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Detection of topological materials with machine learning
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Databases compiled using ab initio and symmetry-based calculations now contain tens of thousands of
topological insulators and topological semimetals. This makes the application of modern machine learning
methods to topological materials possible. Using gradient boosted trees, we show how to construct a machine
learning model which can predict the topology of a given existent material with an accuracy of 90%. Such
predictions are orders of magnitude faster than actual ab initio calculations. We use machine learning models
to probe how different material properties affect topological features. Notably, we observe that topology is
mostly determined by the “coarse-grained” chemical composition and crystal symmetry and depends little on
the particular positions of atoms in the crystal lattice. We identify the sources of our model’s errors and we
discuss approaches to overcome them.
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I. INTRODUCTION

Topological insulators (TIs) and topological semimetals
(TSMs) are solid-state systems which exhibit robust edge or
surface modes and quantized bulk response functions due to
the topological properties of their electronic wave functions
[1,2]. Since the first prediction of TIs in the form of the
two-dimensional quantum spin Hall effect [3–5], the field of
topological materials has seen remarkable advances. Recently
introduced theoretical methods [6–8] have allowed for the
large-scale discovery of topological materials.

In particular, the theory of topological quantum chemistry
[6] (TQC) provides a unified framework for the treatment
of all topological phases arising from crystalline symmetries.
TQC relies on the notion of elementary band representations
(EBRs), which enumerate a basis for all electronic bands
induced from atomic orbitals (atomic limits), and compatibil-
ity relations, constraining how bands can connect across the
Brillouin zone.

A set of valence bands which cannot be decomposed as
a sum of EBRs makes a material into a strong TI. A TSM
is characterized by a set of bands below the Fermi level
which does not satisfy the compatibility relations and can
therefore not be separated from other bands. While TQC can
also fully describe so-called fragile topology [9,10] (which
can be removed by the addition of topologically trivial bands)
and polarization topology [11] (as occurs in the celebrated Su-
Schrieffer-Heeger model [12]), in this paper we will focus on
strong topology protected by crystal symmetries and dictated
by the symmetry eigenvalues at high-symmetry points in the
Brillouin zone. Strong topology is, for the purposes of this
paper, defined as the topology that is stable to the addition of
any atomic limits.

Applying the theory of TQC to the output of ab initio calcu-
lations, typically density functional theory [13,14] (DFT), on
databases of experimentally determined and/or theoretically

predicted crystal structures in an automated fashion, large
catalogs of topological materials [15–18] have been compiled.
These efforts showed that, far from an isolated phenomenon,
topology is ubiquitous: At least 30–40% of known stoichio-
metric materials have some nontrivial topological features
[15].

The availability of these datasets, containing tens of thou-
sands of materials, opens the door to modern machine learning
(ML) methods [19]. The hope is to bypass the complex,
multistep computation necessary to determine the topology
of a given material by an empirical, statistical model. In
particular, such a model could potentially predict the topo-
logical features of a material several orders of magnitude
faster. Furthermore, a ML model can infer which quantities
decide the topology of a material and possibly offer hints
on their role, while ab initio calculations are very hard to
interpret.

In the present paper, we show how to construct a ML model
which can predict the DFT-computed topology of a given
material with an accuracy of almost 90%, based on the dataset
of Ref. [20]. Our paper is part of the existing body of research
on replacing or accelerating DFT by ML methods [21,22].
Yet, it differs from most of this literature, as we do not search
to predict “energetic” quantities like the formation energy
or the bulk modulus, but an intrinsically quantum property
derived from the wave function.

We provide online (see Ref. [23]) a fast and efficient tool
to predict the possible topological nature of a given material.
Beyond the ML model itself, our results include an analysis
of various crystal properties with respect to their relevance
for the prediction of the electronic topology. We use machine
learning models to probe how and how strongly different
material properties affect topological features. We find that the
model performance saturates at a small number of properties
the impact of which on the topology we show via a simplified
model. In particular, information about the positions of atoms
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in the crystal lattice does not allow for better predictions,
within the limitations of our type of ML model.

This paper falls under the ML paradigm known as super-
vised learning [19]. The goal is to infer a functional relation-
ship f : x �→ y based on a collection of N examples {(xi, yi =
f (xi ))}i=1,...,N which form a so-called sample. A member i
of the sample is called a sample point. Among a class of
functions, we numerically search for the one which bears the
greatest resemblance to f when evaluated on the sample, as
measured by the so-called loss function. This procedure is
called training. What sets ML apart from traditional fitting
are the large number sample size N and efficient numerical
training algorithms, permitting much more complex classes
of models.

This paper is organized as follows: First, we discuss in
more detail the dataset on which we rely and the ML method-
ology which we apply. Next, we address the unique challenges
which crystal structures pose in the context of ML. We present
our model for the prediction of a material’s topology and
analyze its performance according to different metrics. We use
a simplified model to shed light on how the ML model arrives
at its predictions and analyze the reasons behind the model’s
errors. Finally, we highlight obstacles to more sophisticated
approaches and discuss our results.

II. RESULTS

A. Dataset

This paper is based on a large catalog of topological
materials which was compiled in Ref. [20] and which is
accessible online (see Ref. [24]). First-principles calculations,
using DFT as implemented in the Vienna Ab-Initio Simulation
Package [25], were carried out for 70020 impurity free, crys-
talline materials selected from the Inorganic Crystal Structure
Database (ICSD) [26]. This analysis used nearly 20 × 106

CPU hours. Applying the theory of TQC to the results of the
ab initio calculation, materials were grouped into five broad
categories [20]: insulators with trivial topology (49.5% of the
materials in the database); trivial insulators, also referred to as
linear combination of EBRs (LCEBR), two types of TIs called
Not a Linear Combination of EBRs (NLC) (6.5%) and Split
EBR (SEBR) type (7%); and two types of TSMs, Enforced
Semimetals (ES, 10% of the dataset) and Enforced Semimetal
with Fermi Degeneracy (ESFD, 27%). The bands of an NLC-
type insulator cannot be written as a linear combination of
EBRs or parts of an EBR, whereas in SEBRs there exists an
EBR which is energetically split into two bands, of which
only one is occupied. A TSM is an ESFD when there is a
high-symmetry point degeneracy at the Fermi level and an ES
if the degeneracy is away from the high-symmetry points [15].

