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Local probes for quantum Hall ferroelectrics and nematics
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Two-dimensional multivalley electronic systems in which the dispersion of individual pockets has low
symmetry give rise to quantum Hall ferroelectric and nematic states in the presence of strong quantizing magnetic
fields. We investigate the local signatures of these states arising near impurities that can be probed via scanning
tunneling microscopy (STM) spectroscopy. For quantum Hall ferroelectrics, we demonstrate a direct relation
between the dipole moment measured at impurity bound states and the ideal bulk dipole moment obtained
from the modern theory of polarization. We also study the many-body problem with a single impurity via exact
diagonalization and find that near strong impurities a nontrivial excitonic state can form with specific features
that can be easily identified via STM spectroscopy.
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Introduction. Recently, we have witnessed an explosion
of high-quality two-dimensional electronic systems with
strongly anisotropic dispersions that can be driven into the
quantum Hall regime in the presence of strong magnetic
fields [1,2], such as the (111) surface of bismuth [3–6],
AlAs heterostructures [7,8], PbTe(111) quantum wells [9],
and the (001) surface of a topological crystalline insulator
(TCI) such as Sn1−xPbx(Te, Se) [10]. In these systems, at
integer fillings of the Landau levels, the Coulomb interaction
tends to spontaneously break symmetry by forming valley-
polarized states [1,11–13], which can be generally divided
into nematic or ferroelectric states according to whether or not
the Fermi surface of an individual valley preserves inversion
(or twofold rotation) symmetry [1]. Advances in scanning
tunneling microscopy (STM) have made it possible to directly
image the shape of Landau orbitals near impurities [3–5,14],
providing an exciting window into these correlated states.
Evidence of the quantum Hall ferroelectrics has been reported
in bismuth (111) [4]. The surface of SnPb(Te,Se)-based TCIs
is another promising platform to realize these states [15–19].

In this Rapid Communication we investigate the behavior
of quantum Hall ferroelectrics and nematics near short-range
impurities. One of our goals is to elaborate on how to measure
an “order parameter” for the quantum Hall ferroelectricity.
In trivial insulators in which the bulk and the boundary
are simultaneously gapped, a natural order parameter is the
ferroelectric dipole moment, which can be computed from
the Berry-phase-based approach in the modern theory of
polarization [20,21]. In quantum Hall ferroelectrics, although
such polarization is well defined in an ideal setting subjected
to periodic boundary conditions, it is unclear how to directly
measure it due to screening at metallic boundaries. This
issue can be resolved by studying states bound to impurities.

*These authors contributed equally to this work.

Indeed, the ideal dipole moment defined by the modern theory
of polarization can be related to that of impurity bound states,
as we will demonstrate for the case of tilted Dirac cones
relevant for the surface of SnPb(Te,Se)-based TCIs.

We also study numerically the many-body problem of
states near short-range impurities by exact diagonalization. As
previously discussed [3,4], the impurities can shift the energy
of the occupied state that has a finite amplitude at the impurity
location. We have found an interesting many-body regime
where the impurity potential exceeds the exchange energy that
attempts to keep the Landau level (LL) completely filled. For
repulsive short-range impurities, once the impurity potential
overcomes this threshold, a state with a quasihole bound to
the impurity becomes the ground state of the system, and one
of the lowest-lying excited states corresponds to a nontrivial
intervalley excitonic state, in which an electron is added to
another valley. We will discuss how these many-body states
have clear signatures in STM measurements.

Impurity states for Dirac cones. Here, we consider a model
that is relevant to the (001) surface of SnPb(Te,Se)-based
TCIs. In these materials, at temperatures below a ferroelectric
transition their surface states comprise four Dirac cones,
two of which are massive and two massless. Each of the
massive/massless pair is degenerate in the presence of time-
reversal symmetry [19], but under a background magnetic
field the degeneracy of the massive pair is no longer protected.
The degeneracy of the massless pair will however remain
protected by the product of time reversal and a mirror sym-
metry (see Supplemental Material [22]). Here, we focus on
the latter two degenerate valleys. The dispersions generally
have a tilt in momentum [17,23], which is essential to the
ferroelectricity that we describe below. We thus consider the
following effective Hamiltonian for the Dirac cone at ±�̄

(near X̄ ),

H = vxσx px − vyσy py ± δvx px + �σz, (1)
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FIG. 1. (a) Simplistic illustration of a quantum Hall ferroelec-
tric system. The Fermi surface consists of two valleys related by
a twofold rotation, while an individual valley breaks (preserves)
twofold rotation symmetry for the ferroelectric (nematic) state.
(b) Schematic of single orbit spectra, for the nth Dirac Landau level:
Upon hybridization only two states are perturbed in energy by a
delta-function impurity V0 [22]. The exchange splitting �X favors
valley polarization. (c) Energies �E1 and �E2 of the two impurity
states for the n = ±1 Dirac Landau level, as a function of the tilt (τ )
and mass (λ) of the Dirac cone.

