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We predict that a family of antiperovskite materials realize a higher-order topological insulator phase,
characterized by a previously introduced Z4 index. A tight-binding model and a k · p model are used to capture
the physics of the bulk, surface, and hinge states of these materials. A phase diagram of the higher-order and weak
topological invariants is obtained for the tight-binding model. The mirror Chern number is also discussed. In
order to reveal the gapless hinge states in the presence of mirror Chern surface states, several ways of opening the
surface gap are proposed and confirmed by calculation, including cleaving the crystal to reveal a low-symmetry
surface, building a heterostructure, and applying strain. Upon opening the surface gap, we are able to study the
hinge states by computing the momentum-space band structure and real-space distribution of midgap states.
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I. INTRODUCTION

The recent classification [1–7,34] of topological insulators
with crystal symmetry has led to the discovery of a new type
of topological phase, the higher-order topological insulator
(HOTI) [8–21]. HOTIs in three dimensions (3D) are gapped in
the bulk and on all surfaces, but have one-dimensional gapless
modes along “hinges” where two surfaces meet. Here, we are
concerned with HOTIs in 3D protected by time-reversal and
inversion symmetry: for these HOTIs, the one-dimensional
gapless hinge mode is a helical mode. Hence, when com-
bined with superconductivity, HOTIs present a new route
to engineering Majorana fermions from topological insulator
heterostructures [22–28].

Realizing such a heterostructure requires a 3D HOTI
material. So far, bismuth, which has a continuous direct
band gap, is topologically equivalent to a HOTI [13], and
strained SnTe has also been predicted [12]. In addition, sev-
eral weak TIs are predicted to be nontrivial HOTIs when
their surfaces are gapped by breaking translation symmetry
[12,29].

In this paper, we propose a family of HOTIs in the antiper-
ovskites as a promising material class. The antiperovskites
are familiar to the topological community as mirror Chern
insulators [30]. Many antiperovskites exhibit a “double-band
inversion,” caused by the inversion of two J = 3/2 quartets
[31–33], which results in a trivial Z2 index, but a nontrivial
mirror Chern number. Here, we show that the double-band
inversion is exactly the necessary ingredient to realize the
HOTI protected by inversion and time-reversal symmetry. Us-
ing the Topological Materials Database [34], we report eight
compounds—Ca3SnO, Ca3PbO, Ca3GeO, Ba3PbO, Sr3PbO,
Sr3SnO, Sr3BiN, and Ti3TlN—exhibiting a nontrivial HOTI
index, with the largest bulk gaps in Sr3PbO and Sr3SnO
greater than 50 meV. Due to the double-band inversion, the
bulk gap, �, sits at an avoided crossing along �-X , as shown
schematically in Fig. 1(b).

We construct a minimal tight-binding model that goes
beyond the continuum model in Ref. [30] in an essential
way: it breaks the continuous rotational symmetry down to
the crystal symmetry group so that surfaces with a trivial
mirror Chern number are gapped (Sec. II). We compute a
phase diagram for this model and show that it exhibits sev-
eral different topological phases, including the HOTI phase
realized by the antiperovskites (Sec. III). We then consider
the helical hinge modes in the HOTI phase. For a finite-
size sample with mirror-preserving surfaces, the hinge modes
will be masked by the gapless mirror Chern surface states.
Thus, we propose to measure the hinge modes in samples
where mirror symmetry is broken by either cleaving along a
low-symmetry surface or by applying mirror-breaking strain
(Sec. IV). When the mirror surface states are gapped, we
numerically confirm the presence of the hinge states (Sec. V).
Finally, in Sec. VI, we connect our model Hamiltonian to
specific antiperovskite materials and show that they reside
in the nontrivial topological phase. We give an outlook in
Sec. VII.

II. TIGHT-BINDING HAMILTONIAN

Antiperovskites have the chemical formula A3BX . Ideally,
they form the primitive cubic structure shown in Fig. 1, where
the A atom is at the faces of the cube, the B atom is at the
corners, and the X atom is at the center. It was noted in
previous work [30,31,33] that several of these compounds
display a band structure with two band inversions, due to
the spin-3/2 quartet of d orbitals from the A atom inverting
beneath the spin-3/2 quartet of p orbitals from the B atom,
and resulting in a topological crystalline insulator (previously
noted for its mirror Chern number [30] and here noted for its
nontrivial HOTI invariant).

Hsieh et al. introduced a linear-order k · p model to capture
the nonzero mirror Chern number of certain antiperovskites
[30]. However, higher orders in k are necessary to correctly
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FIG. 1. (a) Crystal structure of the antiperovskite Sr3PbO, in
space group Pm3̄m [35]. The Sr, Pb, and O atoms are shown in
green, black, and red, respectively. (b) Schematic band structure of
antiperovskites along the (k, 0, 0) and (k, k, k) axes. The smallest
gap, �, sits at an avoided crossing point along �-X gapped by
spin-orbit coupling.

model the surface states: in particular, the linear model has
full SO(3) rotation symmetry; consequently, surface states
appear along every direction, including directions that do
not correspond to a mirror plane of the crystal. In addition,
a k · p model is inadequate to compute topological indices
that rely on global properties of the band structure. For
these two reasons, we are motivated to build a tight-binding
Hamiltonian.

The remainder of this section is devoted constructing the
tight-binding model. We consider antiperovskites in the space
group Pm3̄m; the crystal structure is shown in Fig. 1. The
primitive cubic space group is generated by the rotations
C2,001, C2,010, C2,110, and C3,111 and inversion, P . (We use
Cn,i jk to denote an n-fold rotation about the axis ix̂ + jŷ + kẑ).
We also enforce time-reversal symmetry, T .

The low-energy physics is derived from four d and four
p orbitals, which form spin-3/2 quartets with opposite parity
[30–33]. In the trivial case without band inversion, the d
orbitals form the conduction band and the p orbitals form
the valence band, while in the nontrivial case, the quartets
invert at the origin. We will build the most general short-range
tight-binding model consistent with the symmetry and orbital
content we have just described; therefore, many different
topological and trivial phases are realized within this model,
as summarized by the phase diagram in Fig. 2.