Each material is described by its stoichiometric formula,
a space group (SG), a unit cell, and the positions of the
atoms therein. Many ICSD entries are very similar to each
other, describing, for example, different measurements (e.g.,
at different temperatures) of the same material. All in all,
the unique combinations of SG and stoichiometric formula
make up only 50% of the database—the other materials are
“duplicates.” In 98% of cases, two materials exhibiting the
same stoichiometry and SG also have the same topological

classification. Exceptions are mostly due to the instability
of DFT calculations (when a small change in the atomic
fractional coordinates changes the topological class), or to
extreme changes in the environmental conditions (such as
ICSD entries describing high-pressure measurements). For the
purpose of this paper, we therefore group materials into equiv-
alence classes with the same stoichiometry and space group
and select only one representative from each group. Thus, the
effective size of our dataset is 35 009 instead of 70 020.

The materials in our dataset cover a wide range of com-
plexity, one measure being the number of atoms per prim-
itive unit cell (ranging from 1 to 60), belonging to 215 of
the 230 different space groups and containing 92 different
chemical elements. Figure 1 plots the frequency of TIs among
compounds containing a given element. Thanks to the large
number of materials in the database, we can put heuristics
for the chemistry of topological materials [2] on a statistically
solid basis.

B. Classification models

In supervised learning, a classification model is trained by
minimizing its prediction error on a sample for which the class
of each sample point is known [19]. Such a model is often
called a classifier. We refer to a sample point’s class as its
true label, in contrast to the output of the predictive model,
the predicted label.

To evaluate a model after training, we test it by predicting
the labels for a second sample or test set which was not used
during the training process. A detailed description of our test-
ing procedure is given in Appendix A. In particular, the scores
reported in the body of this paper are computed using tenfold
cross validation, where the sample is repeatedly (a total of ten
times) split into testing and training sets in different ways.
Averaging over the scores eliminates the arbitrariness in the
choice of the test set.

One measure of the quality of predictions on a given
test set is the accuracy, the fraction of sample points which
are classified correctly. When the dataset is imbalanced (i.e.,
classes are not equally frequent) the accuracy can, however,
be misleading. It should be be compared to a naive base-
line model which always predicts the most frequent class—
in our case, the baseline accuracy is 49.5%, i.e., the per-
centage of trivial insulators. To define additional measures,
consider a binary classifier (which distinguishes only two
labels, positive/negative). For binary prediction, four cases
can occur, as illustrated in Table I.

One defines the following quantities:

Precision = True Positives

True Positives + False Positives
(1)

Recall = True Positives

True Positives + False Negatives
(2)

F1 = 2 × Precision × Recall

Precision + Recall
(3)

Precision measures the reliability of a classifier’s positive
predictions and recall measures its ability to find all the true
positive sample points. The F1 score is the harmonic mean of
these two quantities.
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FIG. 1. Chemical composition of TIs (both NLC and SEBR classes). Displayed is the frequency of TIs among compounds containing a
given element, which can be interpreted as the conditional probability of a material to be a TI, given that it contains a certain element (the
probability is provided by the color scale above). This figure shows that not only heavy elements with strong spin-orbit coupling are capable
of forming TIs. Elements forming ionic compounds rarely yield TIs, as their conduction and valence band are formed from different atomic
orbitals, making band inversion [5] unlikely. The alternating pattern among the rare earths could be due to the possibility/impossibility of fully
filled f -electron bands whenever the number of f electrons is even/odd. However, as f electrons do not typically form dispersive bands [27],
this is likely an artifact of DFT.

If a classifier outputs the probability to belong to a class
instead of a mere label, precision can be traded for recall and
vice versa by changing the threshold probability after which a
sample is classified as positive, yielding the precision-recall
curve. When there are more than two classes, there is a
precision, recall, and F1 score for each class, characterizing a
model’s ability to distinguish a specific class from all others.
In this paper, we largely used the F1 score as it provides a
single score, largely independent of the choice of threshold,
making the comparison between two models straightforward.

In this paper, the models are constructed using the gradient
boosted trees (GBTs) algorithm [28] which is based on deci-
sion trees (see Fig. 2 for an example). In the ML community,
GBT is one of the preferred tools for “tabular” datasets (those
with no underlying spatial or temporal structure, in contrast to
images or sounds) such as ours. GBT needs no underlying
metric to measure the distance between two datapoints (in

TABLE I. The error or confusion matrix, indicating the different
types of errors of a binary classifier.

Predicted label Predicted label
positive negative

True label positive True positive False negative
True label negative False positive True negative

contrast to a nearest-neighbor classifier, for example) and can
therefore naturally deal with situations such as ours where
no such metric is available. We empirically tested our GBT
model against several other common ML classifiers (random
forests, k nearest-neighbor classifiers, linear and Gaussian
support vector classifiers [29], as well as a fully connected
neural network with dropout regularization) and found it to
be superior. The best alternative model, a random forest (also
based on decision trees), obtains F1 scores of 91, 67, and 90%
for LCEBRs, TIs, and TSMs, respectively (see Table II).

GBT is a special case of the boosting technique: Instead of
training a single, very complex classifier (a so-called strong
classifier), boosting linearly combines the predictions of many
simple or weak ones. Such a combination or ensemble [30] of
weak classifiers is expected to have a lower tendency to overfit
[19]. In the case of GBT, these classifiers are trees. A weak
decision tree is one which has only a small number of nodes.
When training a GBT model, one begins by constructing a
single tree. Trees are then added iteratively to the model. Each
new tree is constructed to correct the error of the existing
model. The technical implementation of the GBT model is
described in Appendix B.

C. Representation of crystals for ML

Standard ML algorithms like the decision trees of Sec. II B
operate on real vectors of a fixed dimension d . Each com-
ponent of such a vector is referred to as a feature. To apply
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FIG. 2. Example of a decision tree. A decision tree recursively splits the dataset according to a set of binary questions. The depth of the
tree is the number of sequential questions it poses (here, two questions), and measures its complexity. In the example, a tree with depth 2
cannot perfectly separate tori from spheres but already provides a fairly good classification. Each node of the tree corresponds to a region in
the space (here, spanned by x and y) of input features, the leftmost node corresponding to the entire space. When constructing a decision tree
to classify a sample, the tree is built by recursively adding questions in a left-to-right fashion. At each step, the question which maximizes the
information gain about the prediction target at each node is chosen.