where σi are Pauli matrices and δvx represents the tilt of
the Dirac cone. For generality we have added a mass term
�σz to the originally massless Dirac cones which is allowed
in magnetic fields due to the Zeeman effect, however, in
TCIs this coupling has been seen to be negligibly small [10].
In the presence of external magnetic fields Landau levels
will form, and we consider a partial filling ν = 1 for the
resulting twofold degenerate valley doublet. The quantum
Hall ferroelectric (nematic) state forms when the electrons
spontaneously polarize into a single one of these valleys due
to interactions [1]. Figures 1(a) and 1(b) provide simplistic il-
lustrations of this model. Inspired by recent STM experiments
[3,4], we study states near short-range impurities modeled as
delta-function potentials [24],

Himp = V0l2
B δ(r), (2)

where lB = √
h̄c/eB is the magnetic length. Assuming that

the impurity potential (V0) is smaller than the Landau level
spacing, we project the Hamiltonian to the Landau level of
interest. Only states with a finite probability at the origin
will be affected by the impurity potential. For a parabolic

FIG. 2. (a), (b) Average position, measured from the impurity
site, of the impurity states from the n = −1 Dirac LL, as a function of
the tilt (τ ) and mass (λ) of the Dirac cone. (c), (d) Spatial probability
distribution of the impurity states (for TCI parameters τ = 0.1,
λ = 0, and vx/vy = 1.6), which can be probed by the tunneling
differential conductance in STM.

dispersion, there would be a single state per Landau level
with nonzero probability at the origin, as demonstrated in
the bismuth experiments [3]. However, the situation is richer
for Dirac Landau levels due to the two-component nature.
Some distinctions between the conventional and Dirac Landau
levels have been revealed in STM experiments on the surface
of topological insulators [25], and here we discuss another
distinction regarding the impurity state. The wave function of
the nth Dirac Landau level in the massless and untilted limit
(for the general case, see the Supplemental Material [22]) is

ψn,m = 1√
Zn

(
φ|n|,m

snφ|n|−1,m

)
, (3)

where n ∈ Z, sn = sgn(n) (with s0 = 0), Zn = 2|sn|, and φ|n|,m
is the wave function for a parabolic Landau level in the
symmetric gauge with angular momentum m − |n|. For the
n = 0 LL only the m = 0 state would have probability at
the origin, however, for n �= 0, two states with m = |n| and
m = |n| − 1 would have probability at the origin and opposite
pseudospins [26,27]. These two states are exactly degenerate
for a massless and untilted dispersion, but either of these
perturbations produces an energy splitting as illustrated in
Fig. 1. Thus the impurity states are generically resolvable
in STM measurements. In the Supplemental Material [22]
we demonstrate that these perturbations do not produce ex-
tra impurity states, and therefore only these two states are
split from the bulk Landau level and bound to the impurity.
Let us introduce dimensionless parameters to characterize
the tilt τ ≡ δvx/(2vx ) and the mass λ ≡ �lB/(

√
2vxvy). In

Sn1−xPbx(Te, Se) these are approximately τ = 0.1, λ = 0
(neglecting Zeeman effect), and vx/vy = 1.6 [22]. It is there-
fore justified to use perturbation theory in τ . The splitting of
the two impurity states from the bulk n = ±1 Landau level,
to leading order in τ , are then estimated to be �E1 ≈ 0.10V0,
�E2 ≈ 0.06V0. Figure 2 displays the spatial profile of these
two states.

Ferroelectric dipole moments. In the modern theory of elec-
tric polarization [20,21], the dipole moment of an insulator
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is computed by adopting periodic boundary conditions. The
dipole is computed from the change of the electronic position
while varying the Hamiltonian along an adiabatic path in
which the bulk gap remains open and that starts from an
inversion symmetric reference state. Following this principle
a dipole moment for the ferroelectric quantum Hall state was
introduced in Ref. [1]. For tilted Dirac cones, this dipole
moment per particle to leading order in the tilt is

Dn = s̃n

√
2 τ e lB

(
2λ2 + 3|n|√

λ2 + |n|

)√
vy

vx
ŷ, (4)

where s̃n = sgn(n) (with s̃0 = 1). Notice that the dipole along
the tilt (x axis) vanishes [1]. The limitation of this definition
is that one assumes the charge that flows through the bulk
will appear intact at the surface, providing a net electric
polarization. However, in an insulating topological phase with
a metallic boundary, the latter assumption is unjustified since
the surface charge can flow and lead to vanishing macroscopic
polarization. Hence it is important to devise alternative diag-
nostics of the inversion asymmetry in topological phases such
as the quantum Hall ferroelectrics.

