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We present the topology of spin-split Fermi surface of CaAgAs as determined by de Haas-van Alphen (dHvA)
effect measurements combined with ab initio calculations. We have determined the torus-shaped nodal-line
Fermi surface from the dHvA oscillations of β and γ orbits. The former orbit encircles the nodal line, while
the latter does not. Nevertheless, a nontrivial Berry phase is found for both orbits. The nontrivial phase of
β arises from the orbital characters, which can be expressed as a pseudospin rotating around the nodal line.
On the other hand, the phase of γ is attributed to the vortex of real spin texture induced by an antisymmetric
spin-orbit interaction. Our result demonstrates that both the real spin and pseudospin textures are indispensable
in interpreting the electronic topology in noncentrosymmetric nodal-line semimetals.
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I. INTRODUCTION

Nodal-line semimetals (NLSMs) are a class of topological
materials characterized by a linearly dispersing band crossing
along a continuous line in the three-dimensional k space
[1,2]. Various intriguing quantum phenomena are predicted in
NLSM [3–15]. Although numerous materials are proposed as
the NLSM [16–33], most candidates accompany trivial bands
around the Fermi level (EF), which screen the characteristic
properties arising from the nodal-line (NL) bands. CaAgAs is
one of the ideal NLSM which has only a circular NL band
around the EF [34–36].

CaAgAs crystallizes in the ZrNiAs-type structure with
the noncentrosymmetric space group P6̄2m (#189) [37]. As
depicted in Fig. 1(a), it consists of four crystallographic sites:
Ca, Ag, As1, and As2. An ab initio calculation shows that
the conduction and valence bands mainly consist of Ag 5s
and As2 4pz characters, respectively, which overlap with each
other around the � point [see Fig. 1(b)]. These orbitals have
opposite eigenvalues for the (0001) mirror operation [34] and
can be regarded as opposite pseudospins. Consequently, the
bands cannot hybridize at kz = 0 (and π ) without spin-orbit
interaction (SOI), leading to the quarternary degenerated NL
as depicted in Fig. 1(c). The perturbation of the SOI allows
the hybridization and opens a gap of Δ ∼ 75 meV, giving rise
to the strong topological insulator state for a Fermi energy
(EF) locating in the middle of the gap [34,38], though the
NL topology still resides when EF is away from the gap
[35,39]. Experimentally, the linear dispersions associated with
the NL bands are confirmed by angle-resolved photoemission
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spectroscopy [40–42]. However, the effect of spin splitting has
not been addressed. The lack of inversion symmetry lifts the
spin degeneracy via an antisymmetric SOI (ASOI), inducing
an additional nontrivial feature of the real spin degree of
freedom as in the Rashba and Dresselhaus systems [43,44].
Although the ASOI in CaAgAs is small [34], it is still acces-
sible in terms of the quantum oscillation. Thus, we studied
the comprehensive picture of the spin-split Fermi surface (FS)
of the NL in CaAgAs. The nontrivial Berry phase arising
from the real spin and that from the pseudospin are found
depending on the trajectory on the torus-shaped FS.

II. METHODS

A. Experiments

Single crystals of CaAgAs were grown as described in
Ref. [42]. The crystals were confirmed to be a single domain
by the x-ray diffraction technique. The de Haas-van Alphen
(dHvA) effect on the magnetic torque τ was measured with
the piezoresistive cantilever [45], which was rotated in the
magnetic field B within the ac plane, as shown in Fig. 1(c)
(see Appendix A for details). The field angle θ is measured
from the a axis.

B. Quantum oscillation

Theoretically, an oscillatory contribution to the magnetic
torque from an extremal orbit O about the spin-nondegenerate
FS can be described as

ΔτO = CB3/2 ∂FO
∂θ

RT RD sin

[
2π

(
FO
B

− 1

2

)
± π

4
+φZ+φB

]
,

(1)
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FIG. 1. (a) Crystal structure of CaAgAs viewed along the c axis.
The z parameter of each site is given at the bottom. (b) Band structure
near the Fermi level. Ag 5s and As2 4pz characters are indicated
by colors. The dashed line indicates the experimental Fermi level
EF = −230 meV measured from the ideal Fermi level EF0. (c) The
red circle around the � indicates the NL in the Brillouin zone. The
definitions of τ and θ are given.

where C is a positive coefficient, φB is a Berry phase, and the
± sign is positive (negative) when O is a minimum (maxi-
mum) [46]. Higher harmonics are neglected. The frequency
FO is related to the cross-sectional area SO at B = 0 of the
orbit as FO = h̄SO/2πe. The temperature and Dingle reduc-
tion factors are given by RT = ξ/ sinh ξ and RD = exp(−ξD),
respectively, where ξ(D) = 2π2kBT(D)m∗/eh̄B, TD is a Dingle
temperature, and m∗ is a cyclotron effective mass. The Zee-
man energy of electron spin causes a basically linear-in-B
change in the orbit area, which does not change the apparent
frequency of the oscillation but gives rise to a constant phase
shift φZ expressed as

φZ =
∮
O

gh̄σB

4mev⊥
|dk|, (2)

with O carrying a clockwise orientation [47]. Here g is a
g factor, me is the free electron mass, and v⊥ is a Fermi
velocity along B × dk. σB is given by σB = B̂ · P with the spin
polarization P = 〈σ〉.

