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Thermoelectric response and entropy of fractional quantum Hall systems
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We study the thermoelectric transport properties of fractional quantum Hall systems based on an exact
diagonalization calculation. Based on the relation between the thermoelectric response and thermal entropy, we
demonstrate that thermoelectric Hall conductivity αxy has power-law scaling αxy ∝ T η for gapless composite
Fermi-liquid states at filling numbers ν = 1/2 and 1/4 at low temperatures (T ), with an exponent η ∼ 0.5
distinctly different from Fermi liquids. The power-law scaling remains unchanged for different forms of
interaction including Coulomb and short-range ones, demonstrating the robustness of non-Fermi-liquid behavior
of these interacting systems at low T . In contrast, for the 1/3 fractional quantum Hall state, αxy vanishes at low
T with an activation gap associated with neutral collective modes rather than charged quasiparticles. Our results
establish another manifestation of the non-Fermi-liquid nature of quantum Hall fluids at a finite temperature.
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Introduction. Thermoelectric phenomena that provide a
direct conversion between heat and electricity are interesting
and useful. Decades of research have been devoted to finding
materials and methods to increase thermoelectric energy con-
version efficiency [1,2]. Recent theoretical works suggested
the possibility of record-high thermoelectric conversion effi-
ciency in semiconductors and semimetals under a quantizing
magnetic field [3,4], where the thermoelectric response is
directly related to entropy [5–8]. Based on this relation, it is
found that the thermopower of three-dimensional (3D) Dirac
and Weyl materials in the quantum limit increases unbound-
edly with magnetic field [3,9–12]. Very recently, it is shown
that two-dimensional (2D) quantum Hall systems can reach a
thermoelectric figure of merit on the order of unity down to
low temperature (T ), as a consequence of the thermal entropy
from the massive Landau level (LL) degeneracy [4].

The degeneracy of a partially filled Landau level is lifted
by an electron-electron interaction and disorder. Therefore,
the thermoelectric response of quantum Hall systems is ex-
pected to depart from the noninteracting and clean limit
when the thermal energy kBT is smaller than a characteristic
energy scale proportional to the electron interaction strength
or a disorder-induced Landau level broadening �. Previous
works [6,13] have shown that disorder leads to a T -linear
thermoelectric Hall conductivity αxy ∝ T for kBT � �, in
accordance with the thermal entropy of disorder broadened
Landau levels.

On the other hand, in clean systems an electron-electron
interaction lifts the massive Landau level degeneracy and
forms a many-body ground state at fractional filling. These
include gapped fractional quantum Hall (FQH) states [14]
and gapless composite Fermi liquids [15,16], which provide a
fertile ground for exotic quantum states of matter. After nearly
four decades of theoretical and experimental studies, ground
state properties and low-energy excitations at various frac-
tional fillings are largely understood. In contrast, much less is
known about FQH systems at finite temperature. Based on the

relation between the entropy and the thermoelectric transport
coefficient, a linear T scaling behavior for thermopower Sxx

has been conjectured [17] for composite Fermi-liquid states.
While there are a few measurements [18–25], theoretical or
numerical calculations on finite T thermoelectric transport
coefficients for fractional quantum Hall states are lacking.

In this Rapid Communication, we investigate the ther-
moelectric Hall response for interacting quantum Hall
systems through exact diagonalization calculations of the
entropy of finite-size systems at finite temperature. For even
denominator filling numbers ν = 1/2 and 1/4, we identify
the robust power-law scaling behavior of the thermoelectric
Hall conductivity αxy ∝ T η in a wide temperature range, with
the exponent η ∼ 0.5 distinctly different from the linear T
behavior of Fermi liquids. We further show that the scaling
behavior is robust against weak disorder, and the exponent η

gradually increases with disorder strength. In contrast, for a
1/3 FQH system, we observe a vanishing αxy at low T below
the excitation gap. Our prediction of an anomalous power-
law temperature dependence of the thermoelectric response
establishes another fundamental property of ν = 1/2 and ν =
1/4 quantum Hall fluids, which can be measured in future
experiments.

Model and method. We consider a two-dimensional elec-
tron system subject to a perpendicular strong magnetic
field, whose energy spectrum is composed of discrete LLs.
Throughout this work we assume the cyclotron energy is
much larger than other energy scales set by interaction, disor-
der scattering, or temperature, so that it suffices to work with
the restricted Hilbert space of a partially filled LL.

