of the insulating state at moderate and higher
concentrations [3–5].

Experimental results on impurities and defects in Kondo
insulators show an analogy to the Kondo impurity model,
including a resistance minimum for dilute La doping in CePd3

and impurity-driven localization in La-doped CeNiSn [6,7].
In addition to nonmagnetic impurities, rare-earth elements
with substantial magnetic moments (e.g., Gd, Eu) are common
impurities in Kondo insulators [8,9]. Their presence also dis-
rupts the coherent Kondo insulator state, yet the experimental
consequences of their magnetic degrees of freedom have
largely been overlooked.

The theory of magnetic impurities in metals has a long
history [10–26]. Magnetic impurities in insulators have at-
tracted much less attention so far. Nevertheless, theoretical
studies of Kondo screening in gapped systems (insulators
and superconductors) have reached an important result that
a Kondo singlet state does form at low temperatures, just like
in metallic systems, if the gap is of the order of the Kondo
temperature or smaller [27–29].

The most-studied Kondo insulator, samarium hexaboride
(SmB6), is a strongly correlated “heavy fermion” material

and a proposed strong topological insulator (TI) with time-
reversal (TR) symmetry [30–32]. The former has been es-
tablished in numerous experiments over several decades now
[33,34], while the evidence for the latter is recent and growing
[8,35–40]. As a correlated TR-invariant TI, SmB6 could
exhibit novel physical phenomena including an exotic bulk
ground state and correlated topologically protected surface
states (a 2D Dirac heavy-fermion system) [41–43]. Experi-
mental evidence is mounting that surface states in SmB6 are
affected by interactions, either among the intrinsic degrees
of freedom (e.g., mediated by a collective mode), and/or
involving impurities (such as Sm vacancies, which are known
to proliferate at the surface) [44–48]. The possibility of
strongly interacting surface states gives SmB6 special impor-
tance among the expanding family of topological materials.

Several experimental studies of SmB6 have recently ob-
served puzzling dynamics consistent with metallic behav-
iors [49–53] despite measurements showing that SmB6 is
an electric and thermal-transport DC insulator in the bulk
[54–57], with a spectroscopically clear gap to all excitations
[34,58–61]. In particular, Corbino geometry transport mea-
surements show unambiguously the insulating nature of the
bulk [62]. Measurements of the de Haas–van Alphen (dHvA)
effect in quantum oscillations [51,52] have indicated a possi-
ble 3D bulk Fermi surface in SmB6, involving quasiparticles
that couple to the external magnetic field but do not trans-
port charge; other similar measurements, however, have been
interpreted as resulting from 2D surface dynamics [63,64].
Optical conductivity [53] shows a continuum-like density
of states that absorbs light at subgap energies, but with a
frequency dependence that extrapolates to a vanishing DC
conductivity. On the other hand, inelastic neutron scattering
has not detected any apparent magnetic spectral weight in the
energy range 0.15–13 meV below the energy of the coherent
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spin-exciton. The implication of this absence of scattering is
that the putative low-energy degrees of freedom responsible
for these dynamics must be nonmagnetic, have a very small
moment, or be related to impurities and defects. Their foot-
print is seen thermodynamically [9,49,50] as an upturn in
the low-temperature dependence of the linear specific heat
(C/T ) with decreasing temperature, and perhaps also by
neutrons as a finite lifetime of the coherent exciton mode
[9,65].

The observed subgap degrees of freedom in SmB6 could
be a window into an exotic correlated ground state. The
most obvious ground state candidate inspired by the quantum
oscillations and specific heat is a gapless spin or Majorana
liquid with a neutral Fermi surface [66–70]. A Fermi liquid
of charge-neutral spinons would not conduct DC currents,
but could in principle couple to an external magnetic field in
a quantum oscillations experiment. While a direct minimal
coupling of neutral spinons to the electromagnetic field is
not possible, any nonminimal coupling involving spinons’
internal degrees of freedom could hardly account for the
quantum oscillations. However, fractionalized electron par-
tons (spinons and holons) necessarily interact via an emergent
gauge field. This gauge field can provide an indirect minimal
coupling of spinons to the physical electromagnetic field if
the two gauge fields become correlated due to quantum fluc-
tuations of gapped charged holons [69,70] or through other
mechanisms [71]. Such a physical picture is indeed promising
as an explanation of several experiments, but also challenged
by others. Heat transport measurements [56,57] in SmB6 seem
to rule out a Fermi liquid contribution of any kind, and no
hint of a spinon Fermi sea was found in low-energy neutron
scattering studies (at energies below the collective mode) [9].
Other proposed explanations of quantum oscillations [72–78]
that attempt to circumvent a neutral Fermi surface may be
at odds with some experimental results, although careful
consideration may be able to reconcile relevant energy and
field scales [79]. Surface Kondo breakdown [80] as well as
impurities and defects [9,81,82] have also been scrutinized for
their impact on the dHvA oscillations.

In this paper we explore an explanation of the SmB6

puzzles that are clearly related to impurities, without ruling
out the prospect of an exotic ground state. Our analysis
builds upon studies [9,83,84] of perplexing impurity effects
in SmB6, which show moment screening and dramatic en-
hancement of the low-energy density of states. We argue
that these experiments find an explanation in a multichannel
Kondo screening of impurity moments, which is facilitated by
electrons and holes in both intrinsic and impurity bands of a
small-gap insulator. Our conclusions obtain from a calculation
of magnetization and specific heat in the insulating s-d Kondo
model, and hence should apply to generic small-gap materials
with localized magnetic impurities. We will also point out the
possibility that other puzzling behaviors of SmB6 are affected
by the dynamics of impurity magnetic moments in a correlated
Kondo insulator environment.

Our previous thermodynamic studies [9] included mea-
surements of magnetization and specific heat in a variety
of samples with different controlled levels of impurity dop-
ing. Magnetization incorporates a background Van Vleck

FIG. 1. Specific heat of SmB6 in zero magnetic field, reproduced
from the supplementary material of Ref. [9] (thick solid lines). The
temperature T (0)

K ∼ 50 K of the large peak in the data may be associ-
ated with the intrinsic Kondo temperature of the material. The anal-
ysis in this paper is concerned with the extrinsic doping-dependent
specific heat upturn at T < 10 K. We interpret this upturn as a result
of another Kondo effect, associated with magnetic impurities in the
insulating environment of SmB6 (amid other possible contributions).
The impurity-related Kondo temperature TK � T (0)

K is below the
temperature range of the experiment given that no low-temperature
peak was reached. Two dotted thin lines are theoretical fits to the data
(with subtracted ni = 0.04% Gd background) and extrapolations to
lower temperatures. We used the β� � 1 formula for δc in Eq. (2)
and applied it near the limit of its validity β� ∼ 1 (� ∼ 5.0 K =
0.43 meV). Even though the fits are reasonably good, this theory
lacks quantitative accuracy due to a number of simplifications and
approximations.

component related to Sm2+, which was subtracted. The re-
maining magnetization shows the temperature and field de-
pendence typical for a paramagnet of decoupled magnetic
moments. We can independently extract the effective mo-
ment and concentration of impurities from the magnetization
m(μ0H ). We found that the concentration of magnetic mo-
ments was proportional to the amount of gadolinium doping,
sensitive to the hundreds of ppm level. Hence, magnetization
is a highly sensitive characterization tool for a wide range
of common magnetic impurities in SmB6. Furthermore, the
linear specific heat (C/T ) at zero field, shown in Fig. 1,
deviates from the typical insulating or even metallic behavior.
It features an upturn in its temperature dependence as the
temperature is lowered well below the characteristic scale
set by the SmB6 gap. The amount of upturn is proportional
to the amount of doping. Isolated magnetic moments due to
low-density impurities in an insulator do not have capacity
to store heat in zero field, so the observed specific heat
must be attributed to their interaction with some additional
degrees of freedom — which are either gapless or live at
very low finite energies in order to produce a seemingly
non-thermally-activated response. This merits our interest in
an extrinsic Kondo impurity dynamics. The intrinsic Kondo
insulator physics and band topology do not seem to be im-
portant for the understanding of the impurity-related ther-
modynamics in SmB6, and hence are not of any concern
here.