C. Calculations

The band-structure, FS, spin polarization, and dHvA fre-
quencies (F ’s) are calculated from the fully relativistic elec-
tronic structure based on the density functional theory (DFT)
[48] and the tight-binding method [49]. More details are given
in Appendix B. For comparison, we used both the Perdew,
Burke, and Ernzerhof (PBE) potential [50] and the Heyd,
Scuseria, and Ernzerhof (HSE06) hybrid potential [51,52] in
the DFT calculation.

III. RESULTS

A. Fermi surface

Figure 2(a) shows τ (B) at θ = 27.1◦, which is propor-
tional to B2 as expected for paramagnets. The oscillatory
components Δτ are obtained by subtracting a second-order
polynomial background τBG from τ , where dHvA oscillations
are discernible above ∼10 T. The angular variation of the Δτ

is plotted against B−1 in Fig. 2(b). The dHvA oscillations
are observed in a wide range of angles (θ = 7.1◦–77.1◦).
Figure 2(c) shows Fourier transforms of the oscillations in
the range of 9–17.8 T. The ASOI-induced spin splitting is too
small to be resolved. We also plot F ’s determined by fitting
the oscillations at high fields with Eq. (1) as circles. Here, we
neglect the spin splitting of the F ’s and hence the determined
F ’s are the averages of the split frequencies. The F ’s increase
as θ approaches to 90◦.

Figure 3(a) represents the spin-split FS calculated with
HSE06 potential and EF = −230 meV (explained below).
The FS of the circular NL becomes torus due to the self-doped
hole carriers [40]. There are four types of extremal orbits:
α, β, γ , and δ; the α and β (γ and δ) orbits correspond to
the minimum (maximum) cross sections. The ASOI splits the
torus into two tori, one nesting inside the other [Fig. 3(b)
shows cross sections schematically]. Accordingly, the four
orbits also split into spin-split pairs, but the splitting is small,
of the order of 1% of the cross-sectional areas. The Kramers

FIG. 2. (a) B dependence of the τ (left axis) and Δτ (right axis) at 30 mK. The dashed line indicates a second-order polynomial background.
(b) Δτ (left axis) as a function of B−1 and (c) Fourier transforms of the dHvA oscillations (left axis) for various field directions. The data in
(b) and (c) are measured with 5◦ interval and vertically shifted in accord with θ (right axis). The black circles are average F ’s of the spin-split
FS determined by fitting Δτ at high fields with Eq. (1). The green stars are F ’s reported in Ref. [53]. The blue and red dashed lines are F versus
θ calculated by using the PBE and HSE06 potentials, respectively. (d) Temperature dependence of the β (circle) and γ (square) oscillation
amplitudes A. The errors are defined as a mean background amplitude around the peaks in Fourier transformed spectra and the curves are fits
to RT.
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FIG. 3. (a) Extremal cross sections of the spin-split FS for B ‖ a
(β and γ ) and B ‖ c (α and δ). The dashed lines are along �-K lines.
The ASOI splits the torus FS into two tori, one nesting inside the
other. (b) Illustration of the cross sections of the spin-split FS. The
red and blue lines indicate the inner and outer tori, respectively. The
magnitude of spin split is exaggerated. (c) Real spin and (d) pseu-
dospin polarizations for the states of spin-split FS. The magnitude of
each spin vector is normalized to unity for clarity.

degeneracy is preserved along �-K lines in consequence of
the D3h point-group symmetry.

Figure 2(c) shows the simulated angular dependence of the
four frequency branches using the PBE and HSE06 potentials
with EF = −147, −230 meV, respectively, which are deter-
mined so that Fβ coincides with the experiment. The smaller
(larger) F ’s correspond to the β (γ and δ) branch(es). The
overall agreement proves the realization of the torus-shaped
FS of the circular NL. The calculation with the HSE06 gives
better agreement with the experiment than the one with the
PBE because the former better estimates the overlap between
the conduction and valence bands.

Very recently, Y. H. Kwan et al. [53] reported measure-
ments of dHvA oscillations on CaAgAs up to 45 T. They also
found the torus-shaped Fermi surface. The green star marks
in Fig. 2(c) show the F ’s reported in Ref. [53]. Our Fγ ’s well
coincide with theirs [54]. However, our Fβ’s are significantly
larger than theirs. The discrepancy may be ascribed to the dif-
ference of frequency resolution because at most two periods
of the β oscillation are observed in Ref. [53]. The absence
of the α branch in our data is probably because of the small
curvature factor suppressing its amplitude [46]. In addition, Y.
H. Kwan et al. observed a small peak around F = 210 T [not
shown in Fig. 2(c)] in their Fourier spectrum and argued that
F = 210 and 260 T might arise from the Zeeman splitting of
a single orbit. However, we saw no corresponding F in our
Fourier spectra. The Zeeman effect does not split F ’s but only
gives rise to ±φZ phase shift as noted above. We also note that
the ASOI-induced spin splitting (2ΔFγ 	 3 T as determined
below) is much smaller than the claimed splitting.