The many-body Hamiltonian can be written as

H =
∑

i< j

∑

q

e−q2/2V (q)eiq·(Ri−R j )

+
∑

i

∑

q

e−q2/4Uqeiq·Ri , (1)
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where Ri is the guiding center coordinate of the ith electron,
V (q) = 2πe2/εq is the Coulomb potential, and Uq is the
impurity potential with the wave vector q. We set the magnetic
length � = 1 and e2/ε� = 1 for convenience. The Gaussian
white noise potential we use is generated according to the cor-
relation relation in q space, 〈UqUq′ 〉 = (W 2/A)δq,−q′ , which
corresponds to 〈U (r)U (r′)〉 = W 2δ(r − r′) [26] in real space,
where W is the strength of the disorder and A is the area of
the system. The filling fraction is then defined as ν = Ne/Ns,
where Ne and Ns are the number of electrons in the partially
filled LL and the number of the flux quanta, respectively.

Thermoelectric conductivity αi j is defined by the electrical
current generated by a temperature gradient in the absence
of any voltage (short-circuit condition), or via an Onsager
relation, by the heat current generated by a voltage difference
at a uniform temperature. Since heat current is carried by
thermal excitations, thermoelectric conductivity is purely a
property of the partially occupied LL. In our case, its value
depends on temperature kBT and disorder strength W (both
in units of e2/ε�). While thermoelectric conductivity is con-
ceptually convenient for a theoretical analysis, experiments
usually measure the thermopower Sxx and Nernst signal Sxy

directly. These are given by the product of αi j and resistivity
ρ jk , Sik = αi jρ jk .

We first consider the clean limit W = 0. As shown ex-
plicitly for both noninteracting systems [4,6] and a generic
interacting electron fluid [17,27], in the absence of disorder,
thermoelectric Hall conductivity αxy is directly proportional
to entropy density s, αxy = s/B. This remarkable formula
enables us to obtain αxy by numerically calculating entropy—
a thermodynamic property—without invoking the Kubo for-
mula for transport coefficients. The validity of the relation can
be justified in the weak disorder scattering limit (W � e2/ε�),
where the electric Hall conductivity is proportional to the
electron filling number [17], consistent with a semiclassical
approximation.

We perform thermal entropy calculations based on the
exact calculation of the energy spectrum of the Hamiltonian,
and obtain αxy = S/Ns (in units of kBe/h), where S = sA
is the thermal entropy of the system. We consider systems
with a subdimension of Hilbert space up to Nh = 102 348
(2 119 036) for full (partial) diagonalizations, which is slightly
smaller than the largest accessible sizes used in ground state
simulations and gives reliable results for all temperature
regimes we considered. Further details on numerical calcu-
lations are discussed in the Supplemental Material [28] (see
also Refs. [29–31] therein).

Thermoelectric Hall response of composite Fermi liquids.
We first consider interacting quantum Hall systems without
disorder scattering. Two even denominator filling numbers
ν = 1/2 and 1/4 will be considered first, where the low-
temperature behavior of such systems is controlled by the
physics of the composite Fermi liquid [16]. By exact diago-
nalization, we can study systems with up to the number of
flux quanta Ns = 28 for electrons at 1/2 filling using magnetic
translational symmetry. By obtaining all energy eigenvalues
of the system, we determine αxy from the entropy per flux. As
shown in Figs. 1(a) and 1(b), we show αxy for different system
sizes with Ns = 12–28 for both n = 0 and 1 LLs. The αxy

grows with T monotonically, and saturates towards a universal

FIG. 1. Thermoelectric Hall coefficient αxy (in units of kBe/h) for
electrons at filling number ν = 1/2 of the nth LL with the number of
flux quanta varying between Ns = 12 and 28. The thermal energy
kBT is in units of energy e2/ε� = 1 in all figures. αxy increases with
T , which saturates towards ln 2 at the thermodynamic and large T
limit according to their saturated entropy per LL orbital. In the insets
of (a) and (b) we show the same data in the logarithmic plot, where
a power-law scaling is found αxy ∝ T η for a range of T . (a) For n =
0 LL with a Coulomb interaction, η ∼ 0.54 ± 0.03. (b) For n = 1
LL with a Coulomb interaction, η ∼ 0.44 ± 0.03. The error bar is
estimated by fitting low T data from different Ns.