We now describe how to construct the symmetry operators.
We use three copies of the Pauli matrices σi, τi, ρi, i =
0, x, y, z, that act on different degrees of freedom to describe
the eight-dimensional Hamiltonian. Matrix forms of the sym-
metry operations are obtained in the following way: the Pauli
matrix ρ labels the d and p quartets; therefore, the inversion
(parity) operator is given by P = σ0τ0ρz. The Pauli matrices σ

and τ together describe spins within the J = 3/2 quartet, such
that Jz = 1

2σzτ0 + σ0τz; the matrix form of �J = (Jx, Jy, Jz )
is in Appendix A. The operator for a rotation by angle θ

about an axis n̂ is given by exp (−i �J · n̂ θ )ρ0. The matrices
of the crystal symmetries and the time-reversal operator are
explicitly shown here:

P = σ0τ0ρz, (1)

T = −iσyτxρ0K, (2)

0 1/2 1

1

(2,0)(0,0)(2,0)(0,0)

(1,1)(0,1)

(2,1)

(3,0)

(1,0)
(1,1)

1/3

FIG. 2. Phase diagram of the Z4 index and weak topological
invariants for insulators. Ten regions labeled by Roman numerals are
assigned a pair (κ, νw ) indicating the Z4 index and weak topological
invariant, respectively. (Recall that the C3 symmetry makes all three
weak topological invariants equal, so that we can indicate all three
by one number, νw). κ = 0, νw = 0 corresponds to a trivial insulator;
κ = 1, 3 corresponds to a strong topological insulator; κ = 2 corre-
sponds to a higher-order topological insulator (which may or may not
have a nontrivial weak TI index); and νw = 1 corresponds to a weak
topological insulator. As discussed in Sec. III, an insulating phase
can only result when α1 and β1 are in the same region as −α2 and
−β2; hence, the axis labels α and β are simultaneously indicating
α1,2 and β1,2.

C2,001 = iσzτ0ρ0, (3)

C2,010 = −iσyτxρ0, (4)

C2,110 = i√
2

(σxτy + σyτy)ρ0, (5)

C3,111 = − 1
4 [(σ0 + iσz )τ0 + i(σx − σy)τx

+
√

3(σ0 − iσz )τy +
√

3(σx + σy)τz]ρ0, (6)

where K is the complex conjugate operator. For simplicity,
all σ0, τ0, and ρ0 symbols will be omitted in the following
text.

We derive the most general quadratic k · p model that
satisfies the symmetries (1)–(6). The quadratic terms go be-
yond Ref. [30] and play an important role in understanding
the physics of the surface states, as we discuss in detail in
Appendix B. Extending the k · p model to the whole Brillouin
zone yields a tight-binding Hamiltonian. The extension is not
unique: we have chosen the simplest model that satisfies all
the symmetries by including only nearest and next-nearest
hopping in position space. Written in momentum space, the
Hamiltonian is given by four blocks:

Hk =
[
H0k (m, α1, β1, γ1) H1k (v1, v2)

H1k (v1, v2) H0k (−m, α2, β2, γ2)

]
, (7)
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where the off-diagonal blocks are given by

H1k = v1(sin kxJx + sin kyJy + sin kzJz )

+ v2 (sin kxJ̃x + sin kyJ̃y + sin kzJ̃z ), (8)

and the diagonal blocks by

H0k = m + α

2
(3 − cos kx − cos ky − cos kz )

+ 2β

3
(cos kxJx · J̃x + cos kyJy · J̃y + cos kzJz · J̃z )

+ 2γ√
3

(sin kx sin ky{Jx, J̃y} + sin ky sin kz{Jy, J̃z}

+ sin kz sin kx{Jz, J̃x}). (9)

The spin-3/2 matrices J and J̃ are given in Appendix A. The
relation {Ji, J̃ j} = {Jj, J̃i} (i, j = x, y, z) ensures that Eq. (9)
is symmetric in permuting kx, ky, and kz. For convenience, we
provide the explicit expression of H0k:

H0k = m + α

2
(3 − cos kx − cos ky − cos kz )

+ β

4
(cos kx + cos ky − 2 cos kz )σzτz

+
√

3

4
β(cos ky − cos kx )τx + γ sin kx sin kyσxτz

+ γ sin ky sin kzσyτz + γ sin kx sin kyτy. (10)

The two 4 × 4 blocks of the Hamiltonian (7) correspond
to the quartets of d and p orbitals, each separately described
by H0k , but with opposite sign of the mass, m. For certain
values of m, the two groups of four bands invert at �. This
double-band inversion does not change the Z2 topological
index, but can drive the system into a topological crystalline
phase, as shown in Fig. 2 and analyzed in Sec. III. (This
topological crystalline phase is responsible for both the mirror
Chern number introduced in [30] as well as the HOTI phase
discussed in this work).

The off-diagonal blocks containing H1k couple the p and
d orbitals and open the bulk gap following a band inversion.
A gap-closing topological phase transition occurs when the
band crossing between the inverted d and p orbitals occurs
at a high-symmetry point: in this case, H1k cannot open
the gap because H1k vanishes at ki = 0, π . We will discuss
these topological phase transitions in Sec. III. When the band
structure is gapped, we will compute topological invariants of
the four occupied bands.

Our model is sufficiently general to capture many different
phases consistent with the orbitals and symmetry that we have
described. We will apply it to specific materials in Sec. VI.

III. Z2 AND Z4 TOPOLOGICAL INDICES

We will now review the Z2 and Z4 topological indices and
compute a phase diagram of these indices for the Hamiltonian
(7).

A. Definition of Z2 and Z4 topological indices

Recently, it was shown in Ref. [10] that in addition to the
weak and strong topological invariants [36–38], the eigenval-

ues of the parity operator at time-reversal-invariant momenta
(TRIMs) can be used to compute a Z4 topological index,

κ = 1

4

∑
K∈TRIMs

(n+
K − n−

K ) mod 4, (11)

where n+
K /n−

K is the number of occupied states with even/odd
parity. The familiar strong topological invariant ν0 is related to
κ by ν0 = κ mod 2 [10]. Thus, κ = 1, 3 indicates a strong TI.
Further, κ = 0 indicates a trivial insulator. The HOTI phase,
which is the focus of this paper, is realized when κ = 2. (Note
that there are many different types of HOTI phases, depending
on the dimension and crystal symmetry, but here we will
use HOTI to specifically refer to the three-dimensional phase
protected by inversion and time-reversal symmetry).

The κ = 2 phase is also consistent with a weak topological
insulator protected by translation and time reversal, which can
be diagnosed by its inversion eigenvalues [39]. The weak and
strong topological phases are captured by four Z2 invariants,
usually denoted (ν0; ν1, ν2, ν3) [36–38]. Due to the cubic
symmetry of our model, the three weak topological invariants
are always equal; we denote them by νw ≡ ν1 = ν2 = ν3,
which can be computed by

νw = 1

4

′∑
K∈TRIMs

(n+
K − n−

K ) mod 2, (12)

where the prime on the summation symbol indicates that
the sum should be restricted to TRIMs within one of the
time-reversal-invariant planes given by ki = π ; n+

K /n−
K again

indicates the number of occupied states with even/odd parity.

B. Phase diagram of Z2 and Z4 indices

Now let us return to our model. Figure 2 shows the phase
diagram of κ and νw for all insulating phases of the Hamil-
tonian (7). While the Hamiltonian contains many parameters,
the γ term and v1,2 terms vanish at the TRIM points, where
all k components are equal to 0 or π . Therefore, only five
parameters, m, α1,2, and β1,2, can contribute to the phase
diagram. Further, by enforcing that the system be an insulator
and fixing m as an overall energy scale, we can determine the
topological indices κ and νw of all insulating phases from only
two parameters, as we now explain.