ML models to the classification of crystalline materials, a map
taking crystals to real vectors must be chosen. The choice of
this descriptor is a nontrivial problem the solution of which
is crucial for the success of a predictive model. For example,
clearly the descriptor must be independent of the choice of the
unit cell and the labeling of a material’s constituent atoms. In
particular for small sample sizes, the descriptor should also
make use of our understanding of chemistry and physics:
Elements from the same column in the periodic table are
known to be chemically similar. All the while, the dimension
d should remain reasonable as the effectiveness of ML models
tends to decrease in high dimensions [19]. A large number of
descriptors for different applications, e.g., organic chemistry,
have been described in the literature [22,31–36]. Recent works
[37–39] have also proposed neural network architectures tai-
lored specifically to molecules and crystals.

In this paper we adopt an approach which we dub
single-atom statistics, which has previously been proposed in
Ref. [40] and used, for instance, in Ref. [41] to predict the

critical temperature of superconductors. Single-atom statistics
is based on a compound’s stoichiometric formula. Each of
a crystal’s constituent atoms is described by a number of
physical and chemical single-atom properties, for example,
the number of s-shell electrons or the mass. The properties
are concatenated to form a vector Xi for each atom i. To derive
the descriptor value for an entire crystal, we calculate statistics
over all Natom atoms in a unit cell like the mean or the standard
deviation:

Mean[X] := 1

Natom

∑
i∈atoms

Xi, (4)

Std[X] := 1

Natom

∑
i∈atoms

(Xi − Mean[X])2. (5)

The advantage over a direct encoding of a compound’s sto-
ichiometric formula is that we can leverage our knowledge
of the physically relevant properties. Let us illustrate this by
an example. Elements from the same column in the periodic

TABLE II. Performance of GBT models as measured by the F1 score and accuracy (Acc.). The accuracy should be compared to the baseline
of 49.5%. We display the mean and in brackets the standard deviation of tenfold cross-validated scores (see Appendix A). The models differ
by the descriptor used to represent materials, defined in column 2. Details on the encoding of Ne and SG are given in Appendix D. d is the total
number of properties included in the descriptor.

Acc. F1 Triv. F1 TI F1 TSM
Model Descriptor d (%) (%) (%) (%)

Full model (FM) SG, Ne, spdf +, number of atoms from
each periodic table row, and column

49 89.7(5) 94.0(3) 70(1) 92.0(5)

FM + Non-SOC Features used by FM and topological
classification of material obtained by
DFT without SOC

50 92.0(3) 96.5(2) 77(1) 93.3(4)

Baseline model SG, Ne, and baseline descriptor
(number of atoms from each element
in the stoichiometric formula)

94 86.0(5) 92.5(5) 67(1) 91.0(5)

spdf + model SG, Ne, and spdf + features 10 87.7(5) 93.0(5) 69(1) 92.0(5)
FM + nearest neighbor Features used by FM and

nearest-neighbor difference features
[42], defined in Sec. II C

184 89.0(5) 94.0(3) 69(3) 92.0(5)

FM without SG Ne, spdf +, number of atoms from each
periodic table row, and column

48 84.0(5) 91.5(3) 57(2) 86(1)

245117-4



DETECTION OF TOPOLOGICAL MATERIALS WITH … PHYSICAL REVIEW B 101, 245117 (2020)

table are very similar. If we encode the stoichiometric formula
directly, replacing an atom in a compound by an atom of a
different element of the same column, the encoding vector
changes completely. If we use the periodic table column as
a descriptor, then the descriptor does not change. Thus, chem-
ically similar substances are represented by nearby vectors,
which makes it easier for a machine learning algorithm to
infer patterns. Of course, more than one property has to be
used, or very different materials might be represented by the
same vector.

To validate this approach, we will compare single-atom
statistics to a direct encoding of the stoichiometric formula,
which we call the baseline descriptor. It consists of a 92-
dimensional vector. There are 92 different elements in our
dataset, and the ith entry equals the fraction of atoms of
element i in a compound. For example, NaCl corresponds to
the vector 1

2 e11 + 1
2 e17 (Na is element number 11, Cl number

17) and, in general, a compound of the form XmYn corresponds
to the vector m

m+n eX + n
m+n eY .

In addition to single-atom statistics, we describe crystals by
a number of global properties like their space group, which
pertain to the compound as a whole. Our approach does not
take the numeric positions of atoms in the crystal into account.

To decide which single-atom and global properties should
be included in our descriptor we began with several hun-
dred physically and chemically motivated quantities, listed in
Appendix C. We carried out extensive testing to recursively
eliminate irrelevant features. At each testing step, we selected
one property and temporarily removed it from the descriptor.
If the performance (as measured by the F1 scores for the
three classes trivial, TI, and TSM) did not drop, the property
was permanently deleted from the descriptor, else it was re-
tained. Using this procedure we have extracted those features,
discussed below, which are relevant for the prediction of a
material’s topology. A list of the irrelevant features is given
in Table VI.

The filtering is essential: Indeed, the inclusion of irrelevant
features in the descriptor will both decrease the the quality of
a predictive model (due to the chance of spurious correlations
between an irrelevant feature and the prediction target) and
make its interpretation more difficult. We retained a final test
set, not used during the filtering, to verify that the filtering did
not lead to overfitting (i.e., that the selected properties work
only on the sample used to select them—see Appendix A).

The relevant global properties which we have identified
are the SG, deciding which type of topology protected by
crystalline symmetry is possible [6], and the number of elec-
trons per unit cell (Ne), deciding whether bands in certain
space groups are necessarily completely filled or not. For
example, in time-reversal symmetric crystals, the Kramers
degeneracy implies that a compound with odd Ne is nec-
essarily a semimetal [15]. Appendix D describes in detail
how these properties enter the descriptor map. Among the
single-atom properties, the most relevant ones are the mean
number of s-, p-, d-, and f -shell valence electrons and the
mean and standard deviation [as defined in Eq. (5)] of the
atom’s row and column number in the periodic table. For
example, NaCl has one atom from columns 1 and 31 each,
giving a mean column number of 16 and a standard deviation
of 15. We will refer to this collection of eight features (mean

number of s, p, d, f , mean, and variance of column and
row number) as spdf +. Finally, the number of atoms in a
compound from each column and row in the periodic table
is relevant. As an example, half of the atoms in NaCl are in
column 1 and 32, respectively, so the column fractions would
be represented by the vector 1

2 e1 + 1
2 e32, where ei is the ith

unit vector.
To include the numeric positions of atoms in a descriptor

we used a technique described in Refs. [42–44]. It calcu-
lates differences in single-atom quantities between nearest
neighbors, weighted by the boundary area shared by two
neighbors (computed using the Voronoi tessellation [44]).
An example is the mean difference in electronegativity of
neighboring atoms. However, none of these features, to which
we refer as “nearest-neighbor differences,” proved relevant to
our classification problem, as shown by Table II . This finding
is consistent with the fact that two ICSD entries with the
same stoichiometric formula and SG, but possibly differing
atom positions, almost always have the same topological
class.