245118-2



MAGNETIC IMPURITIES IN KONDO INSULATORS: AN … PHYSICAL REVIEW B 101, 245118 (2020)

II. SUMMARY OF THE ANALYSIS AND CONCLUSIONS

This section describes the foundation of our analysis,
specifies its validity and limitations, and states all impor-
tant results. Here we provide a self-contained discussion of
how the complex thermodynamic behaviors of SmB6 can be
theoretically understood in terms of an interaction between
magnetic impurities and gapped quasiparticles. Following
this section is the development of our theory. Section III A
introduces the theoretical model, and Sec. III B reviews the
thermodynamics of decoupled insulating electrons and local
moments. The first-order perturbation theory is analyzed in
Sec. IIIC1, but our main results stem from the second-order
perturbation theory: we separately discuss magnetization in
Sec. IIIC2 and specific heat in Sec. IIIC3. The lengthy details
of all calculations are given in Appendices. The final section,
Sec. IV, contains a brief summary of essential conclusions,
and explores implications for the nature of quasiparticles in
Kondo insulators. There we point out a physical mechanism
which enables the Kondo screening of magnetic impurities to
contribute to the dHvA effect—possibly of some interest in
the quest to understand the puzzling quantum oscillations in
SmB6 and YbB12.

We begin by discussing the theory of recent magnetization
and specific heat measurements in SmB6. Thermodynamic
experimental observations [9] are consistent with a tendency
of electrons in intrinsic and impurity bands to screen the
localized magnetic moments introduced by rare-earth impu-
rities. Kondo impurity screening is indeed possible in gapped
systems at low temperatures [27–29] when the Kondo temper-
ature scale kBTK is comparable to or larger than the gap �.

The simplest theoretical model of a Kondo insulator with
magnetic impurities is the following adaptation of the s-d
model’s Hamiltonian:

H =
∑

s

[∫
d3k Eskψ

†
skψsk − J

Ni∑
i=1

Sri
· ψ†

sri

σ

2
ψsri

]
. (1)

The quasiparticles are described by field operators ψs in two
bands s = ±1 separated by a gap, and Ni local moments scat-
tered at locations ri are described by spin operators Sri . This
minimalistic model focuses only on the antiferromagnetic
Kondo interaction J < 0 between the magnetic impurities and
quasiparticles, without seeking to capture the nature of the
ground state, correlations among quasiparticles, or collective
modes in a Kondo insulator. The main simplification built
into the model is the treatment of both quasiparticles and
local moments as effective S = 1

2 spin degrees of freedom
with the same coupling to the external field. This reduces the
technical complexity of calculations without jeopardizing the
qualitative nature of conclusions. However, since magnetic
impurities like gadolinium have a large moment, the price to
pay is an inadequate description of underscreening that takes
place in the low-temperature Kondo state [2].

We calculate magnetization up to saturating fields and
specific heat in zero field using perturbation theory in the
model (1). Our main results can be summarized by the fol-
lowing corrections to magnetization density δm and zero-field
specific heat δc in a Kondo insulator (in the h̄ = 1 units that

we use throughout the paper):

δm =
⎧⎨
⎩

−c1ni
(J p3 )2

�
β

tanh(βh)
cosh2(βh)

, β� � 1,

c2ni J p3 β

(β�)3
tanh(βh)[1+cosh2(βh)]

cosh(βh) , β� � 1,

δc ≈
{

c3nikB
( J p3

�

)2
(β�)

3
2 e−β�, β� � 1,

c4nikB (βJ p3)2, β� � 1.
(2)

These are only the dominant corrections to the response of de-
coupled quasiparticles and local moments. c1,2,3,4 are positive
numerical coefficients, β = (kBT )−1 is inverse temperature,
h is the Zeeman energy of both quasiparticle and impurity
spins aligned with the external magnetic field (assumed to
be the same for simplicity), 2� is the band gap (� � h),
and ni = Ni/V is the concentration of impurity moments. The
formulas are limited to temperatures below a high-energy
cutoff scale W (βW � 1). A microscopic momentum scale
p, determined from the high-energy quasiparticle spectrum, is
combined with the Kondo coupling J to produce an energy
scale j = J pd . It should be noted that j is not related to the
intrinsic Kondo temperature T (0)

K ∼ 50 K.
The perturbation theory is controlled by the parameter x =

j/�. It contains an instability if the quasiparticles collectively
form a spin-singlet with a magnetic impurity in the ground
state. Therefore, the perturbation theory is valid only in con-
ditions when such a collective screening is not developed [85].
This generally corresponds to temperatures above a Kondo
scale TK. In the case of SmB6, the Kondo temperature TK

related to magnetic impurities is lower than 1 K, judging
by the specific heat measured [9] in SmB6 and depicted
in Fig. 1. Hence, our results qualitatively apply to a broad
temperature regime �/kB > T > TK that probes the subgap
dynamics. The intrinsic Kondo-hybridization gap � is well
formed near the lower end of this temperature range, so we are
justified neglecting its weak residual temperature dependence
and all other aspects of the intrinsic Kondo dynamics. Given
� � kBTK, the electrons in intrinsic bands are not collectively
involved in the screening of the impurity moments at any
temperature [27–29], although local partial screening, which
we calculate, does occur. We will discuss shortly the need
to also consider electrons in impurity bands at much lower
energies; they appear to be responsible for the specific heat
behavior, and limit the validity of perturbation theory to
T > TK.

The essential features of the above response functions are
as follows: (i) specific heat is thermally activated unless the
Kramers degeneracy of local moments is lifted or gap closed;
(ii) magnetization is not thermally activated; it receives a
quantum correction at the second order of perturbation theory
by virtual particle-hole pairs that partially screen the local
moments. A thermally activated component of magnetization
is also found at the first order of perturbation theory, but it is
not dominant at low temperatures.

The properties of the calculated δc and δm that are im-
mediately consistent with the experiment [9] include the
following: (i) the system is an electric insulator, (ii) both
corrections of thermodynamic responses are proportional to
the impurity concentration ni, (iii) magnetization is reduced
in comparison to that of isolated moments (i.e., the effective
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FIG. 2. Impurity magnetization of moments with 8μB at 10 K
(e.g., as for Gd [9]). The amplitude of the correction is modified
by impurity concentration, especially through changes in the gap
scale, known to be sensitive to impurities and defects [84]. AJη

encompasses the constant prefactor in Eq. (2). Inset shows that
at high fields the full unscreened impurity moment is recovered
[estimated from Eq. (2) with an adjustment for the actual large
magnetic moment of Gd].

moment of impurities is renormalized to a smaller value as
antiferromagnetic Kondo screening with J < 0 takes place),
(iv) magnetization is not thermally activated, and (v) specific
heat shows an upturn as the temperature is reduced both in the
high β� < 1 and low β� > 1 temperature regimes. However,
difficulties arise with attempts to fully understand specific
heat: an upturn in some samples is experimentally seen down
to millikelvin temperatures. This can be reconciled with the
present model only if the quasiparticle spectrum features an
extremely small gap, much smaller than the intrinsic ∼� gap
of SmB6.

In order to resolve the problem of having an insulating
transport behavior with an apparent presence of screened
extrinsic magnetic moments in SmB6, we suggest that mul-
tiple insulating Kondo channels give rise to the observed
thermodynamics. Optical conductivity [53] provides evidence
of a density of states that spans the subgap range of energies.
This has been explored theoretically in the “Kondo hole”
picture, when an in-gap impurity band locks the Fermi level
or comes with lower-energy localized magnetic excitations
[4]. Microgaps �i can develop as the impurity bands form
and create a new channel for Kondo screening that appears
not thermally activated in the specific heat measurements
[9]. Our calculations access this Kondo channel in its “high
temperature” regime β�i < 1. Variability in this temperature
range of the heat capacity is clearly related to impurities
and defects, and previous analysis of heat capacity on other
samples has included Schottky anomalies [50,86] to partially
account for the upturn in linear heat capacity. At the same
time, magnetization can be contributed both by the impurity
and the intrinsic electron-hole channels, since the latter is not
thermally activated. Hence, the calculated response functions
exhibit all essential features of their measured counterparts in
the experiment [9] (see Fig. 2).