Impurity states, which can be locally probed by STM, offer
a resolution. For any given impurity state one can define
a dipole moment as the expectation value of the position
measured relative to the center of the impurity potential. If the
impurity potential is inversion symmetric, this dipole moment
serves to characterize the inversion asymmetry of the host
state. Figures 2(a) and 2(b) display the average position of the
impurity states in tilted Dirac cones as a function of their mass
and tilt. Interestingly, the average position is nonanalytic, as
evidenced by the fact that the limits of τ → 0, λ → 0 do not
commute in Fig. 2. This is a consequence of the fact that in
this limit both impurity states are degenerate and hence the
expectation values on individual states become ambiguous.
However, the sum of the average positions in both impurity
states is free from ambiguities and vanishes as τ → 0, λ →
0. We therefore introduce the notion of the impurity dipole
moment Dimp as the sum of the average position of impurity
states ψi,1

Dimp = e
∑

i

〈ψi|r|ψi〉. (5)

To leading order in the tilt (τ ) and mass (λ) of the Dirac
cone, we obtained the following relation between the adiabatic
bulk dipole moment, in Eq. (4), and the impurity dipole
moment,

Dimp
n = 2|n|

3|n| + 2λ2
Dn, (6)

for the nth Dirac Landau level in a Dirac cone of mass λ (the
derivation is presented in the Supplemental Material [22]).
This formula summarizes one of the key messages of our
study: Local measurement of the impurity dipole moment

1This average coincides with the minus of the dipole moment
weighted by the charge distribution of the hole that is left in the Lan-
dau level which can also be directly accessed by STM measurements.

Dimp, combined with the knowledge of the electronic struc-
ture, can be used to probe the bulk adiabatic dipole moment
following from the modern theory of polarization D in a
quantum Hall ferroelectric state.

In the massless limit, i.e., λ 
 √|n|, the two dipole mo-
ments have a simple proportionality relation, Dimp

n = (2/3)Dn.
However, a notable difference between these two notions
appears in the large mass limit, i.e., λ � √|n|, for which
the adiabatic dipole grows linearly with the mass, |Dn| ∝ λ,
whereas |Dimp

n | ∝ 1/λ. This markedly different behavior is a
consequence of the approach to the parabolic mass limit as we
explain in the Supplemental Material [22].

Many-body physics near impurities. So far we have largely
ignored the role of electron-electron interactions by imagining
that a large self-consistent exchange field has set in to select a
single valley. Next, we will study the many-body problem in
the presence of the impurity potential from Eq. (2) by means
of exact diagonalization on a torus. We concentrate here on
the ferroelectric states where two valleys are described by the
tilted massless Dirac cone with the same axis orientation and
velocity ratio but opposite tilt. We expect the states at the
Landau level n = +3 to essentially carry over to the case of
bismuth surfaces [3–6]. In the Supplemental Material [22], we
also present a nematic model of two valleys with anisotropic
masses whose principal axes are rotated by π/2, as in AlAs
quantum wells [7,8], which gives a simpler picture of what we
find.

In the absence of impurity (V0 = 0) at the n = +3 Dirac
LL and partial filling ν = 1, the ground state of the system
spontaneously polarizes into a single valley and an exchange
splitting �X between the two valleys develops [1,12,13].
This is schematically depicted in Figs. 1(a) and 1(b). In the
forthcoming discussion we choose the chemical potential to
lie exactly in the middle of the charge gap, namely, we add a
single particle term to the Hamiltonian so that far away from
the impurity the energy to add one electron equals the energy
to add one hole. In STM spectra this is satisfied when the
two peaks corresponding to the occupied and empty valleys
in the Landau level are located symmetrically away from zero
bias with no impurity, as illustrated in Fig. 3. We assume
a sufficiently strong tilt so that the lowest-energy charged
excitations are not skyrmions [1].