Since the oscillation amplitude around B ‖ a is small due
to the small ∂FO/∂θ factor in Eq. (1), we measured m∗ at θ =
36.4◦. Figure 2(d) shows the temperature dependence of the
oscillation amplitudes of Fβ (36.4◦) = 118 T and Fγ (36.4◦) =

283 T. m∗
β (36.4◦)/me = 0.095(9), m∗

γ (36.4◦)/me = 0.130(8)
are obtained by fitting the data with RT . Approximating
the angular dependence of the β orbit as the one of a
cylinder along the a axis, we have Fβ (0◦) 	 Fβ (θ ) cos θ =
95.0 T and m∗

β (0◦) 	 m∗
β (θ ) cos θ = 0.076(8) me, which cor-

respond to kF = 5.4 × 10−2 Å−1 and vF = 8.1(8) × 105 m/s
of the β cross section. Assuming a linear (parabolic) dis-
persion perpendicular to the NL, the EF is estimated as
−288(29) [−144(14)] meV; the linear dispersion gives a
closer value to −230 meV from the ab initio calculation, as
expected. The radius of the circular NL kR is estimated to be
8.4 × 10−2 Å−1 from the geometrical relation of the orbits
of Fβ (36.4◦) and Fγ (36.4◦) and assuming an ideally torus-
shaped FS. Accordingly, the carrier concentration is estimated
from the volume of the torus as 4π2kRk2

F/(2π )3 = 3.9 ×
1019 cm−3, which is smaller than previous reports obtained
by the Hall effect [35,41,42,55].

Having identified the FS, we visualize, in Figs. 3(c) and
3(d), the calculated polarization of the real spin P and the
pseudospin Pp on the FS obtained with the HSE06 and EF =
−230 meV determined above. Here, the up (down) of the
pseudospin is defined as the orbital character of the Ag 5s
(As2 4pz). The Pp is evaluated with the effective eigenspinor
constructed by projecting the calculated tight-binding wave
function on the two orbital bases, |Ag 5s〉 and |As2 4pz〉. The
real spin has a vortex texture around the �-K line, while the
pseudospin has one around the NL.

B. Oscillation phase

To reveal the nontrivial nature of the electronic states,
we analyzed the phases of the β and γ oscillations. In
the limit of B → 0, neither of the β and γ orbits is self-
constrained by time-reversal operation; there is a time-reversal
symmetric (TRS) pair of orbits on each of the spin-split
FSs as indicated in Fig. 3(a). Therefore, each of the β and
γ oscillations consists of the interference of four individual
oscillations.

The φB of an individual oscillation can be considered as
a sum of the real spin contribution φB,r and the pseudospin
contribution φB,p. Then, the dHvA oscillations from the spin-
split pair of orbits have split frequencies FO ± ΔFO with
the same sign of φB,p but with opposite signs of φZ and
φB,r. Similarly, those from the TRS pair of orbits have the
same F and opposite signs of φZ, φB,r, and φB,p [47]. Thus,
the individual oscillations of the O (= β, γ ) branch can be
expressed as

ΔτO,t,s = CB3/2 ∂FO
∂θ

RT RD sin

[
2π

(
FO + sΔFO

B
− 1

2

)

±π

4
+ tsφZ + tsφB,r + tφB,p

]
. (3)

Here, t = ±1 denotes the time-reversal symmetric pair of
orbits, and s = ±1 denotes the spin-split pair of orbits. In
addition, because the hybridization gap is much smaller than
|EF|, the φB,p is constrained to Nπ with N being the winding
number of the pseudospin [39,56,57]. Then, the sum of Eq. (3)
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FIG. 4. (a) Oscillatory components of the Δτ at θ = 27.1◦ plotted against B−1. Δτβ and Δτγ are extracted from the Δτ by boxcar
smoothing (see text). Δτres is Δτ − Δτβ − Δτγ . (b) Fourier transforms of the various Δτ ’s shown in (a). (c) Δτγ and (d) Δτβ as a function of
Fγ /B − 1/8 − 1/4 and Fβ/B + 1/8 − 1/4, respectively. The data are vertically shifted as in Fig. 2(b). To show the reproducibility, the results
of two distinct measurements are superimposed. The arrows in (c) indicate the positions of the observed beating node. The red solid curve is
the angle dependence of the node position calculated by using EASOI = 1.37 meV and the ab initio FS, while the red dashed curves are the
expected neighboring node positions if the nγ of the observed node were 2 or 3. The inset in (c) shows I defined in Eq. (5).

for the four individual oscillations of the O branch becomes

ΔτO =
∑

t,s=±1

ΔτO,t,s

= 4CB3/2 ∂FO
∂θ

RT RD cos

(
2π

ΔFO
B

)
cos(φZ + φB,r)

× cos(φB,p) sin

[
2π

(
FO
B

− 1

2

)
± π

4

]
. (4)

The first cosine factor describes the beating between the spin-
split F ’s, while the other cosine factors change sign depending
on φZ, φB,r, and φB,p. In the following, we determine φB,r and
φB,p for each of β and γ based on Eq. (4).