It will become apparent later that the momentum scale p
is related to the gap �, cutoff energy W , and average density
of states ρ in the quasiparticle bands associated with a Kondo
channel:

p3 ∼ ρW

(
�

W

)3

. (3)

Therefore, if we compute from (2) the ratio of the dominant
magnetization correction magnitudes in the intrinsic (�0) and
impurity (�i) Kondo channels,

δm(0)
2

δm(i)
1

∼
(
J p3

0

)2
/�0

J p3
i

(β�i )
3 β�i∼1−−−→

(
J p3

0

)2
/�0

J p3
i

∼ Jρ0W0

�0
× ρ0

ρi

(
�0

�i

)3(
�0

W0

)3(Wi

W0

)2

, (4)

we can find a natural possibility realized with �0 � �i and
ρ0 � ρi that the quantum contribution of the intrinsic channel
is notably larger than the thermal contribution of the impurity
channel (even in the perturbative limit Jρ0W0/�0 � 1). Note
that the energy cutoffs W are limited both by the bandwidths
and microscopic properties of the Kondo interaction (e.g.,
spatial range), so is it not unnatural to have comparable scales
W0 ∼ �0, and even Wi ∼ W0 when impurity levels fill up the
gap.

In simple words, the thermodynamic experiment [9] may
be revealing a thermal correction to specific heat in the impu-
rity Kondo channel and a quantum correction to magnetization
in the intrinsic Kondo channel. Both are determined at the
second order of perturbation theory and proportional to J2

when the quasiparticles are gapped. This interpretation is of
particular importance because the coefficient of the specific
heat now matches that of the correction to magnetization in
the scaling found empirically in our previous experiment [9].
This is a distinct contrast to the metallic s-d model, where
corrections to specific heat are ∝(Jη)4 and magnetization
corrections are ∝Jη, with η being the density of states at the
Fermi energy. Given that the scaling was consistent over more
than two orders of magnitude of impurity concentration, this
insulating model represents a substantial improvement over a
direct comparison to the metallic Kondo impurity effect for
the case of SmB6.

III. PERTURBATION THEORY OF AN INSULATING
KONDO IMPURITY MODEL

Here we analyze thermodynamics of an s-d model of
Kondo impurities in an insulator, using perturbation theory.
We calculate magnetization in an external magnetic field up
to saturation, and specific heat in zero field. It turns out
that magnetization corrections to the response of isolated
local moments are dominated by a quantum process at the
second order of perturbation theory in which virtual particle-
hole pairs screen the local moments via Kondo coupling. In
contrast, the zero-field specific heat is thermally activated
but shaped by processes that also start at the second order
of perturbation theory. These results provide a foundation
for the physical picture we build, and the conclusion that
Kondo-like impurities likely play a significant role in some
metallic-looking behaviors of SmB6.
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A. Model

The s-d model we study is given by the Hamiltonian

Hsd =
∫

dd k

(2π )d
	

†
kh0	k − J

Ni∑
i=1

Sri
· 	†

ri

1 ⊗ σ

2
	ri

. (5)

It describes a band insulator of electrons and localized mag-
netic moments in d dimensions coupled by the Kondo term
(J). We use a simple band-insulator energy spectrum

Esk = s
√

ε2
k + �2 − μ (6)

with a band index s = ±1 and band gap 2�, obtained from a
noninteracting two-orbital Hamiltonian:

h0 =

⎛
⎜⎝

εk − μ 0 � 0
0 εk − μ 0 �

� 0 −εk − μ 0
0 � 0 −εk − μ

⎞
⎟⎠. (7)

This representation is compatible with spinor field operators
	 whose components ψnα are labeled by an orbital index n ∈
{1, 2} and spin α:

	 =

⎛
⎜⎝

ψ1↑
ψ1↓
ψ2↑
ψ2↓

⎞
⎟⎠. (8)

For simplicity, we work with εk = v|k| that makes the mo-
mentum dependence Esk formally relativistic at high ener-

gies; this microscopic feature is ultimately collected into a
single momentum scale and otherwise not essential for our
conclusions.

Local moments sit at randomly scattered positions ri and
have an average concentration ni = Ni/V in the system of vol-
ume V . We consider spin S = 1

2 local moments and represent
their spin operators

Sri
= z†

ri
σzri

(9)

in terms of two-component field operators z†, z for electrons
localized at impurity sites (σ is the vector of Pauli matrices).
We assume that the moments are too far apart to interact with
one another.

We calculate magnetization density m(h, T ) and specific
heat c(h, T ) as functions of the applied magnetic field h and
temperature T ,

m = − ∂g

∂h
, s = − ∂g

∂T
, c = T

∂s

∂T
, (10)

from the free energy density g,

g = −kBT

V
ln(
). (11)

The partition function 
 is obtained from the imaginary-time
path integral in the grand-canonical ensemble, with chemical
potentials μ for mobile electrons and −iλ for impurity elec-
trons:


 =
∫

DzDz†DψDψ† exp

{
−

∫ β

0
dτ

[∑
s

∫
dd k

(2π )d
ψ

†
sk

(
∂

∂τ
+ Esk − μ − hσ z

)
ψsk

− J
Ni∑

i=1

Sri

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d
ei(k′−k)riUsk,s′k′ψ

†
sk

σ

2
ψs′k′ +

∑
i

(
z†

i

∂zi

∂τ
− hz†

i σ
zzi + iλz†

i zi

)]}
, (12)

where β = (kBT )−1 and kB is the Boltzmann constant. For simplicity, we assume that mobile and localized electrons couple the
same way to the magnetic field h. Representing the Kondo coupling in the band basis, with two-component band spinors ψsk,
requires the following vertex function:

Usk,s′k′ =
�2 + (

s
√

ε2
k + �2 − εk

)(
s′
√

ε2
k′ + �2 − εk′

)
2

√(
�2 + ε2

k − εks
√

ε2
k + �2

)(
�2 + ε2

k′ − εk′s′
√

ε2
k′ + �2

) �→0 ∨ k′=k−−−−−−−→ δss′ . (13)

Using a spinor z to generate the quantum dynamics of
local moments has the crucial advantage of being amenable to
Wick’s theorem in perturbation theory. However, unphysical
states with unoccupied and double-occupied impurity sites
are also generated. Popov and Fedotov have shown [87] that
these unphysical states can be completely eliminated from the
partition function of an arbitrary interacting theory simply
by setting the chemical potential of localized electrons to
iλ = iπ/2β, without an adverse effect on physical states.
We apply this trick in all final formulas to faithfully deduce
the dynamics of local moments. It should be also noted that
the constructed spectrum has no energy bounds, so we must

introduce an energy cutoff W (bandwidth) and regularize the
field theory in order to not predict an infinite degeneracy
pressure. The latter amounts to adding a constant term to
the action, proportional to the volume V , which cancels the
unphysical contributions to pressure; we do not explicitly
show this procedure.

B. Unperturbed free electrons and local moments

We proceed by calculating 
 first at the zeroth order of
perturbation theory J = 0. In this case, 
 = 
e
m factor-
izes into the textbook expressions for the grand-canonical
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partition functions of free “conduction” electrons (c) and local
moments (m):

ln(
c) = VAd e−β� cosh(βμ) cosh(βh),

ln(
m) = Ni ln[2 cosh(βh)], (14)

where

Ad = 4Sd�
(

d
2 + 1

)
(2β�)d/2

d (2πβv)d
, Sd = 2πd/2

�
(

d
2

) , (15)

and � is the Gamma function. Magnetization density m and
specific heat c of electrons in a band insulator are thermally
activated:

mc = Ad e−β� cosh(βμ) sinh(βh),

sc = kBAd e−β�(β�) cosh(βμ) cosh(βh),

cc = kBAd e−β�(β�)2 cosh(βμ) cosh(βh). (16)

Note that μ = 0 corresponds to the Fermi energy sitting at
the middle of the band gap, and the field dependence is
meaningful only in small fields h � �. The contribution of
decoupled local moments with concentration ni is

mm = ni tanh(βh), cm = kBni
(βh)2

cosh2(βh)
, (17)

at any temperature and magnetic field. The magnetization of
local moments exhibits a linear dependence on small magnetic
fields βh � 1 and saturates in large magnetic fields βh � 1.
The same overall behavior of the measured magnetization
in doped SmB6, proportional to the doping concentration ni,
provides evidence that the doped impurities carry magnetic
moments. However, the isolated magnetic moments have no
heat capacity in the absence of magnetic field (h = 0), which
is where an excess specific heat is observed in the experiment.
This means that the doped local moments in SmB6 must be
coupled to additional degrees of freedom. We discuss this
coupling next.