D. Performance of the GBT model

With the features described in Sec. II C and the ML models
of Sec. II B we are able to build a classifier which can predict
the topology of a given material with an accuracy of 90%,
compared to a baseline of 49.5%.

This is demonstrated by the first line of Table II, showing
the F1 score for the different topological classes, as well as
the precision-recall curve of Fig. 3. Notably, the algorithm
performs remarkably well on TSMs and on trivial insulators,
while being less efficient for TIs. We attribute this difference
to both the much lower frequency of TIs in the dataset and the
more subtle nature of their topology. For instance, whether a
material has inverted bands is more difficult to infer from the
stoichiometric formula than whether that material has a large
gap due to ionic bonds.

We can also configure the model to predict the topological
subclass (NLC, SEBR, ES, and ESFD). Table III shows the
resulting F1 scores. Overall, the scores are lower: With more
classes come lower sample sizes for each class and more op-
portunities for misclassification, and thus lower performance.
For example, a NLC being classified as a SEBR would not
count as error when simply predicting whether a material is a
TI.

Some conclusions can be drawn. ES semimetals are harder
to detect than ESFD semimetals because the latter can in many
cases be detected from Ne and the SG alone. We see that our
model reproduces these rules. Likewise, our model correctly
identifies the groups in which TIs are allowed according to
TQC. Regarding the TIs, NLCs are easier to predict than
SEBRs. We attribute this to the more pronounced dependence
of SEBR-type topology on energetics, which is not fully
captured by our model.

Additionally, we can include partial information from ab
initio calculations in the model. As most TIs are the result
of band inversion driven by spin-orbit coupling (SOC) [2],
DFT must be performed with SOC to detect topological
materials. However, as Table II shows, already the results of
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(a) (b)

FIG. 3. (a) Precision-recall curve II and (b) F1 score as a function of the classification threshold, both for the full GBT model from Table II.
We focus here on the detection of TIs, the topological class which is both the most interesting and the hardest to detect. Green lines indicate
the performance of a perfect model, where high precision and high recall can be achieved at the same time (left), respectively, where precision
and recall can be tuned without an overall loss of performance (right). The red line in the left panel shows the null model, which randomly
assigns labels according to the threshold probability (the precision is then equal to the overall frequency of TIs in the dataset; see Appendix E).
These plots show that over a wide range recall and precision can be exchanged without affecting the overall performance as measured by the
F1 score. A model tuned to have a high precision could, for example, help find promising candidate materials in a database, to be verified by
DFT. The left graph shows that at a precision of 90% we have 30% recall.

much less expensive calculations without SOC help our model
significantly.

E. Analysis of the GBT model

Let us first comment on the features chosen by our filtering
procedure to describe a crystal. Table II shows that a model
that only uses the mean number of s, p, d, and f valence
electrons, the mean and variance of the periodic table column
and row, as well as SG and electron number can capture most
of the performance of our full model. It also outperforms
the baseline model, which directly translates the chemical
formula into a vector. This validates the single-atom statistics
approach (see Sec. II C).

The important role of global properties like the SG is
shown by the pronounced drop in performance when these
features are left out. Finally, we also included much richer
collections of properties, the nearest-neighbor differences
defined in Sec. II C, which take into account the positions
of atoms in the unit cell. Table II shows that they actually
perform slightly worse as the inclusion of irrelevant features
in a descriptor increases the risk of overfitting.

Let us emphasize that when a feature does not increase the
performance of our predictive model we cannot conclude that
it is irrelevant for a material’s topology—this could simply
be due to the failure of the particular ML approach. Yet, the
model performance without a certain feature gives an upper
bound on the potential feature’s influence on the prediction
target. For instance, suppose the accuracy of a model on some
sample is a%. We can then conclude that the features not
available to the model only influence the label or class of
(100 − a)% of the sample.

The other way around, the relevance of some quantity for
the model does not imply that it is physically decisive. Rather,

it could be only correlated with a physically relevant quantity.
However, we know that the input of our model is causally
related to the topological class (for instance, TQC shows how
changing a material’s SG by breaking a crystal symmetry will
change the topology), ruling out a mere correlation.

Therefore, we believe that we can draw the following
conclusions. Given the space group, the positions of a com-
pound’s atoms within the crystal lattice are of limited impor-
tance for the topology of a material. Rather, it is the “average
orbital character,” the mean number of s-, p-, d-, and f -shell
valence electrons which counts. Furthermore, we showed the
central importance of a material’s SG. This hints towards the
degrees of freedom that a minimal phenomenological model
should take into account.

Next, we want to understand how our model makes use of
these features. ML models are often treated as “black boxes”:
the complexity of their inner workings which makes their high
performance possible obfuscates how they arrive at predic-
tions. In the case of a GBT model, the large number of trees
which make up the model obstructs its analysis. To address
this, we have developed a simplified model which uses only
a single tree, depicted in Fig. 4. Despite its simplicity, it
performs surprisingly well, with F1 scores of 84% (trivial),
48% (TI), and 80% (TSM). The tree illustrates explicitly
how the GBT model can arrive at its decisions and provides
quantitatively supported heuristics for finding topological
insulators.

We can also obtain some interesting physical insight from
this simplified tree. It shows that a large number of d-
or f -shell electrons help to turn a material into a TI. A
necessary precondition is a SG which not only theoretically
permits but favors (crystalline) topological over trivial in-
sulators. Typical examples are many SGs within the point
group D2h (and to a lesser degree D4h), for instance, SG 55.

TABLE III. Performance of the FM when predicting the topological subclass, as measured by the F1 score and accuracy. The accuracy
should be compared to the baseline of 49.5%.