First, without loss of generality, we can rescale all parame-
ters by |m|, which sets the scale of the band gap at �, and take
m < 0. Since H0k (−m, α, β, γ ) = −H0k (m,−α,−β,−γ ),
the phase diagram for m > 0 can be obtained from that of m <

0 by reversing the sign of α, β (recall the γ term disappears
at TRIM points) and swapping the occupied and unoccupied
bands.

We now consider only the upper 4 × 4 block of our
eight-band model; the Hamiltonian of this block is given by
H0k (m, α1, β1, γ1). Since this block describes d orbitals, the
inversion eigenvalues of these bands will always be +1, as
can be checked from the inversion operator in (1). Choosing
the Fermi energy to be E f = 0, we now ask how many
of these bands are occupied. There are ten different cases,
corresponding to the ten regions in Fig. 2. The number of
occupied d bands at each TRIM point in each region is listed
in Table I, where “+” indicates an occupied Kramers pair of
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TABLE I. Occupancy of states with +1 parity eigenvalue at
TRIM points. “+” means occupied (energy is negative relative to
Fermi energy); “−” means unoccupied. Each sign +, − has a twofold
Kramers degeneracy, so that the two signs represent four bands. To
form an insulator, there must be four bands filled at each k point. So
every unoccupied state in this table corresponds to an occupied state
from the bands with parity −1. In this sense, this table is also show-
ing the parity of occupied states at TRIM points by regarding − and
+ to be parity eigenvalues. The symmetry-inequivalent TRIM points
are � = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0), and R = (π, π, π ).

Phase � X M R

(I) + + − − − − − −
(II) + + + + − − − −
(III) + + + + + + − −
(IV) + + + + + + + +
(V) + + − + − − − −
(VI) + + − + − + − −
(VII) + + − + − + + +
(VIII) + + + + − + − −
(IX) + + + + − + + +
(X) + + − + + + + +

d orbitals and “−” indicates an unoccupied Kramers pair of d
orbitals. Since there are four d orbitals total, each TRIM point
can be labeled by two ± signs in each region.

Now consider the lower 4 × 4 block of (7), given
by H0k (−m, α2, β2, γ2) = −H0k (m,−α2,−β2,−γ2). The
occupied/unoccupied bands are again described by Table I
by swapping the signs in the table (i.e., swapping the
occupied/unoccupied bands), as well as swapping the signs
of α2, β2 (recall that γ2 does not enter the calculation of the
topological indices).

Since Z2 and Z4 are only defined for insulators, we now
assume that our system is in an insulating phase. If the system
is insulating, there must be four occupied and four unoccupied
bands at each TRIM point (since the bands at � are fourfold
degenerate due to the point group symmetry, it is not possible
to have an insulator at any other filling). Since no two entries
of Table I are the same, it is only possible for the system
to be insulating when (α1, β1) are in the same parameter
regime as (−α2,−β2). Conversely, if (α1, β1) and (−α2,−β2)
are in different regimes, the system must be metallic. For
example, if (α1, β1) are in phase (I) and (−α2,−β2) are in
phase (II), then there will be four occupied bands at � but no
occupied band at X , so the system must be metallic. Thus,
the phase diagram of insulating phases can be deduced from
only two parameters, α/|m| and β/|m|, which simultaneously
indicate the parameter regime (shown in Fig. 2) of (α1, β1)
and (−α2,−β2).

Once the region is identified, the topological indices can be
straightforwardly computed using Eqs. (11) and (12) because
Table I not only indicates the occupied/unoccupied d orbitals,
but also the inversion eigenvalues of the occupied Kramers
pairs. For example, two occupied Kramers pairs of d orbitals
is indicated by ++ in Table I; at the same time, if our
eight-band model is insulating, then the p orbitals must not be
occupied and hence the inversion eigenvalues of the occupied

TABLE II. Table of ten phases and the Z4 index κ and weak
topological invariant νw .

Phase (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

κ 2 0 2 0 1 0 2 3 1 1
νw 0 0 0 0 1 1 1 0 0 1

Kramers pairs must also be ++. The topological indices for
all regions are shown in Fig. 2 and also listed in Table II.

Among the ten phases, (II) and (IV) are trivial insulators.
Phases (V), (VIII), (IX), and (X) are strong TIs. Phase (VII)
is a HOTI and also a weak TI. Phases (I) and (III) are HOTIs
with a trivial weak TI index. Although (I) and (III) share the
same topological indices, they are not the same: Table I shows
that (I) and (III) correspond to band inversions at � and at R,
respectively.

In Sec. VI, we argue using the Topological Materials
Database [1,34] that Ca3SnO, Ca3PbO, Ca3GeO, Ba3PbO,
Sr3PbO, and Sr3SnO reside in phase (I). Hence, in the remain-
der of the paper, we will mainly focus on the HOTIs in region
(I), which are characterized by a double-band inversion at �.

IV. MIRROR CHERN STATES

We would like to numerically verify the nontrivial HOTI
phases computed in the previous section by showing that the
bulk and surfaces are gapped, but that there are gapless modes
on certain “hinges” where two surfaces meet. However, there
is a crucial problem: the z-normal surface is not gapped, due
to the nonzero mirror Chern numbers reported in Ref. [30].
(Other mirror-preserving surfaces may also display mirror
Chern states, including type-II Dirac cones [40]). In this
section, we first review the mirror Chern number and then
discuss several schemes for gapping the mirror Chern surface
states. Finally, in Sec. V, we will present evidence of the
gapless hinge states that appear after gapping the surfaces.

A. Mirror Chern number

There are two inequivalent mirror symmetries in the space
group Pm3̄m: Mz and Mxy. Each mirror symmetry leaves two
planes in the Brillouin zone invariant; for example, the kz = 0
and kz = π planes are invariant under Mz.

Within a mirror-invariant plane, the Hamiltonian can be
decomposed into two subspaces H±i, where the subscript ±i
indicates the mirror eigenvalue (mirror squares to −1 in a
system with spin-orbit coupling). For each subspace, one can
calculate the Chern number C± for the occupied bands. The
mirror Chern number of the mirror-invariant plane is defined
as Cm = (C+ − C−)/2 [41]. In a time-reversal-invariant sys-
tem, C+ = −C−, and, consequently, Cm = C+.

Hsieh et al. [30] first identified the topological nature of
antiperovskites by pointing out that those with an inverted
band structure have a nontrivial mirror Chern number (previ-
ous work had already identified that the double-band inversion
led to a trivial Z2 index [31,33]). Reference [30] identified
the topological phase with a linear k · p model, which can
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TABLE III. Table of mirror Chern number for Mz and Mxy

mirror-invariant planes. This result is only valid for phase (I) where
the band inversion occurs at �.

R (−∞,−1) (−1, 0) (0, 1) (1, ∞)

Cm(Mz ) −2 2 2 −2
Cm(Mxy ) 0 2 −2 0

be obtained by expanding (7) to linear order. It is useful to
introduce three new parameters:

vd = (v1 − 2v2)/2, vs = (2v1 + v2)/2, (13)

R = vd/vs. (14)

Reference [30] reported a phase transition when |R| = 1,
where the bulk gap closes, allowing the mirror Chern numbers
to change.