C. Perturbation theory

The perturbative expansion of the free energy (11) is the
sum of connected vacuum Feynman diagrams:

ln(
) = ln(
c) + ln(
m) +
∞∑

n=1

Fn, (18)

where 
c and 
m are given by (14) and Fn is the sum of
nth-order diagrams. The bare propagators G of “conduction”
electrons and D of local moments are given by matrices
operating in the two-component spinor space:

G(s, k, ωn) = 1

iωn − (Esk − μ) + hσ z
,

Di j (�n) = δi j

i�n − iλ + hσ z
; (19)

i, j = 1, . . . , Ni enumerate impurity sites, and ωn,�n are
fermionic Matsubara frequencies that take values ωn = (2n +
1)π × kBT for integer n. The matrix elements of these propa-
gators, indexed by α, β = ±1 spin-projection states along the

FIG. 3. The connected vacuum Feynman diagrams that can con-
tribute to free energy up to the second order of perturbation theory.
Solid lines represent conduction electron propagators, and dashed
lines represent impurity propagators.

ẑ axis, are

Gαα′ (s, k, ωn) = 1

2

∑
σ=±1

δαα′ + σσ z
αα′

iωn − (Esk − μ − hσ )
,

Di j
ββ ′ (�n) = δi j

2

∑
σ=±1

δββ ′ + σσ z
ββ ′

i�n − iλ + hσ
. (20)

The bare vertex for the Kondo coupling at ω + � = ω′ + �′
is

Vαα′ββ ′ (ω, s, k; ω′, s′, k′; i,�; j,�′)

= J

2β
δi je

i(k−k′ )riσαα′σββ ′Usk,s′k′

= J

2β
δi je

i(k−k′ )ri (2δαβ ′δβα′ − δαα′δββ ′ )Usk,s′k′ (21)

with Usk,s′k′ given by (13).

1. First-order corrections

The first-order connected vacuum diagram shown in
Fig. 3(a) is

F1 = (−1)2 J

2β
(2δαβ ′δβα′ − δαα′δββ ′ )

∑
i

∑
ωn�n

∑
s

∫
dd k

(2π )d

×Gαα′ (s, k, ωn)Dii
ββ ′ (�n)Usk,sk. (22)

Its calculation is outlined in Appendix A, assuming � �
|h|, |μ|. As the lowest-order correction to the free energy
(11), (18), this diagram produces the following magnetization
correction to (17):

δg = −nikBT Jη sinh(βh) tanh(βh),

δm = ni Jη

[
sinh(βh) + tanh(βh)

cosh(βh)

]
. (23)

The quantity η plays the same role as the density of states
at the Fermi energy in a Kondo metal. It is thermally activated
in the low-temperature limit β� � 1:

η = Sd�
(

d
2

)
(2β�)d/2

(2πβv)d
× 2β e−β� cosh(βμ). (24)

We see that the Kondo correction to the response of free
moments is exponentially sensitive to small magnetic fields,
but still thermally activated until the extreme limit |h| ∼ �.

A decent approximation for δm in the β� � 1 limit is
given by the above formula with a modified parameter:

η ≈
(

�

2πv

)d Sdβ

cosh2(β�)

{
C (β�)−d , βW � 1,

C′(W/�)d , βW � 1.
(25)
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The “constants” C and C′ (dependent on d) can be determined
by a numerical fit to the exact integral in (A5) at small fields.

Kondo screening reduces the intrinsic magnetization of
free moments in the case of antiferromagnetic coupling J < 0,
since thermally generated particles and holes try to form spin
singlets with local moments. This happens in a linear fashion
at small fields, i.e., through a renormalization of the impurity
magnetic moment. At zero temperature, the Kondo correction
to magnetization stays strictly zero until |h| � �, when it
suddenly jumps. Note that free moments at zero temperature
immediately saturate in any Zeeman field, and this behavior is
not disturbed by the Kondo effect in an insulator.

Specific heat vanishes in zero field at this order of per-
turbation theory because δg = 0 at h = 0. We will find a
finite thermally activated correction to specific heat only at the
second order, where magnetization also acquires its dominant
nonactivated quantum correction.

Another form of the above result,

δm = const. × ni βJ

(
mv

2π

)d

f (β�, βμ)

×
[

sinh(βh) + tanh(βh)

cosh(βh)

]
, (26)

provides a more transparent comparison to the second-order
quantum correction that was discussed in the introduction;
m = �/v2 is the effective mass of low-energy quasiparticles
and holes, and p = mv/2π is a microscopic energy scale
that converts the raw Kondo coupling J to an energy scale
j = J pd . It is not hard to see by dimensional analysis that
the temperature and field dependence of thermodynamic
functions are not qualitatively affected by the precise electron
dispersion εk, even in the presence of a spin-orbit coupling.
Such details of the electron spectrum can be collected into
dimensionless numerical factors and a momentum scale p.
Using the present model, we can relate p to more objective
characteristics of the spectrum,

pd ∼
(

�

v

)d

=
(

�

W

)d(W

v

)d

= ρW

(
�

W

)d

, (27)

such as an energy cutoff W and the average density of electron
states ρ that can contribute to Kondo screening (note that
� ∼ W/v is a cutoff momentum in the present model, so that
ρ ∼ W −1�d ).

2. Second-order corrections: Magnetization

Here we analyze magnetization of a Kondo insulator at
the second order of perturbation theory. In contrast to the
case of a Kondo metal, the dominant part of magnetization
in a Kondo insulator appears only at this order; it originates
from virtual particle-hole excitations generated by the Kondo
coupling even at T = 0. Specific heat, however, must remain
thermally activated as long as the Kramers degeneracy (of
local moments) is not lifted or the gap closed.

There are three second-order connected vacuum dia-
grams that appear in the free energy expansion, shown in
Figs. 3(b)–3(d). The diagrams (b) and (c), which contain
tadpoles, vanish in zero magnetic field and otherwise are
thermally activated. This is formally seen in Appendix A, and

easy to understand on physical grounds. A tadpole represents
an intraband process that must be thermally activated because
a fully occupied or empty band at zero temperature cannot
exhibit spin fluctuations needed for the Kondo interaction.

We will thus start with the most important diagram (d),
which is thermally activated in zero field, and finite at T = 0
when h �= 0. This diagram captures an interband process.
After a lengthy calculation presented in Appendix B, we find

F2d = niV × βJ2

�

(
mv

2π

)2d

× S2
d M1

(
0,

W

�

)

×2 + 3 cosh(βiλ) cosh(βh) + cosh(2βh)

[cosh(βiλ) + cosh(βh)]2 + O(e−β�).

(28)

We have introduced the effective mass m = �/v2 of particles
and holes, and grouped various factors by meaning. The
essential factor that reveals the nature of the second-order
perturbative process is β( j2/�), where j = J pd is the energy
gain of the Kondo coupling between a local moment and a
virtual particle-hole pair that intrinsically costs energy �. The
residual factor of β is eliminated in the free energy density g =
g0 − (kBT/V )F2, so the obtained second-order correction is
purely a quantum-mechanical shift of the ground state energy.
Thermally generated and activated terms have been neglected
here. The exact dependence of F2 on the cutoff energy scale
W in the factor M1 is tied to the high-energy dispersion of
electrons and holes; see Appendix B for details. Using a
more realistic nonrelativistic dispersion εk only changes the
definition of the momentum scale p that shapes the effective
Kondo energy scale j = J pd .

The full free energy is contributed also by the diagrams in
Figs. 3(b) and 3(c). With the gained insight, we can easily rule
out the diagram (b) as an important contributor at low temper-
atures because its mobile electron tadpole loops describe only
intraband virtual processes that must be thermally activated
or vanish in the absence of magnetic field. In contrast, the
diagram (c) contains a particle-hole bubble, which describes
interband virtual processes. Since particle-hole pairs can be
generated by the Kondo interaction even at zero temperature,
we ought to explicitly check this diagram; the calculation
presented in Appendix C shows that this diagram is thermally
activated after all.