Total accuracy (%) F1 Triv. (%) F1 NLC (%) F1 SEBR (%) F1 ES (%) F1 ESFD (%)

87.0(3) 94.0(4) 66(2) 59(3) 73(2) 95.5(3)
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FIG. 4. Simplified tree model. The descriptor used is that of the spdf + model (see Table II). To predict the topology of a given material,
these features are first calculated. The tree then asks a series of yes/no questions. To understand the graph, consider the top node. Recall from
Fig. 2 that each node of the tree corresponds to a subset of the dataset, the top node corresponding to the entire dataset. The “proba” field
gives the probability to belong to class trivial/TI/TSM and the “class” field states the most probable one. At the top node, the probabilities are
equal to the frequencies of the classes in the entire dataset and the “samples” field, which gives the proportion of the dataset which arrives at
a node, is equal to 100%. The top node asks whether the material has to be a TSM due to its SG and Ne. Depending on the answer, a material
is either classified as TSM or further questions are asked. The next question, for instance, considers the SG and asks whether the material
belongs to a SG the members of which are mostly trivial insulators. While our full model has no input on which combinations of SG and
Ne lead to TSMs and learned those rules by itself, for this simplified tree we computed the answer to the question “Material must be TSM
due to no. of electrons?” and “Material cannot be TSM due to no. of electrons?” for each material in advance and used it as an input feature.
This allows us to keep the tree at a readable size: the tree does not need to ask numerous questions on Ne and SG to answer these questions
by itself.

As expected, we recover that TSMs are mostly determined
by Ne and SG (due to the “enforced semi-metal” property
[6]). See the supplementary material of Ref. [15] for a ta-
ble indicating which combinations of SG and Ne lead to
a TSM.

F. Limitations of the GBT model

The main limitation of any ML model is the number of
samples available for training. We show in Fig. 5 how the
performance of the model scales with the training set size.
Our dataset contains a total of approximately 2500 SEBR-
and NLC-type TIs each. This modest sample size is a crucial
roadblock. In addition, the materials in the database are very
diverse, belonging to many different SGs and containing many
different chemical elements. Therefore, for a given topolog-
ical material, there are often only a few other similar ones,
making it harder to infer patterns.

Furthermore, we know that the DFT calculations used to
determine the topological labels on which we rely can be
unreliable. In such cases, the label may be somewhat random
and therefore essentially impossible to predict. Based on a
number of criteria (detailed in Appendix F), we selected a
subset of 4009 materials for which we are rather confident of

the DFT predictions. We will refer to them as high-confidence
materials. In particular, we selected TIs with high gaps and
excluded magnetic and f -electron materials. The results are
displayed in Table IV. With respect to Table III, we see
significant improvements, which supports the hypothesis that
some of the model’s errors are due to randomness in the
DFT-calculated labels. From a point of view of the search for
real-world (not just DFT-calculated) topological materials, it
is encouraging to see that large-gap TIs are correctly identified
more often.

We can also pinpoint specific types of materials where our
model performs poorly. Figure 6 shows that the error rate of
the model strongly depends on the symmetry properties of the
materials: For cubic point groups, as well as for the hexagonal
point group D6h, the model seems to detect topological insula-
tors much less accurately. This is consistent with the fact that
these point groups are more complicated in the sense that they
contain the greatest number of distinct symmetry operations
of all point groups [45].

The error rate also depends strongly on the chemical
composition: For materials which contain alkali metals or
halogens, the recall for TI is lower than average. This is
unsurprising, as the ionic crystals typically formed by these
elements are not typically TIs (see Fig. 1).
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TABLE IV. Performance of the FM evaluated exclusively on high-confidence materials. Here, we predict the topological subclass and
measured the F1 scores and accuracy. Details on the selection and testing procedure are given in Appendix F.

Total accuracy (%) F1 Triv. (%) F1 NLC (%) F1 SEBR (%) F1 ES (%) F1 ESFD (%)

92.0(5) 96.0(4) 72(3) 68(1) 79(1) 99.0(5)

III. DISCUSSION

In Ref. [20], the authors compiled the largest-yet catalog
of topological materials. Based on this work, we have in-
vestigated the prediction of topological classes with machine
learning. We showed that a simple and robust ML model,
based on gradient boosted trees, can predict the topology of a
material’s electronic structure with high accuracy, using only
its chemical composition and symmetry properties, without
costly DFT calculations. Since our ML model cannot guaran-
tee that a real material has topological features, our approach
does not claim to replace a full fledged DFT calculation. Still,
it provides a fast and efficient tool to predict the possible
topological nature of a given material. We also caution that
a ML model is only as good as the dataset it was trained
on: In spite of its success [15–18], there is no theoretical
guarantee that DFT always correctly captures the topological
class, which is derived from the electronic wave function.
DFT, however, principally models functions of the electron
density. We address this issue in Appendix F by considering a
subset of materials where we are highly confident in the DFT
predictions. Our ML model and the code used to construct it
are available online (see Ref. [23]).

The main result of this paper—beyond the predictive model
itself—is the use of ML models to probe the relevance of
different properties of materials to their topology. We find that
our algorithm performance saturates at a very small number
of input features, which we identified. Notably, we observe
that topology is mostly determined by “coarse-grained” chem-
ical composition and crystal symmetry and depends little on
the particular positions of atoms in the crystal lattice. We
constructed a simplified model, where the impact of these
features can be seen directly. In particular, materials with a
large number of d- or f -shell valence electrons in general, and
not only compounds containing heavy elements with strong
SOC, are likely to be topological insulators.

We investigated several approaches to overcome the limi-
tations and improve the predictions of our model by including
the atomic positions in our model, but without success, for
instance, the following. TQC emphasizes the decisive role of
the symmetry properties of the particular point in the crystal
lattice on which an orbital is centered, its Wyckoff position.
Orbitals on certain Wyckoff positions will induce split EBRs
(and thus give rise to SEBR-type TIs). We refer to these po-
sitions as SEBR-inducing Wyckoff positions (SEBRiWPs). It
seems natural and has been conjectured [10] that compounds
with atoms on SEBRiWPs will likely have topological bands.
Note that while this does not necessarily imply topology at
the Fermi level because these bands can have any energy
the existence of topological bands does make topology at the
Fermi level more likely. However, we find that only 46%
of SEBR-type materials have atoms on SEBRiWPs. This
number is not significantly higher than for the materials from

other topological classes. Unsurprisingly, the information on
whether a material has atoms on SEBRiWPs does not help
our predictive model. To make sense of this, let us note that
an SEBR is not obliged to have atoms at some SEBRiWP—it
is only adiabatically equivalent to a crystal which does. Our
results suggest that the SEBR wave functions obtained by
ab initio calculations are perhaps very different from the
idealized ones to which they are adiabatically equivalent. This
makes it difficult to use the atomic positions in a predictive
model.