To consider the β and γ oscillations (Δτβ , Δτγ ) separately,
we extract each of them from the observed oscillation Δτ as
follows: We first plot the Δτ as a function of B−1 in Fig. 4(a).
Then, the β and γ oscillations are effectively suppressed by
applying two boxcar smoothings with the box width of F−1

β

and F−1
γ . The residual Δτres contains a background from the

cantilever. The Δτβ is obtained from Δτ − Δτres by simi-
larly applying one boxcar smoothing with the box width of
F−1

γ to remove the γ oscillation. Finally, Δτ − Δτres − Δτβ

provides Δτγ . The results are also shown in Fig. 4(a). The
Fourier transformations in Fig. 4(b) confirms the validity of
the extraction. Figures 4(c) and 4(d) shows Δτγ and Δτβ as
a function of F/B ± 1/8 − 1/4. The sine factor in Eq. (4)
becomes minima at integers of this abscissa.

Let us start with the γ oscillation. At θ = 32.1◦, the sign of
the oscillation changes at the specific field Bnode, indicated by
arrows in Fig. 4(c); the oscillation has tops at integers of the
abscissa on the left of Bnode (B > Bnode), while bottoms are on
the right (B < Bnode). An in-phase intensity with cos (2πx) in

Δτγ ,

I (x′) =
∫ x′+1/2

x′−1/2
Δτγ (x) cos (2πx)dx, (5)

where x = Fγ /B − 1/8 − 1/4, shows the sign change across
Bnode more apparent [see the inset of Fig. 4(c)]. This sign
change corresponds to the beating due to the cos (2πΔFγ /B)
factor in Eq. (4). The Bnode is determined by fitting the Δτγ

with Eq. (4). Note that, at θ � 47.1◦, there is a finite amplitude
of oscillation at Bnode as well as a phase shift and an increase
of Fγ /Bnode with θ . They may be explained by an appearance
of a magnetic breakdown (MB) between the spin-split orbits.
A discussion over the MB as well as fittings of Δτγ with and
without the MB is given in Appendix C. The Bnode could not
be determined for θ � 27.1◦ because the oscillation becomes
too weak before the node occurs.

Numbering beating nodes from the highest field one to
satisfy ΔFO/Bnode = nO/2 − 1/4 (nO = 1, 2, . . .), the ob-
served one is of nγ = 1 or 2. This is because there is only
one beating node within the observed oscillations ranging
from 8 T to 17.8 T at each θ . If nγ > 2, the neighboring
node n′

γ = nγ ± 1 should be observed at B′
node = [2 − (2n′

γ +
1)/(2nγ + 1)]Bnode; however, no such node exists [see red
dashed curves in Fig. 4(c), which show expected neighboring
node positions when nγ were 2 or 3].

The geometrical relation between the γ and β orbits fur-
ther reduces the possibility of the nγ . If nγ = 1 (2), ΔFγ =
2.72–3.40 (8.16–10.20) T for θ = 32.1–47.1◦. Assuming a
k-independent energy of ASOI EASOI, this corresponds to
EASOI = 1.37 (4.12) meV. Then, the splitting of the β oscil-
lation ranges ΔFβ = 1.26–1.64 (3.78–4.93) T and the asso-
ciated position of the beating node for nβ = 1 is estimated
as Fβ/Bnode = 20.8–20.3 (6.93–6.77). The dashed curve in
Fig. 4(d) shows the expected nβ = 1 node positions when
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nγ were 2. The β oscillation neither shows a node nor is
damped near the dashed curve at θ = 17.1–32.1◦ where the
oscillations are strong enough, indicating nγ = 1 (Fβ/B ∼
20.6 is out of our observation of the dHvA oscillations).

