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In this work, we have developed an ab initio photoemission model that accurately describes the photoemission
process for the most diverse range of photocathode materials to date. Compared to previous photoemission
models, this is accomplished by considerably reducing the number of approximations and assumptions used
in representing the photoemission process and the photoemitting material itself. Notably, our model directly
includes the full electronic structure of the material, photoexcitation probabilities for all direct optical transitions,
and an improved surface-vacuum barrier transmission probability. To test the performance of our model,
we perform validations with experimental measurements for all photocathode materials studied in this work.
Whereas previous models have often qualitatively disagreed with the measured photoemission properties of
some materials, our model is found to provide quantitative agreement with experimental measurements for all
tested materials. As an example, our method predicts the root-mean-square transverse momentum of electrons
emitted from PbTe up to an excess energy of 1.0 eV with a mean absolute error that is ∼5× less than from
previously derived expressions. Perhaps more importantly, our model is able to match experimentally observed
decreases in intrinsic emittance with increasing photon energy—a feat that current analytical models are unable
to achieve. We expect that the broad applicability of our model will greatly accelerate the rate of discovery,
characterization, and scientific understanding of photocathodes and other photonic devices.
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I. INTRODUCTION

Accurate modelling of optical phenomena is vital for un-
derstanding and discovering innovative photonics materials
for photodetectors and optical communication applications
[1–3]. This is also especially true regarding the development
of photocathode materials used in x-ray free-electron laser
(FEL) light sources.

X-ray FELs are particle accelerators that use a beam of
electrons to generate x-rays. These x-ray FEL light sources
have recently enabled exciting discoveries. The hard x-ray
FEL at SLAC National Accelerator Laboratory has enabled
researchers to monitor bond formation in the active site
of proteins [4], optically tune the interlayer interactions in
two-dimensional materials [5], and probe the formation of
diamonds from laser-compressed hydrocarbons [6]. Through
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the further development of bright x-ray FEL light sources,
previously impossible experiments may be realized [7].

The electron beams used in x-ray FELs are typically gener-
ated by laser-driven photocathodes and the photocathodes are
typically metals like copper, or commonly recognized pho-
tomultiplier tube materials such as Cs2Te, GaAs, or bialkali
antimonides. The brightness of the electron beam is defined
to be the number of electrons per unit time passing through
a unit area. When electron beam brightness is normalized by
the beam energy it is an invariant quantity, making it useful
for evaluating the performance of electron-optical systems.

The normalized brightness of the electron beam is propor-
tional to the inverse square of the variance in the momentum
of electrons emitted in the transverse direction (parallel to the
photocathode surface). When normalized by the beam energy,
this quantity is called normalized transverse emittance, εn,x,

εn,x := 1

mc

√〈
x2

〉〈
p2

x

〉 − 〈xpx〉2, (1)

where x and px are the transverse position and transverse mo-
mentum of the emitted electrons, respectively. When studying
photoemission, the position and momentum of the photoemit-
ted electrons are uncorrelated when the beam is created in
uniform extraction fields from a photocathode of uniform
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composition and surface geometry. Under these conditions,
Eq. (1) simplifies to

εn,x = 1

mc

√
〈x2〉〈p2

x

〉
. (2)

According to Eq. (2), the normalized transverse emittance can
be reduced by decreasing the size of the electron beam,

√
〈x2〉,

resulting in an artificially higher normalized brightness. A
more robust metric of photocathode performance is therefore
the normalized transverse emittance divided by the size of the
electron beam size, referred to as intrinsic emittance, εint:

εint := εn,x√
〈x2〉

= 1

mc

√〈
p2

x

〉 = h̄

mc

√〈
k2

x

〉
(3)

and depends only on the photocathode material properties [8].
In order to understand the role photocathodes play in FEL

performance, a relationship can be derived that gives the

power of x rays radiated from an x-ray FEL as a function
of the exponential of the inverse cube root of the normalized
transverse emittance [9]. This illustrates that photocathode
selection can greatly affect FEL performance. However, due
to the complex nature of the photoemission process, the de-
velopment of accurate models is a challenging task. Currently,
photoemission models cannot be applied to universally predict
the emission properties of photocathode materials [10,11],
which limits our ability to discover new and better photocath-
odes.