value ln(2) × kBe/h determined by the entropy per flux for LL
at half filling. As shown in the insets of Figs. 1(a) and 1(b), we
identify a power-law behavior at low temperature αxy ∝ T η

as a straight line fitting to the data in the algorithmic plots,
and find the exponent η ∼ 0.54 ± 0.03 and ∼0.44 ± 0.03 for
n = 0 and 1, respectively. We remark that although the nature
of the ground states for the n = 0 and n = 1 are different at
the T = 0 limit corresponding to the composite-Fermi liquid
and Moore-Read non-Abelian FQH state [32], respectively,
αxy of both systems in the small to intermediate T can
demonstrate similar scaling behavior. This is because αxy is
controlled by the gapless excitations once kBT is larger than
the excitation gap of the FQH of n = 1 LL. Furthermore,
we compare αxy of systems with different types of electron-
electron interactions including the Haldane short-range pseu-
dopotential, and find quantitative similar results. Our results
indicate a composite Fermi liquid has non-Fermi-liquid be-
havior, consistent with the entanglement probe [33]. Due to
the strong interaction effect, the many-body density of states
are shown to increase very fast with the excitation energy
in these systems in contrast to the constant density of states
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FIG. 2. αxy for electrons at ν = 1/4 filling of the nth LL with
Ns = 16–40. The dotted line above the data curve indicates the
expected αxy at the infinite T and Ns limit according to their saturated
entropy. The fittings shown in the insets of (a) and (b) illustrate
the power-law scaling αxy ∝ T η. (a) For n = 0 LL with a Coulomb
interaction, η ∼ 0.45 ± 0.03. (b) For n = 1 LL with a Coulomb
interaction, η ∼ 0.53 ± 0.03.

of a 2D Fermi liquid, which induces nonlinear scaling for
αxy [28].

Now we move on to the ν = 1/4 filling number, where
larger systems can be accessed with Ns up to 32 (40) for
full (partial) diagonalization. As shown in Figs. 2(a) and 2(b)
for systems with Ns = 16–40 for both LLs n = 0 and n = 1,
αxy increases with T rapidly and it saturates to a universal
value (0.562) determined by the entropy per flux for the 1/4
partially filled LL at a high T limit. As shown in the insets of
Figs. 2(a) and 2(b), we demonstrate a power-law behavior at
low temperature αxy ∝ T η, where almost all data points from
the low T regime can be well fitted by such a scaling behavior
up to T ∼ 0.07, beyond which αxy starts to saturate. Clearly,
the finite-size effect is reduced comparing to the ν = 1/2
case as we can access larger systems with larger Ns at ν =
1/4 filling. The exponent is identified to be η ∼ 0.45 ± 0.03
and ∼0.53 ± 0.03 for n = 0 and 1, respectively. The average
exponent for the power-law behavior is consistent with η ∼
0.50 for both ν = 1/4 and 1/2 filling numbers, indicating a
possible universal scaling behavior for αxy at low T .

Thermoelectric Hall response for different electron fill-
ing numbers. At low temperatures, different correlated states
emerge for interacting quantum Hall systems. As we have
shown before, the even denominator state is either gapless
(for the n = 0 case) or having a small excitation gap for the

FIG. 3. αxy for electrons at different filling numbers of the lowest
LL for pure interacting systems. (a) αxy vs kBT for Ns = 12–30 at
fixed 1/3 filling number. In the inset we show αxy − ln 3/Ns as a
function of 1/kBT for larger systems Ns = 18–30. (b) αxy vs ν for
Ns = 24 for different kBT = 0.001–0.5.

quantum Hall effect (QHE) state (1/2 filling of n = 1 LL),
which exhibits power-law scaling for αxy down to very low
temperatures. To explore the possible distinct physics from
the thermoelectric Hall effect of a gapped state, we present
results of 1/3 FQH with a Coulomb interaction for a pure
system at W = 0. As shown in Fig. 3(a) with flux quanta
Ns = 12–30, we find that αxy at low T < 0.01 decreases with
an increase of Ns, while Nsαxy = ln 3, in accordance with the
threefold degeneracy of the system. The data for the largest
system Ns = 30 are obtained through Lanczos for the lowest
600 states in each momentum sector, which allows us to obtain
a lower temperature αxy accurately. The temperature regime
to see such a vanishing αxy behavior is T � 0.01, indicating
a finite gap for such a fractionalized topological state. From
the energy excitation spectrum and many-body density of
states, we identify a roton gap of size 0.062 [28], consistent
with earlier numerical results [30]. Beyond T > 0.01, αxy

increases with T very sharply, and saturates to a universal
value at the large T limit. To compare these data with the
activation behavior of a gapped system, we use the following
form, αxy − ln 3/Ns ∝ exp (− Eg