The so determined nγ = 1 allows us to find the Berry phase
of the γ oscillation from Eq. (4) as follows: The ∂Fγ /∂θ factor
is positive [Fig. 2(c)]. Since ΔFγ /Bnode = nγ /2 − 1/4 = 1/4
at the node position, cos (2πΔFγ /B) factor is positive for
B > Bnode. While the sine factor of Eq. (4) takes minima at
integer values of the abscissa as noted above, the observed
γ oscillation shows maxima there. Accordingly, the product
cos (φZ + φB,r) cos (φB,p) is negative. Moreover, since the γ

orbit is self-constrained by the (011̄0) mirror operation as long
as B is rotated within the kx-kz plane; the φB,r is constrained
to an integer multiple of π [58]. From the same reason, φZ is
always 0 as given in Appendix D. Therefore, the γ orbit has
a nontrivial Berry phase arising from either φB,r or φB,p. Since
the γ orbit topologically does not encircle the NL, φB,p = 0
and φB,r = π (mod 2π ) are concluded. This result agrees with
the expectation from the fact that the γ orbit encircles three
�-K lines, leading to φB,r = 3π . Thus, the nontrivial Berry
phase of the γ orbit is attributed to the real spin texture.

Similarly, the Berry phase of the β oscillation is deter-
mined: From Fig. 2(c), ∂Fβ/∂θ > 0. As mentioned above,
the β oscillations are observed in the field range B > Bnode

for nβ = 1; hence, cos (2πΔFβ/B) > 0. Since the β oscil-
lation shows maxima at integer values of the abscissa, the
cos (φZ + φB,r) cos (φB,p) factor is identified as negative for
the angle range θ = 17.1–47.1◦, where we observe the dis-
cernible β oscillation. In the case of the β orbit, the constraint
on the φB,r [58] (Appendix E) and φZ = 0 (Appendix D) are
assured only at θ = 0◦ where the orbit is self-constrained by
the (0001) mirror operation. However, it can be shown from
the elaborate spin-zero analysis given in Appendix F that the
sign of cos (φZ + φB,r) factor does not change in |θ | � 47.1◦.
Consequently, the β orbit also has a nontrivial Berry phase
at θ = 0◦ owing to either of the φB,r or φB,p. Contrary to the
γ orbit, the β orbit encircles no �-K line but encircles the
NL. Therefore, φB,p = π , which is attributed to the NL and
evidences the NL topology of the orbital characters.

Finally, it should be mentioned that Y. H. Kwan et al.
reached a conflicting conclusion in Ref. [53]: They concluded
that the β orbit has a nontrivial Berry phase π , whereas the
γ orbit does not. Reference [53] used a different analytical
procedure than we do, but that is not the source of the
discrepancy as follows: Ref. [53] determined the Berry phases
of the β and γ oscillations by fitting the total oscillation with
the simplified two-component Landau-Lifshitz formula, ne-
glecting the ASOI-induced spin splitting of the Fermi surface.
Although this type of analysis could be superior in that it could
allow one to investigate the exact phase values, the spin split-
ting cannot be neglected since Berry phases obtained from
analysis depend on the sign of the cos (2πΔFO/B) beating
factor in Eq. (4) where 2ΔFO is the spin splitting at B = 0.
According to our analysis, the beating nodes observed in our
γ oscillation [arrows in Fig. 3(c)] are the highest-field ones
and thus cos (2πΔFO/B) > 0 at higher fields as implicitly
assumed in Ref. [53]. Therefore, the neglect of the beating
factor in Ref. [53] cannot explain the discrepancy. In passing,

the fact that Ref. [53] observed no sign of a beating node at
higher fields proves the correctness of our analysis.

Although the exact reason of the discrepancy is unclear,
we can point out the following possible factors: (1) The sign
of the torque signal used for the analysis in Ref. [53] was
not determined experimentally but assumed to be negative
based on that CaAgAs is diamagnetic. However, the sign of
the torque is determined by the anisotropy of the suscepti-
bility and depends on the field direction (see Appendix A).
Therefore it is unclear whether the correct sign was assigned
to the analyzed torque signal in Ref. [53]. (2) Reference
[53] used much higher magnetic fields, 45 T, where the MB
between spin-split orbits may not be negligible. The MB
may affect the phase of the γ oscillation as described in
Appendix C. (3) The phase of the β oscillation determined
in Ref. [53] has considerable ambiguity since at most two
periods of the β oscillation are discernible in Ref. [53]. Note
that there is a discrepancy in Fβ values between theirs and ours
[Fig. 2(c)]. (4) It is unclear toward which direction the field
was tilted in Ref. [53]; the field was rotated from c-parallel
to “c-perpendicular” directions. Since the phase of the γ

oscillation depends on the number of encircled �-K lines, as
well as constraints by symmetry, the phase depends on the
field direction.

