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We propose a defect-to-edge topological quantum quench protocol that can efficiently inject electric charge
from defect-core states into a chiral edge current of an induced Chern insulator. The initial state of the system
is assumed to be a Mott insulator, with electrons bound to topological defects that are pinned by disorder. We
show that a “critical quench” to a Chern insulator mass of the order of the Mott gap shunts charge from defects
to the edge, while a second stronger quench can trap it there and boost the edge velocity, creating a controllable
current. We apply this idea to a skyrmion charge in the ν = 0 quantum Hall antiferromagnet in graphene, where
the quench into the Chern insulator could be accomplished via Floquet driving with circularly polarized light.
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The pervasive emphasis on topology in modern condensed
matter physics is due to two seemingly disparate pursuits.
On one hand, topology can “protect” interesting quantum
phenomena against imperfections or environmental decoher-
ence, enabling ballistic propagation through edge states [1–3],
and quantum information storage and manipulation [4]. On
the other hand, topological defects (solitons and instantons
[5]) in effective quantum field theories play a central role in
nonperturbative frameworks for strongly correlated electron
systems [6,7]. In particular, topological defects in bosonic
order parameters can bind fermion quasiparticles in their
cores; the topological charge of the defect then determines the
ground-state electrical charge or current induced by it [8–10].
Applications of this principle in condensed matter physics
range from producing fractionally charged zero modes in
graphene [11], to novel mechanisms for superconductivity
[12] and quantum criticality [13–16].

In this Rapid Communication, we combine these two no-
tions of topology in a dynamical setting, using a quantum
quench. We consider a quench into a 2D Chern insulator
(Haldane) phase [1], with dynamically generated edge states
in a honeycomb model with Dirac fermions. Previous work
considered quenches from spatially homogeneous, trivial or
topological initial states [17–24]. Here, we instead envision an
antiferromagnetic (Néel-ordered) Mott insulating initial state,
wherein topological skyrmion defects trap Dirac electrons or
holes in their cores [9,10,12,15,16,25]. The skyrmion defects
are initially pinned by disorder, providing a robust reservoir
of localized charge for a weakly doped initial Mott insulating
state. We subject the Mott state to a quenching on of the Chern
insulator mass, which competes with the Néel order. We find
that a “critical” quench can efficiently transfer the charge
bound to a skyrmion defect to the quench-induced chiral
edge states formed at the boundary of the sample. Here, a
critical quench means that the induced Haldane mass is tuned
to match the ground-state Mott gap. After transferring the

charge to the edge, a second quench deeper into the Haldane
phase traps the charge at the sample boundary, inducing a
tunable circulating edge current. Thus our double-quench
protocol provides a way to efficiently depin electric charge
from topological defects of the Mott reservoir and transfer it to
the boundary of a dynamically induced topological insulator.

Our protocol could be implemented using Floquet driv-
ing with circularly polarized light in graphene [26,27], as
explicated in Fig. 1. Many theoretical works have examined
Floquet-induced Chern insulator states that could be realized

FIG. 1. A topological quantum control protocol for creating chi-
ral edge currents. A Chern insulating (Haldane) mass is induced
by the application of circularly polarized light [26–32], incident on
Mott insulating graphene with a single skyrmion embedded in a Néel
antiferromagnetic texture. A single hole is doped into the negative-
energy core state bound to the skyrmion [9,10,15,16]. Such a defect
can arise as a pinned charge carrier in the ν = 0 quantum Hall state
of graphene [33–36]. When the strength of the incident light is at
criticality (with respect to the topological transition induced by a
Haldane mass), the doped hole ballistically migrates to the edge of
the sample. A second quench (not shown) deep into the topological
phase sets up a circulating current of the charge, as indicated by
the purple arrows. The spins show the skyrmion texture on the
underlying honeycomb lattice and the blue surface illustrates the
charge density. For weak and moderate quenches, the spin texture
in our mean-field calculation is not significantly scrambled.
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in semimetallic graphene, with proposals to measure induced
topological edge states through conducting leads [26–30].
However, even in the ideal case of ballistic Landauer transmis-
sion through such a driven device, the complicated matching
conditions between time-dependent device and equilibrium
contact states typically leads to the prediction of a nonquan-
tized response in transport [28–30]. Since the Dirac point
conductivity of graphene itself is always of order e2/h at
low temperature [37], the transition to almost-quantized edge
transport is not easy to verify in a two-terminal Landauer
geometry. Transport measurements typically require long av-
eraging times, while steady-state illumination on ungapped
graphene can excite many hot electron-hole carriers. Then,
it becomes essential to model the distribution function of
the electrons induced by the drive [31], which goes beyond
the Floquet-Landauer theory. Ultrafast pumping and detection
can mitigate these limitations (see Ref. [32] for a recent
experiment).