By analytically and numerically [42] studying the low-
energy surface spectrum, we verify the results of Ref. [30]
in phase (I). As mentioned at the end of Sec. III, this is
the regime that describes the topologically nontrivial antiper-
ovskite compounds. A detailed analysis is in Appendix B; in
summary, since the only band inversion in phase (I) occurs at
the � point, the kz = π mirror-invariant plane is trivial, while
the mirror Chern numbers in the kz = 0 (Mz-invariant) and
kx = −ky (Mxy-invariant) planes are enumerated in Table III,
which agrees with a similar table in Ref. [43]. The phase
transitions require the bulk band gap to close, which occurs
at R = 0, ±1, as discussed in [30]. Further calculations (see
Appendix B) also reveal Lifshitz transitions for the gapless
surface states at R = ±1/2, which go beyond the analysis
in [30]. When |R| < 1/2, a gapless surface state crosses the
Fermi surface only once, while when 1/2 < |R| < 1, the state
crosses the Fermi surface three times.

Figure 3 shows the bulk bands and mirror Chern sur-
face states for parameter values m = −1, α1 = −α2 = 2,
β1,2 = γ1,2 = 0, vd = 1, vs = 0. The parameters are chosen
to make the system reside in phase (I) with κ = 2, νw = 0,
and Cm(Mz ) = −2, Cm(Mxy) = 0 with R = ∞. Since vs = 0,

FIG. 3. Energy spectrum of the Hamiltonian (7) in phase (I).
(a) Bulk states. Every band is fourfold degenerate in the special
case vs = 0. (b) Surface states on the ẑ-normal surface. Each line is
fourfold degenerate, where one twofold degeneracy comes from two
surfaces of the slab, and the other from setting vs = 0. The horizontal
axis travels along two mirror-invariant lines in the surface Brillouin
zone, starting along the X̄ -�̄ direction ([−0.1, 0]) and then turning
to the �̄-M̄ direction ([0,0.1]). The parameters in (7) are m = −1,
α1 = −α2 = 2, β1,2 = γ1,2 = 0, vd = 1, vs = 0.

FIG. 4. Slab with a mirror-breaking normal. (a) The yellow plane
has normal vector a1 = (−2, 1, 1). Cleaving the crystal with an
a1-normal surface will break all mirror symmetries. (b) Surface
states for a slab with the a1-normal surface: a small gap opens
due to the broken mirror symmetry. In this calculation, we have
chosen a different set of parameters to get a relatively larger gap:
m = −1, α1 = −α2 = 5, β1 = β2 = 2, γ1,2 = 0, vd = 1, vs = 2. The
horizontal axis is momentum, traversing a path along X̄ -�̄-M̄.

every bulk and surface state has a twofold degeneracy, in
addition to the twofold degeneracy from PT symmetry; com-
bined, all states are fourfold degenerate, as shown in Fig. 3(a).
Figure 3(b) shows that along the �̄-M̄ direction (overbars
denote high-symmetry points in the surface Brillouin zone),
the surface states are gapless, despite the fact that Cm(Mxy) =
0, because setting β1,2 = 0 enlarges the symmetries of the
Hamiltonian. Nonetheless, the remainder of this section will
continue using this choice of parameters unless stated other-
wise; since we seek to gap the mirror surface states, the extra
symmetries will soon be broken.

B. Gapping the mirror Chern surface states

As mentioned at the start of this section, the Z4-indicated
hinge states will be obscured by the presence of the mirror
Chern surface states. A transport measurement to detect the
hinge modes would also be dominated by the mirror Chern
surface states. Thus, in order to observe the hinge states, we
need to gap the mirror surface states. We now propose three
mechanisms to gap the mirror Chern surface states; similar
ideas were pursued in Ref. [12] to reveal the hinge states in
other types of higher-order topological insulators with mirror
Chern surface states.

The first idea is to cleave the lattice such that the result-
ing surface breaks all the mirror symmetries. An example
of a low-symmetry surface is shown in Fig. 4(a) and the
corresponding surface states are calculated in Fig. 4(b). A
small surface gap is opened along both the X̄ -�̄ and �̄-M̄
directions. In this calculation, we have chosen a different set
of parameters than in the previous section to get a relatively
larger gap. Specifically, the quadratic β terms are set to be
nonzero and break particle-hole symmetry, so that the fourfold
degeneracy at � is split into two twofold-degenerate bands.
The details of this argument are in Appendix B. The α terms
are then chosen so that the system remains in phase (I). Since
R = 1/2, one of the mirror Chern surface bands is almost flat
at �.

We find that the surface gap opened by a mirror-breaking
surface is usually very small and our model does not contain
a mechanism to tune it. However, in a real sample, the
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TABLE IV. Table of mirror symmetries and their symmetry-
breaking k-independent surface potentials. The special cases shown
in panels (b), (c), and (d) of Fig. 5 are also listed in the three columns
labeled δa, δb, and δa = 2δb. X indicates symmetry is broken, while
� indicates symmetry is still preserved.

Mirror Broken by δa δb δa = 2δb

Mx δa, δd X � X
My δb, δd � X X
Mz δa, δb X X X
Mxy δc, δa − δb X X X
Mx̄y δc, δa + δb X X X
Myz δc, δa − δd X � X
Mȳz δc, δa + δd X � X
Mzx δc, δb + δd � X X
Mz̄x δc, δb − δd � X X

surface gap will depend strongly on the microscopic details
of the surface dangling bonds and their interaction with the
environment. In particular, growth of a capping layer on the
surface or adsorption of organic molecules could dramatically
change the surface electronic structure.

This is related to our second mechanism to gap the mirror
Chern surface states, which is to consider a mirror-breaking
surface perturbation on a surface that would otherwise pre-
serve mirror symmetry. This could be accomplished by grow-
ing a thin film on both the top and bottom surfaces, such
that inversion and time reversal are preserved, but the mirror
symmetries are broken. Then the boundary states will be
derived from the bulk Hamiltonian plus a mirror-breaking
surface potential. The lowest-order (k-independent) surface
potential that satisfies the symmetry requirements is

Vsurface =
[
V (δa1, δb1, δc1, δd1) 0

0 V (δa2, δb2, δc2, δd2)

]
, (15)

where

V (δa, δb, δc, δd ) = δaσxτz − δbσyτz + δcσ0τx − δdσ0τy. (16)

Table IV presents the nine mirror symmetries and which
terms in Eq. (15) break each one. For example, Mxy would be
broken when δc or δa − δb is nonzero.

Figure 5 shows the surface states calculated with a ẑ-
normal surface on which different surface potentials have
been added to the top and bottom layers (so that inversion
symmetry is preserved). Since the surface potentials break
mirror symmetries, the C4 symmetry in the surface plane is
also broken. So we present a band structure along the path
�̄-X̄ -M̄-�̄-Ȳ -M̄ ′-�̄ in the surface Brillouin zone.