IV. CONCLUSION

In conclusion, we have determined the torus-shaped FS
in CaAgAs via quantum-oscillation measurements. We have
analyzed the oscillations by taking into account the interfer-
ence of oscillations from the ASOI-induced spin-split pair of
orbits as well as the TRS pair of orbits. As a result, we have
found a nontrivial Berry phase for both β and γ orbits. The
former encircles the NL and hence the observed Berry phase is
ascribable to the pseudospin texture around the NL. The latter
orbit topologically does not encircle the NL. With the aid of
ab initio calculations, we have demonstrated that the Berry
phase associated with γ originates from the real spin texture
where the spin direction rotates around the �-K line in the
Brillouin zone. Our results suggest that noncentrosymmetric
NL semimetals provide fertile ground for investigating new
quantum phenomena arising from synergy between spin and
orbital pseudospin physics.
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APPENDIX A: SIGN OF MAGNETIC TORQUE

We measured the magnetic torque τ by using a piezoresis-
tive cantilever (MouldLessCantilever SSI-SS-ML-PRC400,
Seiko Instruments Inc.) [45]. The experimental setup is
schematically illustrated in Fig. 5(a) together with the no-
tations for the field angle θ and τ . The sign of τ exerted
on a sample is known from whether the resistance of the
piezoresistor increases or decreases. The sign of τ is essential
when discussing the phase of de-Haas van-Alphen (dHvA)
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FIG. 5. (a) Schematic of the experimental setup for the torque
magnetometry utilizing a cantilever and the notations for θ and τ .
(b) Angular dependence of the τ measured at 17.8 T and 30 mK. The
insets are the enlarged views of the angular variation of the dHvA
oscillations.

oscillation; assigning a wrong sign of the oscillation shifts
the phase by π . Figure 5(b) shows the angular dependence
of τ at 17.8 T and 30 mK. Since the τ is expressed in terms
of a magnetic susceptibility χ as τ = −(∂χ/∂θ )B2, the sign
of the sinusoidal torque curve in Fig. 5(b) is consistent with
the anisotropy of χ , χa < χc, measured on a single crystal;
this confirms the sign of our torque data. The insets of
Fig. 5(b) show enlarged views of the θ variation of dHvA
oscillations superimposed on the torque curve. The signs of
the dHvA oscillations in 0◦ < θ < 90◦ and in 90◦ < θ < 180◦
are opposite due to the different sign of the ∂FO/∂θ factor in
Eq. (1).

APPENDIX B: CALCULATION METHOD

The fully relativistic electronic structure was calculated
based on density functional theory [48] as implemented in
the QUANTUM ESPRESSO package [59]. For comparison, we
used both the Perdew, Burke, and Ernzerhof (PBE) function
[50] and the Heyd, Scuseria, and Ernzerhof (HSE06) hybrid
function [51,52] for exchange potential. A 6 × 6 × 9 k-point
mesh was used for the self-consistent field procedure. A
plane-wave cutoff energy of 140 Ry and a fully relativis-
tic projector augmented-wave method [60] were used for

the calculation with the PBE potential, while a plane-wave
cutoff energy of 55 Ry, fully relativistic norm-conserving
pseudopotentials [61–63], and a 2 × 2 × 3 q-point mesh were
used for the calculation with the HSE06 potential. The dif-
ference of the cutoff energies is due to the different types
of the pseudopotentials. The band-structure, Fermi surface,
and spin polarizations are calculated by using the 54-orbital
tight-binding model based on maximally localized Wannier
functions constructed with the Wannier90 program [49]. The
dHvA frequencies are calculated from the Fermi surface by
using the algorithm described in Ref. [64].

APPENDIX C: MAGNETIC BREAKDOWN

The interference of four individual oscillations results in
the beating with the envelope function cos(2πΔFO/B). We
observe such a beating in the γ oscillation. The magnetic field
at the beating node Bnode is obtained by fitting the Δτγ with
Eq. (4). Here, we omit ∂Fγ /∂θ , cos(φZ + φB,r), and cos(φB,p)
factors since they are only related to the intensity and the sign.
The so obtained Bnodes are indicated by arrows in Fig. 6(a)
together with the red fitting curves.

It is noticeable in Fig. 6(a) that Δτγ s for θ � 47.1◦
have a finite intensity of oscillation even at B = Bnode. Since
ΔFγ /Fγ ∼ 0.011 is quite small, the difference of ∂Fγ /∂θ

factor, the effective mass, or the Dingle temperature between
the spin-split orbits may not account for the intensity at
Bnode. A MB between the spin-split orbits is rather plausi-
ble origin because the intensity at Bnode becomes larger as
Bnode increases with θ . MB is an electron tunneling between
two distinct extremal orbits at specific k points. When an
electron completes a closed orbit with an even number of
MBs, it contributes to the dHvA oscillation whose frequency
FMB corresponds to the area enclosed by its trajectory; FMB

is between Fγ ± ΔFγ . Generally, the MB between spinless
bands can occur when the cyclotron energy h̄ωc = h̄eBc/m∗
exceeds E2

g /EF, where Eg is an energy gap between the orbits
and EF is the Fermi energy [46]. By using EF = 288 meV
and m∗

γ = 0.130 me at θ = 36.4◦ and approximating Eg as

FIG. 6. (a) γ oscillation component Δγ as a function of B−1. The gray dotted lines are experimental data, whereas the bold red and blue
curves are the fits with Eq. (4) and Eq. (C2), respectively. Arrows indicate the positions of B = Bnode. (b) Real spin polarization P on the γ orbit
at θ = 50◦. The γ orbit is on the k‖-ky plane at k⊥ = 0.022 (2π/Å), where k‖ = − sin(50◦)kx + cos(50◦)kz and k⊥ = cos(50◦)kx + sin(50◦)kz.
The inset illustrates the relation between the k‖-k⊥ and kx-kz coordinates. The direction and color of the arrows indicate the in-plane and
out-of-plane components of P/|P|, respectively. Green circles mark the candidates of the breakdown k points where P rotates quickly along
the orbit.
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2EASOI = 2.75 meV obtained in the main text, Bc is estimated
as ∼0.03 T. The quite small Bc indicates that the MB can
occur when the spin polarization can be neglected.