Future research should try to take into account the spatial
structure of crystals. Given the obstacles we encountered, we
believe in the need for more sophisticated ML architectures
[such as crystal graph convolutional networks (CGNNs) [39]].
Such architectures can operate directly on crystals and allow
one to use the numeric positions of atoms without the need
for an explicit descriptor (see Appendix C). However, CGNNs
suppose that the quantity to be predicted can sensibly be
written as a sum of local contributions, which is appropriate
for, e.g., the enthalpy of atomization but not necessarily for
predicting the topological class. A challenge is therefore the
inclusion of global quantities like the crystal symmetries into
these architectures. Alternatively, we must leverage physical
understanding to “preprocess” the data on a crystal’s spatial
structure, making it easier for an ML algorithm to infer
patterns. One promising candidate is the use of the empty
lattice approximation [46], which can allow an estimate of
topological features from the lattice constants only.

Note added. Recently, it was brought to our attention that a
related work [47] has appeared.
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APPENDIX A: CROSS VALIDATION AND TEST SET

Cross validation allows one to eliminate the dependence
of the performance estimate on the way the sample is split
into testing and training sets [19]. The entire sample, of
size N , is randomly partitioned into k subsets of size N/k,
called folds. In stratified cross validation one additionally
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FIG. 5. Dependence of F1 score on the training set size. The average F1 score is the average of the F1 score for the three classes. Performance
increases logarithmically with the training set size. A doubling of the training set size increases the F1 score for TIs by approximately 0.05.
Note that a F1 score is always � 1, so the log dependency cannot hold when the F1 scores approach this upper bound.

ensures that each fold contains the same proportion of sample
points from each class as the entire sample. Now, for each
i ∈ {1, . . . , k} the model is trained using the data from folds
1, . . . , i − 1, i + 1, ..k and tested on fold i. One can then
average over the k scores from the k folds (the fold scores)
to get a better performance estimate. We use tenfold stratified
cross validation for the estimates stated in Tables II and III. In
cross validation the test size is restricted to be equal to N/k for
some k, so Fig. 5, which displays the model performance as a
function of the training set size, was calculated by an average

over five random splits into test and training sets for each point
on the graph.

At the beginning of the ML project, we split the dataset
into two parts. We used 32 179 materials to develop our GBT
model (by analyzing the data and testing different models),
and the remaining 2830 materials were used only to test
the final model. We refer to them as the final test set. This
practice safeguards against overestimating the performance
we can achieve by choosing one among several models under
investigation (in our case, mostly GBT models using different

FIG. 6. Dependence of the F1 score for TIs on the point group (PG). The scores are calculated by testing the model on subsets of the entire
test set which contain only materials from a single point group. Here, we use the more coarse-grained PG instead of the SG to obtain larger
subsets. Note that the average of the F1 scores shown in this plot is not equal to the F1 score on the entire test set: the different subsets contain
different proportions of false and correct predictions and the F1 score is not a linear function of these arguments [see Eq. (3)]. Only PGs which
contain any TIs are shown. These are all PGs with an improper rotation (some are not included in the plot, as they do not occur in the dataset
frequently enough), a pattern which is correctly learned by the model. Note that for materials from certain PGs (namely, the cubic 4̄3m and
m3̄m and the hexagonal 6/mmm) we observe much lower performance. We do not have a clear explanation for this discrepancy. We checked
that it cannot be solely explained by different ratios of NLC to SEBR type TIs (the latter are known to be harder to detect) or the differing
frequency of TIs in different PGs (see Appendix E).
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TABLE V. Hyperparameters for the full GBT model. A full definition of all parameters can be found in Ref. [48].

Parameter Value Parameter Value

Maximal tree depth 10 Minimal child weight 0.1
Learning rate η 0.23 L2 regularization λ 1.33
Column subsampling by tree 0.78 Column subsampling by node 0.75

features as well as some other ML models investigated before
we decided to use GBT).

This can be understood as follows. A collection of many
different models i = 1, . . . , n can be thought of as a single
“metamodel,” in which the index i, i.e., which model to use, is
an additional parameter. Optimizing i by choosing the model
which performs best on a sample is then a training procedure
precisely analogous to optimizing the parameters of a single
model. Therefore, overfitting as described in Sec. II B can
also occur and an independent final test set is necessary to
faithfully evaluate the metamodel performance.

However, because of the limited number of materials in
the database and the strong variability of the model error
between different materials as discussed in Sec. II F, our final
test set is too small to give accurate estimates of the model
performance. This is evidenced by the standard deviations
of the cross-validated scores given in Table II. We instead
checked that the performance on the final test set is within a
standard deviation of the mean cross-validated score on the
entire dataset of 35 009 materials. For our full model, we
find F1 scores of trivial, 94%; TI, 69%; and TSM, 92%, on
the final test set. In spite of minor differences, this agrees
to within a standard deviation with the cross-validated scores
shown in Table II, showing that we are are not overestimating
performance due to model selection.

APPENDIX B: TECHNICAL IMPLEMENTATION

This paper uses the SKLEARN [29] framework for statistical
learning for the computation of cross-validated scores and for
the training of the single-tree model. The main models are
trained using the XGBOOST [48] implementation of gradient
boosting. Certain features, for instance, the nearest-neighbor
differences, were calculated using MATMINER [44]. The code
written for this paper will be made available online (see
Ref. [23]).

Hyperparameters

The GBT algorithm controls the complexity of the con-
structed model with several hyperparameters like the maximal
tree depth. Increasing the model complexity increases the
tendency to overfit. For instance, in a tree of depth log2(N )
[in our case, log2(N ) ≈ 15], the leaf number (the number of
terminal nodes in a tree; in Fig. 2 there are three) equals the
sample size N , so that the tree can simply memorize the labels
of all training sample points. This will not generalize to new
data. If the model complexity is too low, the model cannot fit
the data well.

The hyperparameters were chosen through cross-validated
random search in the parameter space: We trained models for
300 different randomly chosen values of the hyperparameters,

evaluated their performance by cross validation, and chose
the model with the best F1 score. Because there are three
different F1 scores for each model, the “best” model is not
uniquely defined, but we found that the three scores are
strongly correlated when hyperparameters are varied. So in
practice, this problem was not very pressing.