We can understand which paths become gapped or remain
gapless by studying which mirror symmetries are broken or
preserved. For a slab with a ẑ normal, Myz, Mȳz, Mzx, and
Mz̄x have been broken by the geometry; Mz is preserved in
the bulk, but broken on a single surface (it relates the two
surfaces to each other). Thus, only Mx, My, Mxy, and Mx̄y

mirror surface states can appear on the slab surface. In the

FIG. 5. Mirror Chern surface states can be moved or gapped by
tuning the surface potential, (V1,V2). The surface potentials are set as
V1 = δa1 = −δa2, V2 = δb1 = −δb2. (a) Gapless mirror surface states
without the surface potential; (b) with the surface potential (0.5, 0),
the gapless states are moved along �̄-X̄ and gapped along other
directions; (c) with the surface potential (0, 0.5), the gapless states
are moved along �̄-Ȳ and gapped along other directions; (d) with the
surface potential (0.5, 0.25), the mirror surface states are completely
gapped.

case of Fig. 5(b), My is preserved, so there is a crossing
along �̄-X̄ (surface projection of the ky = 0 plane). In the
case of Fig. 5(c), Mx is preserved, so there is a crossing along
�̄-Ȳ (surface projection of the kx = 0 plane). In the case of
Fig. 5(d), all mirror symmetries are broken; thus the surface
states are gapped everywhere.

The third way to gap the mirror Chern surface states is to
apply strain to the lattice to break the mirror symmetry. The
strain term takes the same form as the surface potential (15).
But there is a small difference. While in a heterostructure, the
surface potential only appears in the first several layers near
the boundary, for the strained system, the strain term appears
at every layer inside the bulk. We would expect the strain to
result from an external force, although it could perhaps be
engineered by the growth conditions. Figure 6(a) shows the

FIG. 6. Energy spectrum with strain parameters V1 = δa1 =
−δa2 = 0.1, V2 = δb1 = −δb2 = 0.05, which (a) shifts the bulk bands
and (b) opens the surface gap. If the strain energy V1 and V2 is too
large (more than 0.5), the bulk will cease to be an insulator.
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FIG. 7. Hinge states with surface potentials. (a) Energy spectrum
of a rod without a surface potential: gapless states come from both
surface states and hinge states; (b) position-space distribution for one
of the wave functions with zero energy: the wave function has a large
weight at the four corners, but there is a non-negligible weight on all
surfaces, which prevents the hinge states from being exponentially
localized. (c) Energy spectrum of a rod with surface potential V1 =
0.1, V2 = 0.05: gapless helical hinge states appear; (d) position-space
distribution for one of the wave functions with zero energy: the wave
function now has negligible weight on the left and right surfaces.
(e) Energy spectrum of a rod with bulk strain given by V1 = 0.1,
V2 = 0.05 gapless helical hinge states appears in the surface gap; (f)
the position-space distribution of a wave function with zero energy
reveals localization in the top-right and bottom-left corners. In all
cases, the rod has 15 sites in the x and y directions and is infinite in
the z direction.

bulk states shifted by the strain term. Figure 6(b) shows the
surface gap opened by strain.

V. HINGE STATES

Armed with three mechanisms for gapping the mirror
Chern surface states, we numerically demonstrate the pres-
ence of the higher-order hinge states in the presence of a
nonzero surface potential or strain (15).

We consider a rod geometry with a square cross section that
is finite in the x and y directions and infinite in the z direction;
thus, we plot the energy spectrum as a function of kz, using
the same parameters as in Sec. IV B.

The results are shown in Fig. 7. Panels (a), (c), and (e)
show the dispersion in momentum space, while (b), (d), and
(f) show the weight distribution in real space for a specific

TABLE V. Table of antiperovskites with Z4 index κ = 2. Num-
ber of occupied bands with positive/negative parity at TRIMs is
listed. The last column shows the smallest direct gaps (DG) for these
materials.

� X M R

A3BX κ νw n+ n− n+ n− n+ n− n+ n− DG (meV)

Ca3SnO 2 0 8 8 8 8 4 12 8 8 18.1
Ca3PbO 2 0 8 8 8 8 4 12 8 8 44.5
Ca3GeO 2 0 8 8 8 8 4 12 8 8 3.1
Ba3PbO 2 0 14 26 22 18 18 22 14 26 5.9
Sr3PbO 2 0 14 26 22 18 18 22 14 26 54.9
Sr3SnO 2 0 14 26 22 18 18 22 14 26 52.2
Sr3BiN 2 0 14 26 22 18 18 22 14 26 8.6
Ti3TlN 2 1 14 6 10 10 4 16 12 8 9.3

state at Fermi level (the other zero-energy states have the same
weight distribution). Panels (a) and (b) do not have any surface
potential or strain. Thus, all mirror symmetries are preserved
and the zero-energy states have weight on the surfaces as well
as the hinges in (b); in addition, the energy spectrum in (a)
is characteristic of a gapless surface. Panels (c) and (d) are
plotted with a surface potential added to the left and right
edges. Panel (c) shows zero-energy states in a small surface
gap. Since the mirror symmetries are all broken by the surface
potential at the left and right surfaces, there is no weight on
those two edges in (d). Panels (e) and (f) are plotted with bulk
strain. All mirror symmetries are broken by the strain term in
bulk, and as a result, the surface gap is opened (approximately
|E | < 0.2). The strained hinge states are localized at only two
corners in real space, as shown in (f).

The real-space distribution is localized at the left-bottom
and right-top corners in Fig. 7(f). However, for different strain
parameters, the hinge states are localized at the left-top and
right-bottom corners. This behavior can be understood by
realizing that the antiperovskites also have a higher-order
invariant protected by even mirror Chern number, similarly to
SnTe [12]. We discuss this connection and the phase transition
between the two configurations of hinge states in Appendix C.

VI. MATERIALS: ANTIPEROVSKITES

The motivation for establishing and analyzing our tight-
binding model (7) was to determine all possible topological
phases consistent with the symmetry and orbital content de-
scribed in Sec. II; we summarized the analysis with the phase
diagram in Fig. 2.

We now seek to place known antiperovskites into the phase
diagram in Fig. 2. This can be readily accomplished by using
the Topological Materials Database [1,34], which lists the
topological indices for each reported compound. Furthermore,
the phases with the same topological indices [i.e., (I) and (III),
(II) and (IV), and (V) and (X)] can be distinguished because
the database also lists the inversion eigenvalues at each TRIM
point.

We find that eight reported antiperovskite materials, listed
in Table V, have a nontrivial HOTI index κ , and further, that
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six of these—Ca3SnO, Ca3PbO, Ca3GeO, Ba3PbO, Sr3PbO,
and Sr3SnO—are in phase (I). They can be understood as
four occupied bands with a double-band inversion at �, plus
two trivial bands of parity −1, and several additional bands
at lower energies that are separated from the six bands by
a large gap. This justifies our analysis of this phase in later
sections. Since many of these materials are easily cleavable,
we propose that they are a good place to search for gapless
modes on hinges or possibly on step edges [29]. There may
be additional HOTIs realized in the f -electron antiperovskites
(for example, compounds studied in [44]), which are not in
the Topological Materials Database [1,34].