In conclusion, quantum contributions to the free energy,
up to the second order of perturbation theory, come only
from (28). Using the Popov-Fedotov chemical potential iλ =
iπ/2β and (10), (11) we find the following second-order
corrections:

δg = −nikBT0

[
2 + 1

cosh2(βh)

]
+ O(e−β�),

δm = −2ni
T0

T

tanh(βh)

cosh2(βh)
+ O(e−β�), (29)

where we defined a temperature scale T0 by

kBT0 = S2
d M1

(
0,

W

�

)
× J2

�

(
mv

2π

)2d

. (30)

The intrinsic magnetization of local moments is linearly
suppressed at small fields by Kondo screening that involves
quantum fluctuations of virtual particle-hole pairs. However,
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W. T. FUHRMAN AND P. NIKOLIĆ PHYSICAL REVIEW B 101, 245118 (2020)

this correction fades away at large fields h > kBT in a ther-
mally activated fashion. Similarly, δm fades away in the limits
of both zero and infinite temperature when h is kept fixed.

3. Second-order corrections: Specific heat in zero field

The quantum contribution to free energy δg in (29) loses
temperature dependence in zero field and hence does not
provide a correction to specific heat. We must examine the
thermally activated terms O(e−β�) in order to find a second-
order correction to specific heat in zero field. To that end, we
go back to the diagram F2d shown in Fig. 3(d) and specialize
to the case h = 0. The other two second-order diagrams in
Figs. 3(b) and 3(c) have tadpoles and vanish in zero field.

A detailed calculation of the thermally activated correc-
tions to F2d is presented in Appendix D. The main conclusion
is that the corresponding specific heat correction behaves as

δc ≈ 2CnikB
kBT0

�
cosh(βμ) (β�)3− d

2 e−β� + O(e−2β�) (31)

in the low-temperature β� � 1 limit, and

δc ≈ 4nikB β2� kBT0[C1 − 6C2(β�)2 + · · · ]

in the high-temperature β� � 1 limit. In the first expression,
C is a constant and T0 is a Kondo temperature scale introduced
in (30). In the second expression, the constants C1 > 0 and C2

depend on the ratio W/� between the cutoff energy W and the
band gap �.

We see that δc ∝ T −2 exhibits an upturn as the temperature
is lowered from the high-temperature limit β� � 1. There-
fore, given its thermal activation at lowest temperatures, δc(T )
must have a peak at intermediate temperatures, in a manner
analogous to the Schottky anomaly, but here generated via the
Kondo coupling (T0 ∝ J2). The nature of the δc upturn evolves
and crosses over to a modified temperature dependence in
the intermediate regime β� ∼ 1. This is observed in the
experiment and described more accurately by (31); see Fig. 1.

IV. CONCLUSIONS AND DISCUSSION

We calculated magnetization and specific heat in a pro-
totype model of dilute magnetic impurity moments coupled
to delocalized electrons of a band insulator. We found that
magnetization receives quantum corrections at the second
order of perturbation theory due to virtual interband particle-
hole pairs that partially screen the impurities via Kondo effect.
In contrast, specific heat at zero magnetic field is always ther-
mally activated. We worked out the temperature and magnetic
field dependence of these quantities, paying special attention
to low- and high-temperature regimes.

Our model is designed to minimalistically describe the
physics of isolated magnetic impurities in Kondo insulators
and provide physical insight from tractable analytical calcula-
tions. This introduces idealizations and approximations which
spoil the quantitative accuracy and even the ability to capture
some minor qualitative features of realistic Kondo insulators.
Perhaps the most dramatic simplification is our treatment of
impurities as spin S = 1/2 moments, whereas in reality Gd
impurities in SmB6 have a large moment. Nevertheless, our
results agree with thermodynamic experiments [9] in crucial
ways. They reproduce the essential dependence of magnetiza-

tion and specific heat on the magnetic impurity concentration,
while qualitatively capturing and explaining the effective re-
duction of impurity moments and the low-temperature specific
heat upturn. This requires two channels for Kondo screening,
one associated with intrinsic and another with impurity bands.
Most importantly, our results for the two-channel Kondo
effect in insulators match the relative scaling δm, δc ∝ niJ2

of magnetization δm and specific heat δc corrections with the
Kondo coupling J and impurity concentration ni (extracted
from different samples [9]). The scaling of δm and δc is
mismatched in Kondo metals and different than the measured
one [9], so it indirectly reveals the character of low-energy
quasiparticles involved in the screening of local moments.

The comparison of our results to thermodynamic exper-
iments paints SmB6 as a true insulator despite some of its
metallic-looking features. However, the full spectrum of the
observed metallic behaviors in Kondo insulators remains mys-
terious — most notably, dHvA quantum oscillations featuring
a Lifshitz-Kosevich temperature dependence. This relates to
the nature of quasiparticles in Kondo insulators. In the fol-
lowing last section, we discuss the qualitative implications
of our findings for the nature of quasiparticles, and invite
further studies of a physical mechanism for the contribution
of impurity moments to quantum oscillations.

Relationship to dHvA quantum oscillations and other probes

Our results shed light on the low-temperature magnetiza-
tion and specific heat features in SmB6, which have been
viewed as potential evidence of charge-neutral excitations at
energy scales below the intrinsic gap. We identified magnetic
impurities as the major contributor to these excitations. Our
experiment [9] specifically scrutinized gadolinium impurities,
but one should also note that samarium vacancies can raise the
valence of SmB6 toward the magnetic Sm3+ valence and thus
lead to similar magnetic impurity effects as doped magnetic
rare earths. The question is now whether this helps us at all to
understand the puzzling dHvA quantum oscillations and other
probes.

We pointed out with scaling that magnetization and specific
heat behave in a manner more consistent with an insulator than
a metal. Our model does not require that the quasiparticles
implicated in Kondo screening be charged, but it agrees with
the experiment better if we assume that the quasiparticles are
gapped. If these quasiparticles are spinons, then the ground
state is a gapped spin liquid and it is difficult to explain the
observed Lifshitz-Kosevich temperature dependence of bulk
quantum oscillations in a wide temperature range [51,52]. So,
at least naively, our results are aligned with other experiments
[34,56,57,63,64] that rule out the existence of gapless excita-
tions in SmB6 at zero magnetic field — without contradicting
the possibility that a gapless spin liquid could be stabilized at
high fields.

Recent quantum oscillation and heat transport experiments
[88–90] paint YbB12, another Kondo insulator, as a more
promising candidate for a gapless spin liquid. This material
has many similarities to SmB6, but its f electrons are expected
to be more localized and correlated than those in SmB6.
The Lifshitz-Kosevich temperature dependence of dHvA os-
cillations [88,89], which extends to the lowest measured
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temperatures in YbB12 and indicates a Fermi surface, is
matched by the evidence of neutral gapless excitations in
transport measurements (unlike SmB6). Specific heat also
reveals the likely presence of gapless excitations [90], and
features an upturn at low temperatures as in SmB6. It would be
interesting to experimentally study the details of this upturn as
a function of impurity concentration, and determine whether it
can be understood as a result of Kondo screening in a metallic
rather than an insulating quasiparticle environment.

Magnetic impurities can contribute to dHvA quantum os-
cillations. The amount of Kondo screening sensitively de-
pends on the quasiparticle spectrum at broad energy scales;
the band gap �, the energy cutoff W , and the density of
quasiparticle states ρ all determine the response functions in
Kondo insulators, and the analogous facts for Kondo metals
have been well established [85]. An external magnetic field
that creates Landau orbitals also affects the spectrum at all
energy scales. Hence, the Landau quantization of quasiparticle
bands should have a significant impact on the amount of
Kondo screening. The oscillatory evolution of Landau orbitals
with the magnetic field (at any fixed energy) will generate
oscillations of the effective screened impurity moment via the
Kondo effect. The ensuing oscillating impurity magnetization
is a contribution to dHvA effect.