The parameters we chose are listed in Table V. The same
parameters were used to compute all scores given in this paper
(in order to ensure comparability between models using dif-
ferent descriptors). Of particular importance are the maximal
tree depth and the minimal child weight, which controls the
minimal number of samples which belong to a tree’s leaf
(a low value is necessary to deal with SGs and elements
which are very rare). Column subsampling randomly selects
a given percentage of all features and, when training a new
tree, increasing robustness to overfitting. Learning rate and
L2 regularization regularize the weights assigned to individual
trees. We furthermore used a weighted loss function to offset
the class imbalance. The full model of Table II contains 150
individual trees. Recall that during the training of a GBT
model trees are added to the model one after the other. We
computed the performance after each such step and found that
it saturates after ≈150.

APPENDIX C: TESTED FEATURES
AND UNSUCCESSFUL MODELS

In Table VI we provide a list of the features which we
tested in the course of developing our model, but which in turn
proved irrelevant for the prediction of a material’s topological
class. In particular, we tested a number of features related
to the Wyckoff positions of atoms in the crystal lattice. All
the descriptors we tested failed. We believe this to be due
to the effect discussed in Sec. III: Wyckoff position related
features can give information about the topology if the wave
function of a compound is similar to the noninteracting one
(i.e., a wave function made out of atomic orbitals centered
on the locations of the actual atoms). This is not necessarily
the case for the DFT-calculated wave functions underlying the
topological class given in our database. However, we cannot
exclude that we simply have missed the relevant Wyckoff-
related features, due to the large possible variety of such
features.

In addition to the features of Table VI which were used
together with GBT models, we also experimented with a
number of machine learning models different from GBT. In
particular, we tried to directly use the CGNN architecture of
Ref. [37], which is available as open source software, however
without success. CGNNs are similar to the convolutional
neural networks which have been immensely successful in
image recognition [49]. Crystals are represented by a graph,
where each atom from the unit cell is a vertex and two
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TABLE VI. Irrelevant, tested features by category. For all single-atom statistics (SAS) features, all nearest-neighbor difference features,
and the spatial composition features (except for the compound dimensionality, which is a global feature) we considered the following statistics:
mean, variance, minimum, and maximum. For the Wyckoff position features we did not only consider these statistics. We also calculated a
weighted average number of s-, p-, d-, and f -shell valence electrons, where each atom is weighted according to its Wyckoff position (for
example, according to the multiplicity of the Wyckoff position) to capture the interaction between the symmetry of the atomic orbitals and that
of an atom’s position in the crystal.

Category Tested features

Features derived from SG Bravais lattice, point group, and subgroups of the space group
Unit cell Lattice parameters, their ratios, angles of lattice vectors, unit-cell volume, density, and

volume per atom
Stoichiometric features L2 norm of fractions of elements in the material [40] and number of atoms per unit cell
Ionic character Possibility to form an ionic crystal from common oxidation states of the atoms [44]
HOMO/LUMO energies Energy and type (s, p, d , or f ) of the highest occupied and lowest unoccupied atomic

orbital [44]
Chemical features (SAS) Covalent radius, electronegativity, electron affinity, atomic mass, Mendeleev number

[40], melting temperature of the element in pure form, and atomic charge Z4

(measures strength of SOC coupling)
Valence orbitals (SAS) Number of unfilled s, p, d, f orbitals
Nearest-neighbor differences Atomic charge, Mendeleev number, periodic table row, and column, Atomic mass,

covalent radius, electronegativity, and number of filled and unfilled s, p, d, and f
valence orbitals [42]

Spatial composition Bond lengths (distances to nearest neighboring atom), bond angles (angles of triples of
atoms), dimensionality of the compound, and boundary area between neighbors as
obtained by Voronoi tessellation [44]

Wyckoff positions Multiplicity of Wyckoff position, order of the group of symmetries fixing the position
(stabilizer), whether the stabilizer contains inversion, and whether the Wyckoff
position induces split EBRs

atoms are joined by an edge if they are next neighbors. The
vertex values undergo a series of nonlinear transformations
which depend only on the vertex’s neighbors and are finally
combined in a weighted sum, yielding the prediction. The
same transformation is applied to all vertices, making it a
graph convolution. Each transformation corresponds to one
layer of the neural network, which is trained numerically. This
procedure means that no explicit descriptor must be chosen,
and the network can operate directly on crystals. However,
as mentioned in Sec. III, the CGNN architecture expresses
the quantity to be predicted as a sum of local contributions.
Such an ansatz might not be appropriate for topological
classes.

We also used another CGNN model from Ref. [37] in
an unsuccessful attempt of so-called transfer learning [50],
trying to overcome the limitations due to the the size of
our dataset. Transfer learning can make use of datasets for
which the topological class is not known, but related quantities
have been computed. The (DFT-calculated) band gap of a
material provides useful information on a material’s topology
(for instance, semimetals are gapless and large gaps of more
that 1 eV cannot be topological). Indeed, the TI F1 score
of our model improves from 70 to 75% if we provide the
actual DFT gap. The idea was to predict the band gaps with
the CGNN and then feed this prediction as an additional
feature to our GBT model. While this particular attempt
did not work (likely because the predicted gaps were not
sufficiently accurate), the general strategy, which is related
to the ML concept of stacking [30], seems promising. In
particular, it can make use of datasets for which some rel-

evant quantities like the band gap have been computed, but
the topological class has not been computed and combines
different descriptors which would be unsuccessful on their
own.

Further, we considered some of the descriptors previously
discussed in the literature [22,31–36]. A large number of
these are not well adapted to samples containing a wide range
of chemical elements and many atoms per unit cell because
the dimension d of the descriptor becomes very large. We
considered, for example, the sine matrix descriptor [51] in
combination with a kernel support vector machine classifier
[52] (with Gaussian kernel), an approach common in the
literature [53]. For a material with Natom atoms with nuclear
charges {Zi}i=1,...,Natom at positions {Ri}i=1,...,Natom in the unit cell
it is the Natom × Natom matrix defined by

Csine
i j =

⎧⎨
⎩

ZiZ j

|B·∑k={x,y,z} êk sin2 (πB−1·(Ri−R j ))| for i �= j

Z2.4
i
2 for i = j

. (C1)

Here, B is the 3 × 3 matrix formed from the lattice basis
vectors. Empirically, we find that such a model cannot dis-
tinguish different topological classes. The sine matrix was
originally conceived as a proxy for the electrostatic force
field due to the atomic nuclei. This makes it suitable, for
instance, for models which predict mechanical properties like
the bulk modulus. In contrast to the former, topological classes
have no clear link to interatomic force fields and the failure
of this and related descriptors like the Ewald matrix [51] is
unsurprising.
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Finally, approximately 80% of the materials in the ICSD
are classified into so-called material prototypes according to
their crystal structure [26]. For example, the NaCl type is de-
fined to contain all materials from SG 225 with two different
atoms per unit cell at positions [0,0,0] and [ 1

2 , 1
2 , 1

2 ] in the
standard basis of lattice vectors (this is the crystal structure of
NaCl). We selected the 100 most common material prototypes
(a total of 10 389 materials) and encoded the prototype with
the one-hot method as defined by Eq. (D2). This approach also
failed to improve over the model shown in Table II.