The size of the bulk band gap is determined by the spin-
orbit coupling strength, which gaps the Dirac cone along �-X ,
as shown in Fig. 1(b). Three compounds in Table V have
gaps � ∼ 50 meV, which is large enough to be resolved in
experiment. However, the ability to resolve the hinge states
depends not only on the bulk band gap but also on the surface
band gap, which is determined by the mirror-symmetry break-
ing mechanism that gaps the mirror Chern surface states (see
Sec. IV B).

The gap at �, �� in Fig. 1(b), is much larger than the
bulk band gap; specifically, �� � 10�. Therefore, even in
materials with a small gap, the hinge states may be visible in
a momentum-resolved measurement by properly choosing the
surface direction so that the smallest gap �, along �-X , does
not project onto �. For example, the surfaces normal to the
(111) and (1̄11) directions fulfill this condition. In this case,
the gap �1 along �-R is projected onto �, but it is much larger
than �.

VII. OUTLOOK

In this paper, we have shown that antiperovskites with an
inverted band structure fall into the newly discovered HOTI
phase, protected by time-reversal and inversion symmetry.
These HOTIs will display gapless helical modes on hinges
where two surfaces meet; such hinge modes are similar to
those on the edge of a two-dimensional topological insulator
and thus present another route to finding Majorana fermions
in materials with a trivial Z2 index, when combined with su-
perconductivity [22–27]; in fact, superconductivity has been
observed in one of our candidate HOTIs, doped Sr3SnO [45].
Helical modes may also be observed along the edges of
thin films, which have recently been grown for Sr3SnO [46].
Finally, another route to observing the gapless helical modes
may be to perform STM on crystal defects: future calculations
are necessary to determine whether dislocations or step edges
host gapless helical modes, as has been demonstrated for other
HOTIs [29].

Importantly, many antiperovskites are stable and experi-
mentally well studied. In particular, the compounds Ca3PbO,
Ca3SnO, Sr3PbO, and Sr3SnO have been the subject of sev-
eral recent experiments [45–51]. Thus, our results present a
promising avenue to pursue experimental studies of HOTIs,
for which very few other candidates have been identified.
We hope that our work motivates an experimental search for
hinge modes in these materials, as well as ab initio studies
on the effects of strain and surface perturbations in order to
determine a realistic estimate of the surface gap.
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APPENDIX A: SPIN-3/2 MATRICES

Here we define the spin-3/2 matrices J and J̃ that were
used in our Hamiltonian (7):

Jx =

⎛
⎜⎜⎜⎝

0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎠, (A1)

Jy =

⎛
⎜⎜⎜⎝

0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

⎞
⎟⎟⎟⎠, (A2)

Jz =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠, (A3)

J̃x =

⎛
⎜⎜⎜⎝

0
√

3
4 0 − 5

4√
3

4 0 − 3
4 0

0 − 3
4 0

√
3

4

− 5
4 0

√
3

4 0

⎞
⎟⎟⎟⎠, (A4)

J̃y =

⎛
⎜⎜⎜⎝

0 −i
√

3
4 0 −i 5

4

i
√

3
4 0 i 3

4 0

0 −i 3
4 0 −i

√
3

4

i 5
4 0 i

√
3

4 0

⎞
⎟⎟⎟⎠, (A5)

J̃z =

⎛
⎜⎜⎝

− 1
2 0 0 0

0 3
2 0 0

0 0 − 3
2 0

0 0 0 1
2

⎞
⎟⎟⎠. (A6)

APPENDIX B: SURFACE THEORY

The k · p Hamiltonian that describes the low-energy
physics of phase (I) near the � point can be derived by
expanding Eq. (7) in powers of k. We divide the Hamiltonian
into a linear-order part and a quadratic part:

Hk·p = Hlinear + Hquadratic, (B1)

Hlinear = mσ0τ0ρz + v1k · J + v2k · J̃, (B2)

Hquadratic =
[

H0k (α1, β1, γ1) 0
0 H0k (α2, β2, γ2)

]
, (B3)

H0k (α, β, γ ) = α

4
k2σ0τ0 + β

8

(
2k2

z − k2
x − k2

y

)
σzτz
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+
√

3β

8

(
k2

x − k2
y

)
σ0τx + γ (kxkyσxτz

+ kykzσyτz + kxkyσ0τy), (B4)

where J and J̃ are explicitly shown in Appendix A. We
presume that the quadratic Hamiltonian is much smaller than
the linear Hamiltonian, so that we can treat it as a perturbation
term. Then the mass term m controls the band inversion at
�; i.e., m > 0 indicates a trivial state and m < 0 indicates a
double-band inversion at �. We analytically derive the low-
energy surface theory following Jackiw-Rebbi [16,21,52].
There are three useful variables defined by Eq. (13) and (14):
vd = (v1 − 2v2)/2, vs = (2v1 + v2)/2, and R = vd/vs.

We will utilize the bulk-boundary correspondence to cal-
culate the mirror Chern number by counting the surface states
that cross the Fermi level:

Cm = N+
R − N+

L − N−
R + N−

L

2
= N+

R − N+
L , (B5)

where N±
R/L indicates the number of surface states that

are right (R) or left (L) moving (specifically, positive
or negative slope) in the sector with ±i mirror eigen-
values. The second equality follows from time-reversal
symmetry.

1. Mz mirror Chern surface states

a. Mirror Chern number

In momentum space, kz = 0 is an Mz-invariant plane,
where the Hamiltonian can be decomposed into two mirror-
invariant subspaces. The mirror operator Mz = C2zP has
eigenvalues ±i. The eigenvectors provide a unitary basis
transformation matrix,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

After conjugating by U , the linear-order Hamiltonian Hlinear is
expressed as H+i

Mz
⊕ H−i

Mz
, where the superscript indicates the

mirror eigenvalue of each block. H±i
Mz

are each functions of kx

and ky, with kz = 0. The expression for H±i
Mz

is

H±i
Mz

= − mτz ∓
(√

3

2
vsτy − vdσxτy ± vs

2
σyτx

)
ky

+
(√

3

2
vsτx + vdσxτx ± vs

2
σyτy

)
kx. (B7)

Now consider a slab that is finite in the y direction but
infinite in the x and z directions. Then we can express the mass
m(y) as a function of y, which changes sign across y = 0. To
solve for the eigenstates of the slab, we replace ky with −i∂y

to get a continuum surface model for the kz = 0 mirror plane.
Zero-energy eigenstates will be solutions to the Schrödinger

equation H±i
Mz

� = 0. Although after the substitution ky →
−i∂y, H±i

Mz
is not Hermitian any more, we can nonetheless find

real eigenvalues that correspond to localized boundary states.
To do this, we use the Jackiw-Rebbi ansatz [52] and start

with a solution of the form � = N e− 1
ξ

∫ y
0 m(y)dy

χ . Here N is a
normalization factor, ξ is the exponential decay length, and χ

is a spinor. Plugging � into the Schrödinger equation with the
Hamiltonian H±i

Mz
and taking kx = 0 yields the equation{

−mτz ∓
(√

3

2
vsτy − vdτy ± vs

2
σyτx

)(
−i

−m

ξ

)}
χ = 0.