The relative amplitude of these magnetization oscillations
expressed as a fraction of the average impurity magnetization
is independent of the impurity concentration ni, but reflects the
strength of the extrinsic Kondo effect according to our model.
The total magnetization also has an intrinsic Van Vleck com-
ponent in SmB6, comparable to the impurity component (or
larger) only below ∼1% impurity concentrations in the high-
est saturating magnetic fields of our measurements [9]. There-
fore, depending on the amount of Kondo screening (which
is clearly visible in thermodynamics) and the concentration
of all effective magnetic impurities, the relative amplitude of
the impurity-based dHvA oscillations could be sizable (this
is a prerequisite for having an impact on the observed dHvA
effect [51,52]). Since Kondo screening is a quantum effect
even in an insulator, thermal activation is not required as in
some other prominent interpretations of quantum oscillations
[72–78]. In comparison to the spinon Fermi liquid interpreta-
tions [66,67,69,70], the relative dHvA oscillation amplitude of
impurities is not limited by the density of states in broadened
Landau orbitals; it can be effectively amplified via the new
Kondo scale j (which depends on the cutoff).

Further theoretical and experimental studies are needed to
obtain reliable estimates of the impurity Kondo temperature
and other parameters that enter Eq. (2). Only then will it be
possible to calculate the amplitude of quantum oscillations
contributed by Kondo impurities and compare its size and
temperature dependence with dHvA experiments. Magnetic
impurities are clearly important to some probes, and arise both
from dopants and vacancies (which are hard to quantify in
samples). Therefore, figuring out their impact on the dHvA
effect could be important for identifying the intrinsic part of
the puzzling quantum oscillations in Kondo insulators.
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APPENDIX A: FIRST-ORDER PERTURBATION THEORY

Here we outline the calculation of the first-order Feynman
diagram (22)

F1 = (−1)2 J

2β
(2δαβ ′δβα′ − δαα′δββ ′ )

∑
i

∑
ωn�n

∑
s

∫
dd k

(2π )d

×Gαα′ (s, k, ωn)Dii
ββ ′ (�n)Usk,sk (A1)

shown in Fig. 3(a). Since the electron propagator makes a
tadpole loop at the vertex, momentum and band conservation
reduces the vertex function (13) to the trivial form Usk,s′k′ →
1. We use the following identities to calculate the sums over
repeated spin indices:

δαα′ (2δαβ ′δβα′ − δαα′δββ ′ ) = 0,

σ z
αα′ (2δαβ ′δβα′ − δαα′δββ ′ ) = 2σ z

ββ ′ ,

σ z
αα′σ

z
ββ ′ (2δαβ ′δβα′ − δαα′δββ ′ ) = 2σ z

αα′σ
z
αα′ = 4. (A2)

The first identity together with (20) implies that any diagram
with a tadpole vanishes in zero field. Substituting these iden-
tities and (20) in (A1) gives us

F1 = JniV

2β

∑
σσ ′=±1

∑
s

∫
dd k

(2π )d

×
∑
ωn�n

σ

iωn − (Esk − μ − hσ )

σ ′

i�n − iλ + hσ ′ . (A3)

The summation over Matsubara frequencies is carried out by
the standard procedure. After a few straightforward steps we
arrive at

F1 = JβniV

2
tanh2

(
βh

2

)
1 − tanh2

(
βiλ
2

)
1 − tanh2

(
βiλ
2

)
tanh2

(
βh
2

)

×
∑

s

∫
dd k

(2π )d

1 − tanh2
( sβ

√
ε2

k+�2−βμ

2

)
1 − tanh2

( sβ
√

ε2
k+�2−βμ

2

)
tanh2

(
βh
2

) .

Using εk = vk allows us to easily introduce a dimensionless
energy ξ = β

√
ε2

k + �2 and rewrite momentum integrals as

∫
dd k

(2π )d
= Sd

(2πβv)d

∫ ∞

β�

dξ ξ [ξ 2 − (β�)2]
d
2 −1. (A4)
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After some trigonometric simplifications we arrive at

F1 = JβniV

2

Sd

(2πβv)d

sinh2(βh)

cosh(βh) + cosh(βiλ)

×
∑

s

∫ ∞

β�

dξ
ξ [ξ 2 − (β�)2]

d
2 −1

cosh(βh) + cosh(ξ − sβμ)

|h|��−−−→ Jη

2
niV

sinh2(βh)

cosh(βh) + cosh(βiλ)
. (A5)

The quantity η has the units of a density of states and behaves
thermally activated in the low-temperature limit β� � 1:

η = Sd�
(

d
2

)
(2β�)d/2

(2πβv)d
× 2β e−β� cosh(βμ). (A6)

η can be similarly approximated in the high-temperature limit
β� � 1.

Finally, in order to obtain the magnetization correction
written in (23), one has to substitute the Popov-Fedotov
chemical potential iλ = iπ/2β for localized electrons.

APPENDIX B: SECOND-ORDER PERTURBATION
THEORY: MAGNETIZATION, PART 1

Here we derive the second-order Feynman diagram shown
in Fig. 3(d):

F2d = (−1)2

2

(
J

2β

)2 ∑
i j

∑
ωnω

′
n

∑
�n

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d

× ei(k−k′ )(ri−r j )Usk,s′k′Us′k′,sk

× (
2δα1β

′
1
δβ1α

′
1
− δα1α

′
1
δβ1β

′
1

)(
2δα2β

′
2
δβ2α

′
2
− δα2α

′
2
δβ2β

′
2

)
× Gα1α

′
2
(s, k, ωn)Gα2α

′
1
(s′, k′, ω′

n)

× Di j
β1β

′
2
(�n)D ji

β2β
′
1
(�n + ωn − ω′

n). (B1)

The Green’s functions of mobile and localized electrons are
given by (20). The Kronecker symbol δαβ and the Pauli matrix
σ z

αβ in these formulas contract differently their spin indices
with the vertices, so we need the means to manage all the
terms generated by contractions. To that end, we introduce
four new summation variables τn = ±1 to represent the nu-
merators of the four Green’s functions in F2d :

δαα′ + σσ z
αα′ =

∑
τn=±1

[
1 + τn

2
δαα′ + 1 − τn

2
σσ z

αα′

]

in the order n = 1, 2, 3, 4 of their appearance in (B1). The
contraction of spin indices reduces to the following factor that
depends on τn:

S(τn) = 1

2

(
1 +

∏
n

τn

)[
2 + 3

2
(τ1 + τ2)(τ3 + τ4)

+ 5

2
(τ1+ τ3)(τ2+ τ4)− 3

2
(τ1 + τ4)(τ2 + τ3)

]
, (B2)

and we have

F2d = niV

512

(
J

2β

)2 ∑
τnσn

S(τn)
∑
ωnω

′
n

∑
�n

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d

× 1 + σ1 + (1 − σ1)τ1

iωn − (Esk − μ − σ1h)

1 + σ2 + (1 − σ2)τ2

iω′
n − (Es′k′ − μ − σ2h)

× 1 + σ3 + (1 − σ3)τ3

i�n − iλ + σ3h

1 + σ4 + (1 − σ4)τ4

i(�n + ωn − ω′
n) − iλ + σ4h

× (Usk,s′k′ )2. (B3)

The impurity site (i, j) summation is reduced to the number
Ni = niV of impurity sites in the volume V , and we applied
Usk,s′k′ = Us′k′,sk according to (13). This expression is ready
for the lengthy but straightforward summation over Matsubara
frequencies:∑

ωnω
′
n

∑
�n

1

iωn − (Esk − μ − σ1h)

1

iω′
n − (Es′k′ − μ − σ2h)

× 1

i�n − iλ + σ3h

1

i(�n + ωn − ω′
n) − iλ + σ4h

= β3

8

{
K1

2 cosh
(

β(σ3−σ4 )h
2

)
cosh

(
βiλ − β(σ3+σ4 )h

2

) + cosh
(

β(σ3−σ4 )h
2

)
− K2

(σ3 − σ4) sinh(βh)

cosh(βiλ) + cosh(βh)