In case of the MB between the spin-split bands, tunneling
between the opposite spin state is expected to be suppressed
[65]. This would also be the case of CaAgAs, where the
energy scale of the spin-orbit interaction (SOI) Δ ∼ 75 meV
is far larger than h̄eB/m∗ ∼ 16 meV at B = 17.8 T. An excep-
tion is at k points where spin orientation quickly rotates to the
opposite along the orbit; an electron tunnels to preserve the
spin orientation. The spin polarization on the γ orbit for θ =
50◦ is shown in Fig. 6(b). There are five k points, indicated
by circles, where spin polarization quickly changes; those are
candidates of the breakdown k points where MB may occur.
The observed MB oscillation is probably a sum of several
MB oscillations corresponding to the MBs occurring at any
possible selection of the breakdown k points. The intensity
of the MB oscillation at B = Bnode decreases with decreasing
θ and almost vanishes at θ = 42.1◦. This trend may indicate
that the MB only occurs at B > Bc ∼ 13 T. The discrepancy
between the Bcs estimated from the spinless assumption and
the intensity at B = Bnode is probably because an electron
needs to tunnel much longer distance (and larger Eg) than the
spinless case to preserve the spin orientation.

The phase shift and the increase of Fγ /Bnode observed
in Δτγ at θ � 47.1◦ can also be explained by considering
the effect of MB. The effect of MB can be introduced into
Eq. (4) as an additional factor Rm,n = (ip)m(q)n, where p2 +
q2 = 1, p2 (q2) is the probability of (not) having MB at the
breakdown k point, and m (n) is the number of MBs (not)
taking place at a breakdown k point in an orbit. Assuming that
the probabilities of having a MB at each breakdown k point
are equivalent, it is expressed as p2 = exp(−Bc/B). Since
our data is not sufficient to decompose the MB oscillations
to each, we roughly approximate the MB oscillation as a
single component which has a factor of αR2,3, a frequency
of FMB = Fγ , and an arbitrary phase shift φMB. The α is a
correction factor to take into account contributions from all
MB oscillations. The phase shift occurs because the electron
does not complete its orbit in a single band. Then, the MB
oscillation for the γ orbit is expressed as

ΔτMB 	 4αCB3/2 ∂Fγ

∂θ
RT RDR2,3

× sin

[
2π

(
Fγ

B
− 1

2

)
− π

4
+ φMB

]
. (C1)

By taking a sum with the non-MB oscillation Δτγ multiplied
by R0,5, the total oscillation becomes

Δτtotal = 4CB3/2 ∂Fγ

∂θ
RT RD(X 2 + Y 2)1/2

× sin

[
2π

(
Fγ

B
− 1

2

)
− π

4
+ φ′

MB

]
, (C2)

where

X = R0,5 cos

(
2π

ΔFγ

B

)
cos(φZ + φB,r) cos(φB,p)

+αR2,3 cos(φMB),

Y = αR2,3 sin(φMB),

sin(φ′
MB) = Y/

√
X 2 + Y 2,

cos(φ′
MB) = X/

√
X 2 + Y 2.

The φ′
MB explains the observed phase shift. The node position

of the envelope function corresponds to the minimum of
(X 2 + Y 2)1/2, where Bnode no longer satisfies ΔFγ /Bnode =
nγ /2 − 1/4 due to the nonzero R2,3 factor. Thus, the increase
of Fγ /Bnode at θ � 47.1◦ may stem from the MB. The Eq. (C2)
well reproduces the observed Δτγ , as shown in Fig. 6(a).
Since the effect of MB is not apparent at θ � 42.1◦, our
analyses and results based on Bnode are not affected by MB.

APPENDIX D: CONSTRAINTS ON φZ

The value of φZ can be deduced from the D3h point-group
symmetry and the symmetry of an orbit. For the ease of
understanding, we give a parametric representation of the
spin-polarization P(k) up to third order of k [66]:

P(k) = α1k2
r kz(P̂x sin 2φ + P̂y cos 2φ) + α2k3

r P̂z sin 3φ.

(D1)

Here, α1 and α2 are independent coefficients, kr = (k2
x +

k2
y )1/2, and φ = arctan(ky/kx ). This form well reproduces the

real spin texture from the ab initio calculation shown in
Fig. 3(c).