(B8)

Let us first focus on the +i subspace. There are four so-
lutions that satisfy the equation, with four different de-
cay lengths ξ = ±(vd ± vs). However, the solution should
be normalizable, which requires ξ > 0. If we choose
vd > vs > 0 then the two physical solutions are ξ1 =
vd + vs, χ1 = 1

2
√

2
(
√

3,−1,−1,
√

3) and ξ2 = vd − vs, χ2 =
1

2
√

2
(1,

√
3,

√
3, 1).

We then project the remaining second line of our Hamil-
tonian (B7) into the low-energy subspace spanned by the two
solutions, which yields

〈χi|H+i
Mz

|χ j〉 =
(

−(vd − vs
2 )kx

√
3

2 vskx√
3

2 vskx −(vd + vs
2 )kx

)
. (B9)

The energy eigenvalues are all linear in kx and have neg-
ative slopes −(vd ± vs)kx. Similarly, for the −i subspace,
the energy eigenvalues are (vd ± vs)kx. This result can be
understood because the −i bands are the Kramers partners of
+i bands. For the case vd < vs < 0, the same result can be
obtained. Thus, we deduce that for the case R > 1 the mirror
Chern number is Cm = −2.

If 0 < R < 1, we can get the energy eigenvalues in the
same way. The slopes for the +i subspace are ( vs

2 ± vd )kx.
If 0 < R < 1/2, the slopes are both positive, corresponding to
mirror Chern number Cm = 2. If 1/2 < R < 1, the two slopes
have opposite signs, but the mirror Chern number cannot
change because R = 1/2 does not correspond to the bulk band
gap closing. Instead, the surface state is a cubic-like curve that
crosses the Fermi level three times, which we have verified
numerically. Figure 8(c) shows one example when 1

2 < R <

1. Focusing on the blue curves, indicating localization on the
top boundary, the mirror Chern number is equal to number
of right-moving bands (NR) minus left-moving bands (NL):
if we count the bands at energy 0.5, NR = 2, NL = 0, while
if we count at energy 0, NR = 3, NL = 1. Thus, there is no
contradiction and we deduce Cm = NR − NL = 2.

Figure 8 shows examples of the surface state spectrum for
the +i sector as R is tuned through phase transitions [accord-
ing to (B5), analyzing +i subspace is enough to determine the
mirror Chern number].

b. Surface potential

We now derive the surface theory in the presence of a
surface potential. As discussed in the main text, the surface
potential can result from different sources, such as cleaving to
reveal a low-symmetry surface, making a heterostructure, or
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FIG. 8. Surface states for the +i subspace in Mz and Mxy invariant planes for different values of R. These plots are made from the two-
dimensional slab models for the +i Mz or Mxy subspace of the bulk Hamiltonian (7); the four figures in the top row are surface states in
the +i subspace of Mz, while the four figures in the bottom row are surface states in the +i subspace of Mxy. The horizontal axis is along
the corresponding symmetry-preserving line in the surface Brillouin zone. In a slab configuration, the blue bands are localized at the front
edge and the red points are localized at the other edge. Without loss of generality, we can focus on the states with blue color. In (a) and (e),
R = −1/3; in (b) and (f), R = 0; in (c) and (g), R = 2/3; in (d) and (h), R = 2. Panel (f) shows a phase transition for only the Mxy surface
states as discussed in Appendix B 2. Panel (h) shows a trivial state with Cm = N+

R − N+
L = 0. The crossing at � can be gapped by adding the

quadratic terms that reduce the symmetry from SO(3) to Pm3̄m, as discussed at the end of Appendix B 2 and shown in Fig. 9.

adding strain. Regardless of the source, we model these effects
by adding the lowest-order Mz-breaking surface potential:

Vsurface =
[
V (δa1, δb1) 0

0 V (δa2, δb2)

]
, (B10)

V (δa, δb) = δaσxτz − δbσyτz, (B11)

which is the same surface potential as Eq. (15), taking δc =
δd = 0.

We first reexpress this surface potential in basis of
Mz eigenstates, then project it to the low-energy subspace
spanned by 〈ψ1, ψ2, ψ3, ψ4〉, where ψ1, ψ2 are the zero-
energy wave functions in the +i subspace, and ψ3, ψ4 are
the zero-energy wave functions in the −i subspace. For the
vd > vs > 0 case, the linear-order Hamiltonian becomes

Heff = vd kxσ0τz − vs

2
kxσzτz +

√
3

2
vskxσxτ0

+ 1

2
(δa1 + δa2)σxτx + 1

2
(δb1 − δb2)σxτy. (B12)

The four energy eigenvalues for this effective surface model
are

E = ±vskx ±
√

v2
d k2

x +
(

δa1 + δa2

2

)2

+
(

δb1 − δb2

2

)2

.

(B13)

Since the term under the square root is positive definite, a
surface gap is always opened with this term. It is worth
mentioning that the surface potential preserves inversion sym-
metry and time-reversal symmetry, so the hinge states should
not be gapped. Similar results for Mx and My surface states
can be derived in the same way. Figure 5 shows the Mx and
My surface states become gapped upon adding certain surface
potentials.

2. Mxy mirror Chern surface states

It is useful to first define k1 = (kx + ky)/
√

2, k2 = (kx −
ky)/

√
2. The mirror-invariant plane then is k2 = 0. The trans-

formation matrix that block-diagonalizes the Hamiltonian in
this plane, found from the eigenstates of C2,11̄0P , is given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
2 − i

2 0 0 0 − 1
2 + i

2 0
0 0 0 − 1

2 − i
2 0 0 0 1

2 + i
2

0 0 0 1√
2

0 0 0 1√
2

0 0 1√
2

0 0 0 1√
2

0

− 1
2 + i

2 0 0 0 1
2 − i

2 0 0 0
0 1

2 + i
2 0 0 0 − 1

2 − i
2 0 0

0 1√
2

0 0 0 1√
2

0 0
1√
2

0 0 0 1√
2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B14)
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In this basis, the linear-order Hamiltonian again decom-
poses into H+i

Mxy
⊕ H−i

Mxy
, where

H±i
Mxy

= − mτz +
[√

3

8
vs(σx − σy)τx ∓

(
vd − vs

2
σz

)
τy

]
k1

− (vdσz + vs)τxkz. (B15)

Following the same steps as we did to derive the surface
states protected by Mz, we consider a sample that is finite
in the k1 (w1) direction and replace k1 with −i∂w1 , where
w1 = (x + y)/

√
2, w2 = (x − y)/

√
2. Now k2 and kz are good

quantum numbers and k2 = 0 is the mirror-invariant plane
we are interested in. We take the mass to be a function of
w1, i.e., m(w1), and model the boundary by allowing it to
change sign when w1 changes sign. We start with the ansatz
� = N e− 1