kBT ), to fit the low T data. The
constant term ln 3/Ns is the size-dependent contribution from
topological degeneracy. As shown in the inset of Fig. 3(a),
we identify the collective excitation gap Eg = 0.06, consistent
with the direct measurement in the excitation spectrum [28].
The obtained roton gap should be distinguished from the
quasiparticle and quasihole charge gap [28]. Therefore the
thermoelectric response provides another experimental way to
detect collective excitations.
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FIG. 4. (a) S/Ns for noninteracting electrons at half filling of the
n = 0 and 1 LLs with Ns = 16–48 and the disorder strength W = 1.
The dashed line shows the linear fit of the data. (b) αxy for electrons at
half filling of the lowest LL for disordered interacting systems with
Ns = 16.

We compare αxy at other filling numbers with the behavior
of composite Fermi-liquid systems at ν = 1/2 and 1/4. In
Fig. 3(b), we show αxy vs ν for filling numbers ν = 1/8–1/2
at fixed Ns = 24 (the result is symmetric about ν = 1/2 due
to particle-hole symmetry). At low temperatures, the gapped
1/3 FQH state has suppressed αxy, as discussed above. Other
systems are either gapless, or have tiny gaps compared to the
1/3 FQH system. We find a clearly local minimum at ν =
1/3 for kBT � 0.02. For lower temperatures at T = 0.001,
we suspect that the finite-size effect dominates due to the
finite-energy splitting for these finite-size systems [28]. As T
is further increased, we identify αxy as a smooth increasing
function of ν, which reaches a broad maximum value around
ν = 1/2.

Disorder effect. For experimentally realized quantum Hall
systems, the impurity scattering effect is always present in
addition to electron-electron Coulomb interactions. We first
show the results of entropy for disordered quantum Hall
systems without considering the Coulomb interaction. The
obtained S/Ns as a function of kBT is shown in Fig. 4(a).
For system flux numbers Ns = 16–48, we find that all the data
collapse into one universal curve, which can be well fitted by
a linear dependence S/Ns ∝ T shown as the dashed line fitting
in the log-log plot in Fig. 4(a).

Now we turn to the effect of weak random disorder for
interacting quantum Hall systems. In this case, the relation
between thermoelectric Hall conductivity and entropy is ap-
proximately valid, when W � e2/ε� = 1. For such systems,
the magnetic translational symmetry is broken due to mo-
mentum nonconserving scattering present in the Hamilto-
nian. So we have to diagonalize the whole Hilbert space,
which limits us to smaller systems with Ns = 16 and 18.
As shown in Fig. 4(b) for Ns = 16 at filling number ν =
1/2, thermal entropy is always an increasing function of
T for different W , which saturates to the universal value
determined by the maximum entropy per orbital in such
systems. In a smaller and intermediate T regime, αxy ap-
pears to follow the power-law scaling behavior αxy ∝ T η,
with the exponent η increasing from around 0.62 for W =
0.02, to η ∼ 0.90 for W = 0.1. Very similar results are ob-
tained for Ns = 16 and 18, indicating these behaviors are
robust.

Summary and discussion. We now discuss the importance
of our work for understanding the thermoelectric Hall effect
of different quantum Hall systems at low temperature. Since
most of the quantum Hall systems realized in experiments
have high mobility, the interaction effect plays an essential
role in lifting the LL degeneracy. Our work focuses on finite
temperature, where these interacting systems are either in
gapless composite Fermi-liquid states, or thermally excited
QHE states. The nonlinear power-law scaling behavior we
established for ν = 1/2 and 1/4 filling numbers strongly
proves that these systems at finite temperature are strongly
correlated electron fluids, distinctly different from Fermi
liquids for which the linear scaling law of αxy is expected
from the low-energy excitations around the Fermi level. The
scaling behavior of αxy ∝ T η (with η ∼ 0.5) appears to be
very general for quantum Hall systems at different filling
numbers. In particular, the ν = 1/2 and 1/4 quantum Hall
states have much enhanced αxy at the lowest temperature,
and therefore are promising candidates for thermoelectric
energy conversion with high efficiency [4]. Our calculations
can be naturally extended to other quantum Hall systems
[34–39] with different LL degeneracies or multicomponent
interactions such as graphene. The intriguing strange metal
transport we discovered calls for a theory of fractional quan-
tum Hall liquids at finite temperature, which we will provide
in forthcoming works.
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