}
(B4)

with

K1 = tanh
(

β(Esk−μ−σ1h)
2

) − tanh
(Es′k−μ−σ2h

2

)
Esk − Es′k′ − (σ1 − σ2 + σ3 − σ4)h

,

K2 = 1 − tanh
(

β(Esk−μ−σ1h)
2

)
tanh

(Es′k−μ−σ2h
2

)
Esk − Es′k′ − (σ1 − σ2 + σ3 − σ4)h

. (B5)

Next, we will sum over the band indices s, s′. For this, we need
to scrutinize the vertex function Uss′ (k, k′) ≡ Usk,s′k′ in (13).
One can show that for every k, k′,

Uss′ (k, k′) = ss′Us′s(k, k′), (U++)2 + (U−+)2 = 1,

implying

Uss′ = uδss′ + s
√

1 − u2(1 − δss′ ),

(Uss′ )2 = u2δss′ + (1 − u2)(1 − δss′ ). (B6)

The residual function u(k, k′) will be expressed later in a
conveniently rescaled form. To sum over s, s′ in (B3), we must
combine the vertex function with the s, s′-dependent factors
(B5) obtained in frequency summations (B4):

Q1 =
∑
ss′

K1[u2δss′ + (1 − u2)(1 − δss′ )]

= 4(ξ + ξ ′)(1 − u2)

(ξ + ξ ′)2 − (σ1 − σ2 + σ3 − σ4)2(βh)2
+ O(e−β�),

Q2 =
∑
ss′

K2[u2δss′ + (1 − u2)(1 − δss′ )]

= 4βh(σ1 − σ2 + σ3 − σ4)(1 − u2)

(ξ + ξ ′)2 − (σ1 − σ2 + σ3 − σ4)2(βh)2
+ O(e−β�).

(B7)

We introduced dimensionless energies ξ = β
√

ε2
k + �2 and

ξ ′ = β
√

ε2
k′ + �2 to replace momenta k and k′.
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For now, we systematically neglect all thermally acti-
vated terms by expanding in powers of 1 − tanh(ξ/2) ∼ 1 −
tanh(ξ ′/2) ∼ e−β�, noting that ξ, ξ ′ > β� � 1. Essentially,
the intraband Kondo scattering (proportional to u2) is ther-
mally activated, but interband Kondo scattering (proportional
to 1 − u2) is not. Also, cosh(βμ) is negligible next to cosh(ξ )
or cosh(ξ ′) when � � |μ|.

Now, we are ready to integrate out momenta. We will
benefit from changing the momentum integration variables
into x, y, where β�(1 + x) = (ξ + ξ ′)/2 and 2β�y = ξ − ξ ′.
The integrals expressed in terms of x, y will be temperature-
independent, and will isolate well their dependence on mag-
netic field h. Their ultraviolet divergence will be controlled by
the effective bandwidth W . We have

∫
dd k

(2π )d

dd k′

(2π )d
Q1/2 = 8S2

d

β�

(
mv

2π

)2d

M1/2

(
(σ1 − σ2 + σ3 − σ4)

h

2�
,

W

�

)
+ O(e−β�), (B8)

where the functions M1 and M2 are dimensionless integrals:

Mi(χ,w) =
∫ w

0
dx

∫ x

0
dy{(x2 − y2)[(x + 2)2 − y2]} d

2 −1 (x + 1)2 − y2

(x + 1)2 − χ2
(1 − u2)[(x + 1)δi,1 + χδi,2] (B9)

with

u(x, y) = 1

4

1√
(x + 1)2 − y2

4 + (
√

x + y − √
x + y + 2)2(

√
x − y − √

x − y + 2)2

(
√

x + y − √
x + y + 2)(

√
x − y − √

x − y + 2)
. (B10)

We will not need the values of Mi, except

M1(0,w)
w�1−−→ w3

9
in d = 3. (B11)

Putting everything together into (B3) and writing compactly χ = (σ1 − σ2 + σ3 − σ4)h/2�, we obtain

F2d = niV β4

512

(
J

2β

)2 ∑
τnσn

S(τn)
∏

n

[1 + σn + (1 − σn)τn]
S2

d

β�

(
mv

2π

)2d[
− (σ3 − σ4) sinh(βh) M2

(
χ, W

�

)
cosh(βiλ) + cosh(βh)

+ 2 cosh
(

β(τ3−τ4 )h
2

)
M1

(
χ, W

�

)
cosh

(
βiλ − β(τ3+τ4 )h

2

) + cosh
(

β(τ3−τ4 )h
2

)]
+ · · ·

up to the thermally activated terms (· · · ). Finally, we sum over σn and τn to obtain a relatively simple expression written in the
main text (28):

F2d = niV × βJ2

�

(
mv

2π

)2d

× S2
d M1

(
0,

W

�

)
2 + 3 cosh(βiλ) cosh(βh) + cosh(2βh)

[cosh(βiλ) + cosh(βh)]2 + O(e−β�). (B12)

APPENDIX C: SECOND-ORDER PERTURBATION
THEORY: MAGNETIZATION, PART 2

Here we show that the second-order Feynman diagram in
Fig. 3(c) is thermally activated. It is immediately evident that
this diagram vanishes in zero field due to its tadpoles. The
initial formula for this diagram is

F2c = (−1)3

2

(
J

2β

)2 ∑
i j

∑
�n�

′
n

∑
ωn

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d

× ei(k−k′ )(ri−r j )Usk,s′k′Us′k′,sk

× (
2δα1β

′
1
δβ1α

′
1
− δα1α

′
1
δβ1β

′
1

)(
2δα2β

′
2
δβ2α

′
2
− δα2α

′
2
δβ2β

′
2

)
× Gα1α

′
2
(s, k, ωn)Gα2α

′
1
(s′, k′, ωn)

× Dii
β1β

′
1
(�n)D j j

β2β
′
2
(�′

n). (C1)

We will first contract all spin indices. After some manipula-
tions, we arrive at

F2c = −1

2

(
J

2β

)2 ∑
i j

∑
ωn

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d

×ei(k−k′ )(ri−r j )Usk,s′k′Us′k′,sk

×
(∑

σ

1

iωn− (Esk − μ − hσ )

1

iωn− (Es′k′− μ− hσ )

)

×
(∑

�n

∑
σ=±1

σ

i�n − iλ + hσ

)2

. (C2)
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Summing up Matsubara frequencies yields

F2c =
(

J

2β

)2
β3

16

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d

∑
i j

ei(k−k′ )(ri−r j )

×
(
Usk,s′k′

)2

Esk − Es′k′

[
2 sinh(βh)

cosh(βiλ) + cosh(βh)

]2

×
[

2 sinh[β(Esk − μ)]

cosh[β(Esk − μ)] + cosh(βh)

− 2 sinh[β(Es′k′ − μ)]

cosh[β(Es′k′ − μ)] + cosh(βh)

]
. (C3)

This diagram involves a nontrivial summation over the impu-
rity positions ri. Diagrams of this kind can generate RKKY-
type interactions between proximate local moments. The sum-
mation over ri and r j is equivalent to the summation over
r̄ = 1

2 (ri + r j ) and δr = ri − r j . In a particular realization
of impurity disorder, the impurity sites ri are randomly scat-
tered with some average spatial separation a. However, the
distribution of δr is expected to significantly and broadly
extend below |δr| < a because there are many neighboring
impurities separated by arbitrarily short distances on the scale
of the entire sample. Assuming that impurity locations are not
mutually correlated, the translationally invariant distribution
of δr allows us to treat it as a continuous uniform random
variable (it gets averaged over the entire system volume).
Therefore, we may approximate∑

i j

ei(k−k′ )(ri−r j ) ≈
∑

r̄

1

ad

∫
ddδr ei(k−k′ )δr

= Ni

ad
(2π )dδ(k − k′) = niV

ad
(2π )dδ(k − k′)

= xsn2
i V × (2π )dδ(k − k′), (C4)

where Ni = niV ∼ V/ad is the total number of impurities.
Once k′ becomes equal to k, the vertex function Usk,s′k′ →

δss′ becomes trivial and forces the two electron propagators to
carry the same band index. However, we must take the limit
k′ → k and s′ = s carefully because the integrand of (C3)
becomes singular:

lim
k′→k

2 sinh[β(Esk−μ)]
cosh[β(Esk−μ)]+cosh(βh) − 2 sinh[β(Esk′ −μ)]

cosh[β(Esk′ −μ)]+cosh(βh)