In this Rapid Communication, we instead propose to apply
a circularly polarized Floquet drive to the strongly insulating
ν = 0 quantum Hall state of graphene [38,39]. The insulating
gap in the ν = 0 state arises due to quantum Hall magnetism
[40] in the nearly SU(4)-symmetric zeroth lowest Landau
level (LLL) [41–43]. Due to the LLL projection, the charge
carriers in quantum Hall magnets typically exhibit a topolog-
ical skyrmion texture in the magnetic order [40,44,45]. This
ν = 0 state in graphene has only recently been understood
as a quantum Hall antiferromagnet (AFM) in physical spin
[33–35], which should support SU(2) skyrmion charge exci-
tations [36,43]. A similar setup could start with Mott states in
twisted bilayer graphene systems [46–48].

When a quantum Hall magnet is doped very slightly away
from integer filling, skyrmionic charge carriers are expected to
be pinned randomly throughout the sample by weak quenched
disorder [40]. We model the ν = 0 state of graphene us-
ing a honeycomb lattice model subject to mean-field Néel
antiferromagnetism, with a single skyrmion defect localized
in the center of a finite square sample (with open bound-
ary conditions). The defect traps a single pair of subgap,
positive- and negative-energy core states. The core states form
a particle-hole-symmetric pair in the K and K ′ valleys [15].
We consider a system tuned just below half-filling, with the
negative-energy core occupied by a hole. The Floquet drive is
treated as an instantaneous quantum quench that turns on the
Haldane Chern insulator mass [19,21–24], an approximation
[27] that becomes exact in the high-frequency limit [49,50].

We show that a quench of critical strength (matching the
dynamically generated Haldane and ground-state AFM mass
gaps) depins the doped hole, which ballistically propagates
to edge. To demonstrate that this effect is a nontrivial con-
sequence of the Chern mass quench, we show that a similar
“sticking” of the depinned charge to the sample boundary does
not occur for a quench employing the topologically trivial
charge density wave mass (see Figs. 2 and 3). Finally, we
show that a second quench that intensifies the Haldane mass
can trap the migrated charge at the boundary of the sample for
a long time, inducing a circulating electrical current with an
edge velocity determined by the drive strength (Fig. 4). The
key new ingredient in our nonequilibrium scheme is that we
controllably induce and populate the edge states, depinning

charges from topological defects in a strongly insulating pre-
quench state.

Model. We consider spin-1/2 electrons hopping on a
honeycomb lattice, subject to an inhomogeneous, sublattice-
staggered Zeeman field that mimics a skyrmion defect tex-
ture in the Néel background. The prequench Hamiltonian is
given by

Hsk = − t
∑

α

∑

r,s

(c†
r,αcr+s,α + H.c.)

+ mN

∑

r

(−1)τ �n(r) · c†
r,α �σαβcr,β . (1)

The first term encodes nearest-neighbor hopping; H.c. denotes
the Hermitian conjugate. The second term is the Zeeman
coupling, where τ is 0 for r ∈ A and 1 for r ∈ B (A, B denote
the sublattices). Here α is the spin index, and �σ is a vector
formed from the Pauli matrices acting on physical spin.

In Eq. (1), we choose �n(r) to be a skyrmion texture in
the continuum [5]. On the lattice, we superimpose this onto
the vertices with the skyrmion centered on a plaquette at the
center of the lattice. The texture is parametrized by ω(z) ≡
z/λ, where λ is a scale that determines the core size, and z =
x + iy. The spin texture is given by nz = (|ω|2 − 1)/(|ω|2 +
1), nx + iny = (2ω)/(|ω|2 + 1). For |z| � λ and |z| � λ, the
texture becomes uniform and points in the ±z direction (i.e.,
out of the graphene plane) and is essentially a homogeneous
Néel mass, mN . This Hamiltonian has a nonzero gap, and a
particle-hole symmetric pair of positive- and negative-energy
bound states, localized to the skyrmion core [15,16]. The spin
textures of the core states wind like the original skyrmion
texture shown in Fig. 1, since the Zeeman term pins the
spin orientation. Each core state can accommodate a single
electron charge; the skyrmion carries unit topological or Pon-
tryagin charge [5,34]. We fill all the states at negative energy,
except for the negative-energy core state (which is doped with
a hole). Equivalently, we could fill all negative energy states
and the positive-energy core state. The ground-state density
profile reflects the missing charge bound to the core state. By
contrast, at half-filling, the charge density would be uniform.