The most common current basis for understanding photoe-
mission is derived from the Spicer three-step model, consist-
ing of (1) photoexcitation of electrons, (2) transport of these
photoexcited electrons to the surface-vacuum interface, and
(3) the transmission of these electrons into the vacuum [12].
By assigning a probability to each of these steps, the variance
in the x component (parallel to the photocathode surface)
of the momentum of emitted electrons has previously been
expressed as [13]

εint = ∫∞
Evacuum+h̄ω[1 − f (E + h̄ω)] f (E )dE ∫1

cos[θmax(E )] d (cosθ ) ∫2π
0 p2

xdϕ ∫∞
0 G(s, E , θ, ω)ds

mc2 ∫∞
Evacuum+h̄ω[1 − f (E + h̄ω)] f (E )dE ∫1

cos[θmax(E )] d (cosθ ) ∫2π
0 dϕ ∫∞

0 G(s, E , θ, ω)ds
. (4)

This expression represents the probability of photoexcitation
between two states as [1 − f (E + h̄ω)] f (E ), where f (E ) is
the energy density of occupied states at an energy E. This rep-
resentation of the photoexcitation probability assumes that the
photoexcitation probability only depends on the occupation
of the initial and final states. The effect of electron transport
is captured through the electron scattering term G(s, E , θ, ω),
which is defined as the fraction of electrons which survive
scattering at a depth s below the incident surface. The trans-
mission of electrons into the vacuum is then expressed as
∫1

cos[θmax(E )] d (cosθ ), where θmax(E ) is defined as the maximum
escape angle for an electron with energy E .

By neglecting the angular dependence on the scattering
probability θ and the energy dependence of the scattering
mean free path, the scattering probability in the numerator
and denominator of Eq. (4) cancel. By assuming the electronic
temperature is 0 K, and using the Heaviside step function to
represent the density of occupied states, f (E ), Eq. (4) can be
analytically integrated to give

εint =
√

h̄ω − φ

3mc2
, (5)

where φ is the effective work function of the photocathode,
which includes the Schottky potential barrier reduction at the
surface-vacuum interface. Equation (4) can also be integrated
using the Fermi-Dirac distribution in place of the Heaviside
step function to give

εint =
√

kT

mc2

√
Li3(−e

e
kT (h̄ω−φ) )

Li2(−e
e

kT (h̄ω−φ) )
, (6)

where Lin(z) is the polylogarithm function of order n [14].
When taking the limit of the electronic temperature T, going
to 0 K, Eq. (6) reduces to Eq. (5).

The model given in Eq. (5) has had limited success pre-
dicting the intrinsic emittance of the semiconducting alkali-
based photocathodes K2CsSb [15] and Cs3Sb [11], but per-
formed well for predicting the emittance of simple metallic
photocathodes such as Cu and Mo [16,17]. However, the
mean transverse energy of electrons emitted from PbTe(111)
predicted with Eq. (5) was found to be 20× smaller than
experimental measurements and failed to capture the observed
decrease in emittance with increasing photon energy. This
reflects the need for a new broadly applicable model for
accurately predicting photoemission [10,18].

In this work, we develop a density functional theory
(DFT) based method to model the photoemission process.
Most notably, this method expands on the capabilities of the
model given in Eq. (5) by utilizing DFT-calculated density
of states, rather than assuming constant density of states.
Additionally, we incorporate the photoexcitation probabilities
for all possible optical excitations and a more accurate elec-
tron transmission probability across the photocathode-vacuum
interface. Increasingly more accurate physical representations
may allow our model to be generalizable to a wider range of
materials. Coupled with the relatively low cost of performing
DFT calculations, the general nature of our model may enable
the possibility of rapidly screening through thousands of novel
photocathode materials.

II. METHOD DEVELOPMENT

A. Background

Evaluation of intrinsic emittance requires determining the
rms transverse momentum of the distribution of emitted elec-
trons [Eq. (3)]. In the present work, this is accomplished by
utilizing Kohn-Sham density functional theory [19,20] (KS-
DFT) to calculate the ground-state Kohn-Sham states, ψ�k,n(�r),
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FIG. 1. Workflow for calculating the intrinsic emittance for a
given material. We first obtain the relaxed crystal structure of the bulk
material. We then calculate the electronic structure of the material
with KS-DFT. Finally, we determine the total escape probability
(wi) associated with all Kohn-Sham states and calculate the intrinsic
emittance, εint .

where �k is any reciprocal space vector in the first Brillouin
zone and n is the band index. The general workflow for
calculating the intrinsic emittance of a photocathode material
is summarized in Fig. 1.