We denote the valley polarization of states by a vector
(NA, NB), where Ni is the number of electrons in valley i
(i = A, B). The ground state at ν = 1 in the absence of the
impurity therefore has polarization (Nφ, 0). The number of
orbits in a single valley is taken to be Nφ = 40. STM is
customarily viewed as a probe of the density of states of
the single particle charged excitations, because it requires the
removal or injection of electrons from the sample. As we will
see, however, near strong impurities, it is possible to use STM
to probe excitonic states. For a weak impurity, V0 
 �X , as
the STM tip is brought near the impurity one expects simply a
shift of the spectrum by an energy ∼V0, reflecting the local
change of energy to remove/add particles as illustrated by
peaks A, B in Fig. 3. In this regime one encounters excitonic
states inside the gap. However, they are invisible in the STM
spectrum because they are neutral and hence orthogonal to
states with added/removed electrons relative to the ground
state.
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FIG. 3. (a) Spectra with increasing impurity potential: (NA, NB)
labels the state with NA electrons in valley A and NB electrons in
valley B. Energy is measured relative to that of (Nφ, 0). Notice
that the ground state is changed from (Nφ, 0) to (Nφ − 1, 0) as
the repulsive impurity becomes stronger. Here, we use Nφ = 40,
τ = 0.1, vx/vy = 5, and λ = 0. (b) Illustration of tunneling peaks
measured via STM. The peaks are labeled in correspondence with
tunneling processes indicated in the upper panel. For simplicity in
(b) we only show one of the two impurity levels that split from the
bulk Landau level. The other is visible in (a) as a solid-dashed orange
line.

Interestingly, when the impurity potential exceeds a thresh-
old on the order of exchange splitting, the ground state of
the system is no longer the fully valley-polarized state (Nφ, 0)
but rather a quasihole state with polarization (Nφ − 1, 0),2 as
described in Fig. 3(a). This is essentially a local doping of the
ground state by removing one electron. Importantly, there ap-
pear then two energetically close excited states with quantum
numbers (Nφ, 0) and (Nφ − 1, 1). These two lowest excited
states differ from the ground state by adding a single electron,
and hence will appear as two peaks (C and D) at positive bias
in the STM spectrum, as shown in Fig. 3(b). These two peaks
shift sides as V0 increases, when the energy of (Nφ, 0) exceeds
(Nφ − 1, 1). Experimentally these peaks can be distinguished
by probing the respective spatial differential conductance, as
detailed in Fig. 4.

The (Nφ − 1, 1) state can be viewed as an excitonic state
bound to the impurity. Since it differs from the local ground
state by one electron, its wave function can be imaged by
STM. The differential conductance of adding an electron
in STM is given by the local density of states (LDOS) at

2Here, we describe the behavior for repulsive impurities V0 > 0, but
equivalent statements hold for attractive impurities after performing
a particle-hole conjugation (NA, NB) → (Nφ − NB, Nφ − NA). Par-
ticularly, the quasihole state in the repulsive case is replaced by a
quasiparticle state in the attractive case.

FIG. 4. The local density of states at energy levels
A, B,C′, D′,C′′, D′′, which is proportional to the differential
conductance obtained by STM measurements. The unit of length is
set to be lB. The tilt τ = 0.1 and velocity ratio vx/vy = 5 are used.

energy ε,

G(r) ∝
∑

m

∣∣∣∣〈φm|
∑

j

[c†
A, jφ

∗
A, j (r) + c†

B, jφ
∗
B, j (r)]|φ0〉

∣∣∣∣
2

, (7)

where |φ0〉 is the lowest-energy state. For a weak impurity
below the threshold, |φ0〉 = |Nφ, 0〉. Above the threshold,
|φ0〉 = |Nφ − 1, 0〉, which is the hole state created by the
impurity. c†

i, j and φi, j are the creation operator and single
electron wave function for an orbit j on valley i. 〈φm| is
the state with energy ε, and the sum over m is taken for all
degeneracy. The case of removing an electron follows from
Eq. (7) by replacing c†

i, j and φ∗
i, j with ci, j and φi, j , respectively.

Figure 4 depicts the expected shape of the differential
conductance in STM at the energy and impurity indicated
in Fig. 3. The B peak in the spectroscopy includes multiple
nearly degenerate states, and here in Fig. 4 we treat them
as degenerate at energy ε and average over them. The first
two panels of Fig. 4 depict tunneling between a single-hole
or electron state and the fully polarized state, which only
involves single-body physics; while the last panel is the tun-
neling between the hole state and the excitonic state, though
only reflecting the LDOS of valley B with one electron, its
shape is modified via the interaction with the hole in valley A.
The significant difference between Figs. 4(a) and 4(c) allows
for distinguishing this nontrivial excitonic state in STM.

Summary. We have studied how to locally probe quan-
tum Hall ferroelectric and nematic states near short-range
impurities. Particularly the impurity dipole moment, which is
measurable via STM, is introduced to characterize the degree
of inversion asymmetry in quantum Hall ferroelectrics. We
have also investigated the many-body problem near strong
impurities and found nontrivial excitonic states. These states,
though typically invisible in STM near weak impurities,
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become accessible near strong impurities which change the
ground state by locally removing/adding an electron.
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