In the case of the γ orbit, the orbit is self-constrained by the
(011̄0) mirror operation since B is rotated within the (011̄0)
mirror plane (which is equivalent to kx-kz plane and a-c plane).
Then, for any k = (kx, ky, kz ) on the γ orbit, k′ = (kx,−ky, kz )
exists on the same orbit and Pi(k) = −Pi(k

′) (i = x, z) ac-
cording to Eq. (D1). Thus, σB = B̂ · P in Eq. (2) cancels out
within the orbit, leading to φZ = 0. When B is strong enough
to align σ along B, the cancellation is not valid. However, the
energy scale of the SOI is Δ ∼ 75 meV, which is far larger
than the Zeeman energy of ∼1 meV at 17.8 T and g = 2. So,
the cancellation is valid.

In the case of the β orbit, the situation is similar at θ =
0◦ (B ‖ kx ). The β orbit is self-constrained by the (0001)
mirror operation at θ = 0◦. Then, for any k = (kx, ky, kz ) on
the β orbit, k′ = (kx, ky,−kz ) exists on the same orbit and
Pi(k) = −Pi(k

′) (i = x, y) according to Eq. (D1). Therefore,
σB cancels out within the orbit. This can also be confirmed
simply because the β orbit at θ = 0◦ locates on the kx = 0
plane, where Px(k) is restricted to 0 due to the D3h point-group
symmetry. As a result, the σB in Eq. (2) is 0, and hence φZ = 0.
On the other hand, at θ > 0◦, B is no longer perpendicular
to P. Thus, the increase of the σB is proportional to sin θ

by approximating the P(k) as being parallel to kz. Besides,
φZ is proportional not only to σB but also to m∗

β since v⊥ =
h̄k⊥/m∗. By approximating the θ variation of the β orbit as
the one of a cylinder along the kx axis, m∗

β (θ ) is expressed as
m∗

β (0◦)/ cos θ . Therefore, the φZ of the β roughly increases as
∝tan θ .

APPENDIX E: REAL SPIN BERRY PHASE
OF THE β ORBIT

As mentioned in the main text, the φB,r of the β orbit
is constrained to an integer multiple of π only at θ = 0◦
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FIG. 7. (a,b) Real spin polarization P on the β orbit at (a) θ = 0◦

and (b) 45◦. (c) The trajectories of P along the β orbit at θ = 0◦ and
45◦ projected on the Bloch sphere. (d) Angular dependence of the
|φB,r| for the β orbit.

by the (0001) mirror operation, whereas it deviates from the
constrained value at θ > 0◦. Here we show how the φB,r is
constrained at θ = 0◦ and how small the deviation of the φB,r

is at θ > 0◦ based on the ab initio calculation.
Figure 7(a) shows the P at k points on the β orbit at θ = 0◦.

The P is restricted within the ky-kz plane due to the D3h point-
group symmetry, as mentioned in Appendix D. Consequently,
the trajectory of the P along the β orbit projected on the Bloch
sphere sweeps out zero solid angle, as shown in Fig. 7(c). As

this solid angle directly corresponds to twice the Berry phase
[67], the φB,r of the β orbit at θ = 0◦ is zero.

In contrast, at θ = 45◦, the P on the β orbit shown in
Fig. 7(b) is not restricted within the ky-kz plane. Hence, the
projected trajectory shown in Fig. 7(c) is deformed from the
arc of θ = 0◦. However, the solid angle swept out by the
trajectory is quite limited, and the corresponding φB,r is as
small as 0.02 π . This is because the β orbit locates within
the local k space where P(k) is a slowly varying function
of k, away from the vortex structure. Besides, the angular
dependence of the φB,r represented in Fig. 7(d) shows that
the |φB,r| monotonically increases from 0 as θ varies from
0◦. Therefore, neglecting the angular dependence of the φB,r

when analyzing the experimental data does not affect the
result.

APPENDIX F: SPIN-ZERO ANALYSIS
ON THE β OSCILLATION

In the β orbit, the angular variation of the φB,r is negligibly
small (see Appendix E), whereas the φZ increases proportional
to tan θ (see Appendix D). Since we could not observe an
apparent β oscillation at |θ | < 17.1◦, it is crucial to determine
whether the φZ changes the sign of cos (φZ + φB,r) factor in
Eq. (4) against θ . This is similar to the spin-zero analysis
widely conducted on the (quasi-)2D materials with spin de-
generacy (at B → 0) [68–71]. As seen in Fig. 1(d) in the
main text, Δτβ does not change the sign against θ between
17.1–47.1◦. If there is a sign change between 0◦ and 17.1◦,
there should be another sign change between 17.1◦ and 47.1◦
because φZ ∝ tan θ grows more rapidly as θ increases. This
fact indicates that the sign of cos (φZ + φB,r) does not change
in |θ | � 47.1◦.
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