The quantum quench evolves this initial state with an
additional Haldane term, H = Hsk + HH , where

HH = it2
∑

α

∑

r,s∈{nnn}
c†

r,αcr+s,α + H.c., (2)

such that the positive signs form counterclockwise triangles in
each sublattice [1]. In order to correlate any unique behavior
that emerges from quenching into a topologically nontrivial
phase, we also carry out a quench where we turn on a
topologically trivial charge density wave (CDW) potential
(equivalently, a sublattice-staggered mass), H = Hsk + HC ,
where

HC = mC

∑

r,α

(−1)τ c†
r,αcr,α. (3)

Here, as before, τ = {0, 1} for r ∈ {A, B}, respectively. All
states of this model are topologically trivial. In particular,
there are no current-carrying edge states. Both the Chern
insulator and CDW terms compete with the Néel order; suffi-
ciently large t2 or mC relative to mN can close the bulk gap
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FIG. 2. Half-width (standard deviation) of the electric charge distribution around the center of the skyrmion core as a function of time.
A single hole is doped into the negative-energy core state of the skyrmion defect in a Néel background before the quench. This hole is
“depinned” by the quenching on of a competing mass (order parameter). (a) corresponds to a quench into the Chern insulating phase of the
Haldane model, and (b) corresponds to a quench into a model with a sublattice-staggered mass [charge density wave (CDW) order] that
displays no topologically nontrivial phase. The legend indicates values of the quench coupling strength normalized so that the equilibrium
gap (with coexisting Néel and Chern insulator or CDW orders) closes at unity: for (a) it is 3

√
3t2/mN and for (b) mC/mN . Here t2 (mC) is the

Haldane hopping (CDW) strength, and mN is the gap from the homogeneous Néel background. In both figures, the solid black line represents
the light cone given by the Fermi velocity, vF = √

3t/2, the black dash-dottted line represents the value of the half-width for a uniform charge
distribution across the graphene flake, and the black dashed line represents the value for all charge concentrated on the edge. As the strength
of the Haldane coupling t2 increases, the initial charge density profile spreads faster and faster until the gap closes, after which the spreading
slows down. Note that curves with values of the half-width greater than the uniform value (black dot-dashed line) have greater charge density
on the edge/boundary of the sample than the bulk. Near criticality in (a), edge states are strongly populated, and expansion is nearly ballistic
(modulo boundary effects and a slow start) at the Fermi velocity. However, we do not see any corresponding shift of charge to the edge in the
CDW case due to the absence of topologically nontrivial edge states in (b). Thus, there is a nontrivial effect from pumping the sample with
circularly polarized light to create the Haldane mass (a).

in equilibrium. We note that in a finite sample as studied
numerically here, both models H = Hsk + HH,C show edge
states near gap closure coming from the open boundary
conditions.

Numerics. In equilibrium, the model with a homogeneous
Néel mass undergoes a quantum phase transition at mN =
3
√

3t2, at which point the gap closes, and edge states ap-
pear [1]. As t2 increases beyond this value, a gap reappears.
However, edge states that connect across the gap persist. For
the model with the skyrmion texture, we observe that the gap
closes at approximately the same point [see inset, Fig. 3(a)],
with the subtlety that the two skyrmion-core bound states
are present almost until the gap closes. We tune the quench
through this quantum phase transition and study the resulting
evolution of the charge density and charge current. Since
the Haldane term is diagonal in spin, we do not expect any
nontrivial behavior in the spin sector. We perform calculations
on a square-shaped section of the honeycomb lattice, with two
zigzag edges and two armchair edges using numerical exact
diagonalization on a lattice 82 plaquettes wide. The specific
shape of the flake is irrelevant since our initial spatially
inhomogeneous Hamiltonian breaks lattice symmetries.