APPENDIX D: ENCODING OF CATEGORICAL FEATURES

The global features SG and Ne we described are categor-
ical: they indicate membership in a class, for example, in
the materials with a certain SG. This fact should be reflected
by the way the feature is encoded as a real vector for the
ML algorithm [19]: Most algorithms assume that two sam-
ples are similar if the difference of the two corresponding
vectors is small. However, e.g., SG 9 contains no crystalline
TIs whereas in SG 10 47% of materials are crystalline TIs.
Accordingly, the actual number of a SG is not a reasonable
encoding by itself—this number is somewhat arbitrary (but
not completely: SGs are ordered according to point group
and lattice type). We therefore supplement the SG number
with an additional descriptor. We calculate the following fre-
quencies for each SG g ∈ {1, . . . , 230} and topological class
i ∈ { trivial, NLC, SEBR, ES, ESFD}:

Number of materials with top. class i and SG g

Number of materials with SG g
. (D1)

This can be interpreted as the conditional probabilities to
belong to a topological class given the SG. Equation (D1) is
then used to encode the SG, e.g., a material with SG 10 would
be assigned the vector [0.42 (trivial), 0.47 (NLC), 0 (SEBR),
0 (ES), 0.11 (ESFD), 10 (SG number)].

In particular, when we evaluate a model using a training
and a test set, Eq. (D1) is calculated using the materials in
the training set only. Otherwise, information about the test set
(namely, how topological class and SG are related in the test
set) would indirectly be available when the model is trained
(this is called target leakage in ML). Note that using only
Eq. (D1) and not the raw SG number only lowers the TI F1

score by approximately 1% point.
For similar reasons, Ne is not fed directly into the model

but instead is represented by the digits in its binary repre-
sentation, e.g., Ne = 7 would be represented by the vector
[1,1,1]. This makes it easy for a decision tree to check, for
example, whether Ne is odd. Recall that the leaf of a decision
tree corresponds to a connected region in the space of the
input vectors (see Fig. 2). So a tree which splits the numbers
1, . . . , m into even and odd numbers based on their numerical
value needs to split [1, m] into m connected regions (here,
intervals) and thus has m leaves. With the binary encoding,
a tree with two leaves suffices.

We also tested different ways of encoding the SG. One
often-used option to encode categorical features is one-hot
encoding. For the case of Nc different classes, it is defined
by the following mapping:

{1, . . . , Nc} → RNc , i �→ ei (D2)

where ei is the ith unit vector. However, the method described
above proved superior.

APPENDIX E: RANDOM CLASSIFIERS

The performance of a classifier depends strongly on the fre-
quency of the different classes in the dataset. Let us consider
a binary classifier and a dataset where the fraction of positive
samples is q. To understand the dependence of a classifier
on q, it is useful to consider a toy example: the random
classifier, which assigns a positive label with probability p
and a negative one with probability 1 − p (a purely positive

FIG. 7. Dependence of the F1 score of a random classifier on the the PG. Each PG contains a different fraction q of TIs, so according to
Eq. (E2) a random classifier will perform differently on them. While these F1 scores are of course much lower than those of Fig. 6 (please note
that the vertical scale is different), they can explain the variation of the actual scores between the first seven PGs (1̄ to 6̄2m). However, the
performance drop observed in Fig. 6 for the last three PGs is much more severe than would be expected from the random classifier model.
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classifier is the special case p = 1). Now the dependence of
various metrics on q is simple to calculate. For the metrics
considered in this paper, one has

accuracy = pq + (1 − p)(1 − q), (E1)

precision = q, recall = p, F1 = 2
pq

p + q
. (E2)

These results can help explain patterns seen in real clas-
sifiers and in particular highlight behavior which deviates
from these simple models. First, we can judge the quality of
our model by comparing it to a random classifier, as done
in the precision-recall curve of Fig. 3. Second, the F1 score
of the random classifier can partially explain the behavior
seen in Fig. 6. Here, the frequency of positive samples, i.e.,
TIs, varies between different datasets, i.e., materials from
different point groups, while the classifier remains the same.
We therefore consider a random classifier with p fixed to 0.14
(the frequency of TIs in the overall dataset). The results are
shown in Fig. 7.

APPENDIX F: HIGH-CONFIDENCE
TOPOLOGICAL MATERIALS

As discussed in Sec. II F, we believe that a part of the errors
of our model is due to unreliability of the DFT calculations.
To test this hypothesis, we selected a number of topological

materials (according to the criteria detailed below) where we
have a high confidence in the predictions of DFT. We refer to
these compounds as high-confidence topological materials or
HC materials.

We then tested the performance of our model exclu-
sively on HC materials, using a modified cross-validation
scheme. We split the HC materials into five stratified folds
(see Appendix A), trained the model on the union of the
non-HC materials and four of the folds, and finally evalu-
ated the model on the remaining fold (the results are dis-
played in Table IV). This way, we ensure that some HC
materials are present in the training set. Otherwise, train-
ing and test sets would contain very different materials,
which makes it impossible to make an estimate of the model
performance.

To select the HC materials, we used criteria based on both
properties of the materials and the DFT results. Regarding the
first, we exclude f -electron and magnetic materials. Regard-
ing the latter we chose TIs with large direct gaps (>0.025 eV
for NLC and >0.035 eV for SEBR, corresponding to the
highest 20% of gaps) and TSMs with low numbers (>32 for
ES and >25 for ES) of Fermi level crossings. This way, we
selected a total of 1978 trivial, 249 NLC, 316 SEBR, 404 ES,
and 1090 ESFD materials. The proportions of the topological
classes among the HC materials are almost the same as in the
entire dataset, to avoid any distortions when testing a model
on the HC materials.
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