ξ

∫ w1
0 m(w1 )dw1χ . Solving the Schrödinger equation

when kz = 0 in Eq. (B15) yields two physical solutions for the

+i sector. The first one is ξ1 = 1
2vs +

√
v2

d + 3
4v2

s , with spinor

χ1 = N1

⎛
⎝√

2

3
(1 − i)

√
v2

d + 3
4v2

s − vd

vs
, 1,

−
√

2

3
(1 − i)

√
v2

d + 3
4v2

s − vd

vs
, 1

⎞
⎠,

where N1 = 1/

√
2 + 8

3 [(
√

v2
s + 3

4v2
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lution is ξ2 = − 1
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4v2
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We now project H+i
Mxy

onto the low-energy subspace
spanned by χ1, χ2, and then solve for the energy eigenvalues.
We find that in the +i subspace, the Mxy mirror Chern surface
states have the following linear band dispersion:

E1 = kzvd

⎛
⎝1 − vs√

v2
d + 3

4v2
s

⎞
⎠, (B16)

E2 = −kzvd

⎛
⎝1 + vs√

v2
d + 3

4v2
s

⎞
⎠. (B17)

The two signs of the slopes vanish at R = vd/vs = 0, and
one of them vanishes at R = ±1/2. Again there is no phase
transition at R = ±1/2 because the bulk gap is not closed.
Numerical calculation for +i subspace [Fig. 8(c)] shows that
the surface states on the top boundary (color red) have a cubic
dispersion, and the mirror Chern number is counted to be 2

in the same way as we did for Mz. We conclude as follows:
when 0 < R < 1/2, both slopes are negative and the mirror
Chern number is −2; when 1/2 < R < 1, the two slopes
have opposite sign but nonetheless the mirror Chern number
is unchanged (Cm = −2); when −1/2 < R < 0, both slopes
are positive and the mirror Chern number is Cm = 2; when
−1 < R < −1/2, again the two slopes have opposite sign, but
the mirror Chern number is still Cm = 2.

For the case R > 1 or R < −1, numerical calculation
(some R values are shown in Fig. 8) shows that they differ
from the case 1/2 < R < 1 in that the surface bands no longer
have the cubic function shape. The surface bands now do not
change slope at finite k, although the zero-energy states near
the origin share the same formula. When R = 1, the bulk gap
closes at some nonzero points along �-X , which changes the
mirror Chern number by 2.

We now comment on the linear k · p model presented in
Ref. [30]. In the linear model, gapless surface states appear
even in trivial phases, as well as along low-symmetry k
directions that do not have a mirror symmetry. This is because
there is always a fourfold surface band crossing at � in
phase (I) as a result of the SO(3) rotation symmetry in the
linear model [as well as the fact that there is always some
direction with a nontrivial mirror Chern number in phase (I);
see Table III]. However, if we add the quadratic terms in the
Hamiltonian (7), the symmetries will be reduced to Pm3̄m,
allowing the surface band gap to open. This illustrates why a
linear k · p model is insufficient to describe the surface states
of the antiperovskites.

We perturbatively consider the quadratic term Hquadratic

(B3). Let us consider the +i subspace with the condition
vs = 0. The surface states have energies ±vd kz and the mir-
ror Chern number is zero. The eigenstates for the +i sec-

tor are ψ j = N e− 1
vd

∫ w1
0 m(w1 )dw1χ j , where χ1 = 1√

2
(1, 0, 1, 0),

χ2 = 1√
2
(0, 1, 0, 1). We denote the eigenstates as ψ1,2. The

first-order energy correction from the quadratic term is
〈ψ j |Hquadratic|ψ j〉. The energy difference of the two eigen-
states in the +i subspace at � is

�E = − 1
4 (β1 + β2)〈ψ j |∂2

y |ψ j〉. (B18)

If we choose m(w1) = m0 tanh(w1), then there is an analytical
result for this expression in the case vs = 0:

�E = 1

4
(β1 + β2)

3(m0/vd )2

2m0/vd + 1
. (B19)

This energy difference shifts the two +i bands, lifting the
fourfold degeneracy at � to two twofold degeneracies. Now
the crossing point of the two +i bands has been moved away
from the origin. Let us denote the point along �-X as k0(Mz )
and the point along �-M as k0(Mxy). It is now possible to open
a gap at k0(Mxy), while k0(Mz ) can remain gapless; this was
not possible in the SO(3) symmetric model. Figure 9 shows
that adding β �= 0 can open a surface gap for Mxy surface
states when R = 2 (where the Mxy mirror Chern number is
zero).
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FIG. 9. Adding quadratic terms is necessary to gap the surface
states in regions where the mirror Chern number is trivial. Here we
use the parameters m = −1, α1 = −α2 = 5, β1 = β2 = 2, γ1 = γ2 =
0, vd = 2, vs = 1. k is plotted along a segment of the path X̄ -�̄-M̄. In
this case R = 2, Cm(Mz ) = −2, and Cm(Mxy ) = 0. The trivial surface
states along �̄-M̄ are gapped by adding the β terms.

APPENDIX C: Mxy AND Mx̄y HINGE STATES

In addition to the HOTI phase protected by inversion sym-
metry, indicated by the nontrivial Z4 index, antiperovskites
are also in the HOTI phase protected by mirror symmetries
and time-reversal symmetry, indicated by even mirror Chern
numbers (similarly to SnTe [12,53]).

For the same reason that surface mirror Chern states ob-
scure the hinge states, most of the mirror symmetries should
be broken to open the surface gaps. For the rod geometry with
(100) and (010) surfaces, gapless hinge states appear when
Mxy and Mx̄y are preserved while other mirror symmetries
are broken. Notice that preserving Mxy, Mx̄y and inversion
symmetry at the same time implies preserving Mz symmetry.

Thus, in order to break Mz symmetry—necessary for
gapping the surface states—it is necessary to break either

FIG. 10. The same strain terms V1 = δa1 = −δa2 and V2 = δb1 =
−δb2 are used. (a) As shown in Table IV, V1 = −V2 = 0.1 preserves
only Mx̄y, while the other eight mirror symmetries are broken.
Hinge states are now localized at left-top and right-bottom corners.
(b) When V1 = V2 = 0.1, only Mxy is preserved. Hinge states are now
localized at left-bottom and right-top corners.

Mxy, Mx̄y or inversion. If inversion symmetry is broken and
both Mxy and Mx̄y are preserved, then there will be hinge
states on all four hinges. Here, as an example, we preserve
inversion symmetry and break either Mxy or Mx̄y, resulting in
a configuration with hinge states on two of the four hinges.

The real-space distributions of these gapless states at kz =
0 are shown in Fig. 10. Although these mirror-protected hinge
states can be obtained in theory, it may be harder to realize
them in experiment because it requires that the two strain pa-
rameters satisfy δa = ±δb; i.e., it requires fine-tuning. When
the parameters do not obey this relation, these “mirror Chern
hinge states” should be interpreted as the inversion-protected
hinge states. When δa = 0 or δb = 0, the surface gap closes on
the (010) or (100) surface, respectively, allowing for a phase
transition between the two configurations of hinge states.
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