Charge dynamics. The first observation and primary re-
sult is the rapid population of the edge of the sample near
criticality. The skyrmion-core (hole) charge density starts out
near the center of the sample, but rapidly moves outwards,
as seen in Figs. 2 and 3. In Fig. 2, the radial spread of the
charge density (standard deviation) is plotted against time
for different values of the Haldane mass t2. Away from
the critical point, 3

√
3t2/mN ≈ 1, the spreading is slow. In

the weak-quench regime, this is because of the absence of
edge states and a nonzero gap. In the strong-quench regime,
edge states are present but have weak overlap with the initial
state. It is only near criticality, i.e., where the gap closes and
edge states appear, that we get rapid charge accumulation at
the edge. The small gap between the bulk-core and edge states
promotes efficient hybridization between these. It is neverthe-
less interesting to note that the charge density preferentially
occupies the edge as opposed to a more uniform distribution.
As the system continues to evolve in time, we observe a slow
relaxation.

In comparison, as seen in Figs. 2(b) and 3(b), the topo-
logically trivial CDW quench does not produce the saturation
of charge at the sample boundary that we see in the Haldane
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FIG. 3. Total charge on the boundary (measured relative to the half-filled background) following the same quench pictured in Fig. 2.
(a) corresponds to the case when we quench into the Haldane model, and (b) the quench into a topologically trivial CDW model. Legends
indicate the relevant quench parameter (see Fig. 2). In (b), we see no significant motion of charge to the boundary, whereas in the Haldane
model (a), almost half of the total charge has moved to the boundary. Note that from Fig. 2 it appears that almost all the charge has moved to
the boundary (see black dashed line). Here, we compute the charge at the very edge of the sample. If we include a thicker boundary layer, then
we capture most of the electric charge initially bound to the skyrmion core. In both cases, far from the critical point, we do not see significant
motion of charge to the boundary. Insets in each figure show the equilibrium gaps as a function of the relevant tuning parameter.

quench. Although there are no topologically protected chiral
edge states in this case, almost degenerate edge states nev-
ertheless exist on account of the finite sample and appear at
gap closure at mN = mC [in equilibrium, see inset, Fig 3(b)].
In spite of this, we do not see significant population of these
edge states, indicating that the topologically nontrivial nature
of edge states that appear when we shine circularly polarized
light plays a key role in the effect we observe.

Edge currents. The edge states of the Haldane model
show nontrivial currents circulating around the sample in the
topological phase, their sense depending on the sign of t2 [1].
We therefore expect to see a circulating edge charge when we
quench into the topological phase, since the charge initially
bound to the skyrmion is pushed out to the edge.

In the equilibrium model, strong edge currents appear deep
in the topological phase. When we quench on the Haldane
coupling, charge rushes to the boundary only near criticality.
However, near criticality, the edge currents are not strong
(owing in part to the shallow edge velocity). Deeper in the
topological phase, the edge velocity is enhanced and edge
currents are strong; however, a direct deep quench does not
shift significant charge to the boundary.

In order to generate a strong edge current, we therefore
adopt a double-quench protocol [see Fig. 4(a)]. The first
quench shifts the charge to the edge, and the second quench
strongly confines this charge and induces circulation with
finite velocity [see inset, Fig. 4(a)]. We illustrate this effect in
Fig. 4(b). The large figure shows a single temporal snapshot
as an illustration. The plot itself represents the current flowing
in each bond between the lattice sites. The blown-up images
show snapshots at increasing time after the second quench
(the first quench is allowed to evolve until we maximize the
edge charge). Note how the current shifts to the right, i.e.,
a clockwise flow. The arrows in each snapshot are opposite
to the overall flow since this is a hole current. Applying
the double-quench protocol to a sample with a finite density
of hole-doped skyrmions would trap a finite proportion of

FIG. 4. Edge currents induced by a double quench. The double-
quench protocol is shown in (a), and the currents in (b). The inset
in (a) shows the average edge velocity as a function of the Haldane
mass after the second quench, in units of 2vF /

√
3. The edge velocity

increases with increasing strength of the second quench, allowing
control of the induced edge current. The enlarged snapshots in
(b) indicate time evolution going down along the images. The current
shifts towards the right as time evolves (note horizontal axis). In
each snapshot, the arrows point in the direction of the charge current;
charge and particle currents are opposite for the edge-migrated hole.
The background image shows the full sample at a particular time
snapshot. Note that there is almost no current anywhere else in the
sample.
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the core charge at the boundary, with the second quench
producing a tunable, steady-state edge current.

The induced edge current predicted here could be mea-
sured via the laser-triggered photoconductive switch tech-
nique employed in the experiment [32]. Alternatively, it might
be possible to perform an all-optical measurement of the
terahertz light reemitted by a sufficiently large edge current
induced by an intense terahertz pulse.
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