Esk − Esk′

= ∂

∂E

2 sinh[β(E − μ)]

cosh[β(E − μ)] + cosh(βh)

∣∣∣∣
E=Esk

= 2β
1 + cosh[β(Esk − μ)] cosh(βh)

{cosh[β(Esk − μ)] + cosh(βh)}2
. (C5)

Resolving the singularity this way and then integrating disor-
der is physically motivated because the distribution of δr is

infrared cut off by the system size, just like the quantized val-
ues of momentum k. We should obtain some thermodynamic
effect from very small |k′ − k|, as captured here. We now have

F2c = n2
i V β4

8

(
J

2β

)2[ 2 sinh(βh)

cosh(βiλ) + cosh(βh)

]2

×
∑

s

∫
dd k

(2π )d

1 + cosh[β(Esk − μ)] cosh(βh)

{cosh[β(Esk − μ)] + cosh(βh)}2

= O(e−β�). (C6)

There is no need to calculate any further because this diagram
is clearly thermally activated: β|Esk| � β� � 1 makes the
denominator with cosh[β(Esk − μ)] exponentially large at
any magnetic field |h| � �. Also, physically, no particle-hole
processes remain after impurity-position summation.

APPENDIX D: SECOND-ORDER PERTURBATION
THEORY: SPECIFIC HEAT IN ZERO FIELD

Here we calculate the thermally activated corrections to the
diagram shown in Fig. 3(d), specializing to the zero magnetic
field h = 0. The calculation in h = 0 is considerably simpler
because the Green’s functions (20) reduce to

Gαα′ (s, k, ωn) = δαα′

iωn − (Esk − μ)
,

Di j
ββ ′ (�n) = δββ ′δi j

i�n − iλ
. (D1)

Substituting in (B1) and using the first spin-index identity of
(A2) quickly gives us

F2d = 3

2

(
J

β

)2

niV
∑
ωnω

′
n

∑
�n

∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d

×Usk,s′k′Us′k′,sk
1

iωn − (Esk − μ)

1

iω′
n − (Es′k′ − μ)

× 1

i(�n − λ)

1

i(�n + ωn − ω′
n − λ)

. (D2)

Summing up the Matsubara frequencies results in an expres-
sion analogous to (B4) and (B5):

F2d = 3

16

βJ2niV

cosh2
(

βiλ
2

) ∑
ss′

∫
dd k

(2π )d

dd k′

(2π )d
(Usk,s′k′ )2K1 (D3)

with

K1 = tanh
(

β(Esk−μ)
2

) − tanh
(

β(Es′k′ −μ)
2

)
Esk − Es′k′

. (D4)

The following steps are also similar to the analysis of
Appendix B, but depart from it by scrutinizing the thermally
activated terms. Expressing the vertex function as (B6), we
carry out the summation over band indices exactly in the
above formula:

Q1 =
∑
ss′

K1[u2δss′ + (1 − u2)(1 − δss′ )] = u2

ξ − ξ ′

[
2 sinh(ξ )

cosh(βμ) + cosh(ξ )
− 2 sinh(ξ ′)

cosh(βμ) + cosh(ξ ′)

]

+ 1 − u2

ξ + ξ ′

[
2 sinh(ξ )

cosh(βμ) + cosh(ξ )
+ 2 sinh(ξ ′)

cosh(βμ) + cosh(ξ ′)

]
, (D5)
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where ξ = β
√

ε2
k + �2 and ξ ′ = β

√
ε2

k′ + �2. From this point on, we will separately consider the low-temperature β� � 1
and high-temperature β� � 1 limits; both are accessible in perturbation theory when the energy scale J2(mv/2π )2d/� is small
enough.

In the low-temperature regime, we can approximate sinh(ξ ) ≈ cosh(ξ ) ≈ 1
2 eξ because ξ > β� � 1. This leads to

Q1 = Q(0)
1 − 4 cosh(βμ)

[
u2 e−ξ − e−ξ ′

ξ − ξ ′ + (1 − u2)
e−ξ + e−ξ ′

ξ + ξ ′

]
+ O(e−2β�), (D6)

where Q(0)
1 is the nonthermally activated part that we dealt with in Appendix B. Substituting in (D3) yields

F2d = F (0)
2d + niV

cosh2
(

βiλ
2

) βJ2

�

(
mv

2π

)2d

e−β� cosh(βμ)M ′
(

W

�
,β�

)
+ O(e−2β�), (D7)

where

M ′(w, β�) = 3S2
d

2

∫ w

0
dx

∫ x

0
dy[(x + 1)2 − y2][(x + y)(x + y + 2)]

d
2 −1[(x − y)(x − y + 2)]

d
2 −1

× e−β�x

[
u2 sinh(β�y)

y
− (1 − u2)

cosh(β�y)

x + 1

]
(D8)

is expressed using the dimensionless variables x, y defined by β�(1 + x) = (ξ + ξ ′)/2 and 2β�y = ξ − ξ ′, which we
introduced in the previous section. The quantum term F (0)

2d is given by (28) in h = 0 and does not contribute to specific heat. We
must understand the temperature dependence of M ′. Crudely, the divergent part of the integral involving x → w near the cutoff
is dominated by y ≈ x, because for y < x the factors e−β�(x−y) that approximate the sinh, cosh factors become exponentially
suppressed. Thus, we can substitute y → x almost everywhere in the integral except inside sinh, cosh and one factor of x − y.
The resulting approximation is

M ′(w, β�) ≈ 3S2
d

4
8

d
2 −1

∫ w

0
dx e−β�x(2x + 1)[x(x + 1)]

d
2 −1

(
u2

x
− 1 − u2

x + 1

)∣∣∣∣
y=x

× Iy (D9)

with

Iy =
∫ x

0
dy[(x − y)]

d
2 −1eβ�y = eβ�x

(β�)
d
2

∫ β�x

0
dt t

d
2 −1e−t β�x�1−−−−→ eβ�x

(β�)
d
2

�

(
d

2

)
. (D10)

The remaining integration over x is temperature-independent, so we conclude

F2d ≈ F (0)
2d + C niV βkBT0

cosh2
(

βiλ
2

) cosh(βμ)
e−β�

(β�)
d
2

+ O(e−2β�), (D11)

where C is a constant and T0 is a Kondo temperature scale
introduced in (30). It follows that (iλ = iπ/2β)

δg = δg(0) − 2CnikBT0 cosh(βμ)
e−β�

(β�)
d
2

+ O(e−2β�),

δc = 2CnikB
kBT0

�
cosh(βμ) (β�)3− d

2 e−β� + O(e−2β�)

in the low-temperature β� � 1 limit.
Next, we analyze the high-temperature limit. For simplic-

ity, we will take cosh(βμ) ≈ 1 and then expand (D5) in
powers of β� � 1:

Q1 ≈ 2u2 tanh
(

ξ

2

) − tanh
(

ξ ′
2

)
ξ − ξ ′

+ 2(1 − u2)
tanh

(
ξ

2

) + tanh
(

ξ ′
2

)
ξ + ξ ′

= 1 − (β�)2

12
[(x + 1)2(2u2 + 1) + y2(3 − 2u2)] + · · · .

(D12)

Since x is integrated out up to w = W/�, where W is the
bandwidth, this expansion is actually in powers of βW —
which we assume to be small. The ensuing condition T � �

is the only path available in the present insulating model
toward a specific heat that exhibits a Schottky-like upturn
when temperature is reduced over a certain range, as seen in
the experiments on SmB6. This forces us to interpret carefully
the meaning of the gap �, given that the upturn is sometimes
seen down to milikelvin temperatures. An interpretation of our
results and experiments is discussed in the introduction; here,
we simply finish presenting the derivations. Substituting Q1

into F2d yields

F2d ≈ niV β2� kBT0

cosh2
(

βiλ
2

) [C1 − C2(β�)2 + · · · ], (D13)

and then (iλ = iπ/2β)

δg ≈ −2ni β� kBT0[C1 − C2(β�)2 + · · · ],

δc ≈ 4nikB β2� kBT0[C1 − 6C2(β�)2 + · · · ].

The constants C1 > 0 and C2 depend on W/�.
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