To greatly aid in the computational efficiency of this cal-
culation, we filter the Kohn-Sham states, ψ�k,n(�r), that cannot
contribute to the distribution of electrons emitted in the trans-
verse direction. First, we filter out all �k vectors orthogonal
to the surface-normal direction, which we here define to be
along the z axis. This requirement is equivalent to requiring
all photoexcited electrons to have |kz| > 0 as is necessary
for transmission across the photocathode-vacuum interface.
Next, for a photon of energy, h̄ω � φ, a conduction-band
state with energy Ec, and a valence-band state with energy
Ev , we exclude all pairs of states which satisfy Ec − Ev >

h̄ω and all conduction-band states that satisfy Ec < Evacuum,
where Evacuum = EFermi + φ. This filtering process is depicted
graphically in Fig. 2 and is used for both metals and semicon-
ductors. The first condition ensures that the incident photon
is energetic enough to induce a photoexcitation between the
two states, while the second condition ensures that the pho-
toexcited electrons have enough energy to escape to the pho-

FIG. 2. Calculated PbTe electronic band structure. For an in-
cident photon of energy, h̄ω, only electrons excited into the
conduction-band states with energy above the vacuum level,
Evacuum = EFermi + φ, have sufficient energy to escape the photocath-
ode surface-vacuum interface. The maximum energy a conduction-
band state can have to undergo photoexcitation is h̄ω, relative to
the Fermi level. As such, the relevant conduction-band states have
energy Ec between Evacuum � Ec � h̄ω. The minimum energy that a
valence-band state must have to undergo photoexcitation followed
by emission to vacuum is given by Evacuum − h̄ω .The above plot of
the PbTe electronic band structure shows all Kohn-Sham states that
may contribute to photoemission with a photon energy of 9 eV and a
vacuum level of 4 eV, relative to the Fermi level.

tocathode surface-vacuum interface. The details of these two
processes are discussed in Secs. II B and II D, respectively.

Following this filtering process, we obtain i pairs of
conduction-band states and valence-band states that satisfy
Ec − Ev � h̄ω and Ec > Evacuum and exhibit the same �k. The
contribution of each pair of states to the intrinsic emittance is
then calculated according to

εint (ω, T ) = h̄

mc

√∑
i

wi(�k, ω, T )k2
x,i, (7)

where wi is the normalized weight associated with the ith
possible optical transition from a valence-band state to a
conduction-band state. In turn, we calculate wi as

wi(�k, ω, T ) = 1

N
wi,kpt (�k)

× wi,opt (�k, ω, T )wi,escape(�k), (8)

where wi,kpt (�k) is the number of k points in the Brillouin
zone that contribute equally to the total photoemission,
wi,opt (�k, ω, T ) is the photoexcitation probability, wi,escape(�k) is
the vacuum transmission probability, and N is a normalization
factor given by N = ∑

i wi,kptwi,optwi,escape. It is important to
note that wi,kpt (�k) is not necessarily equal to the number of
other symmetry equivalent k points in the first Brillouin zone
(see Sec. II E). In the following sections, we will derive an
expression for each of these quantities.

B. Derivation of photoexcitation probability

According to the Spicer three-step model [12], photoemis-
sion first requires a photoexcitation from an initial valence-
band state to a final conduction-band state. Since interband
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photoexcitations require conservation of crystal momentum,
they can be either direct, where �kvalence = �kconduction, or indi-
rect through phonon coupling, where �kvalence = �kconduction ±
�kphonon. However, since indirect transitions depend on both
an electron transition probability and a phonon transition
probability, they are assumed to be less probable than direct
transitions at low temperatures. As a result, we consider only
contributions from direct optical transitions when computing
photoemission probabilities.

Fermi’s “golden rule” gives the probability of an optical
transition per unit time between a conduction-band state,
ψ�k,c(�r), and a valence-band state, ψ�k,v

(�r), as

W (�k, ω, T ) = 2π

h̄
〈ψ�k,c|H ′|ψ�k,v

〉2

× δ[Ec(�k) − Ev (�k) − h̄ω]F (T ), (9)

where H ′ is the time-dependent electromagnetic perturbation
on the system and δ is the Dirac delta function. The matrix
elements, 〈ψ�k,c|H ′|ψ�k,v

〉, incorporate the selection rules for
the transitions between the initial and final states, whereas
the δ function ensures conservation of energy between the
photon and the states in the photocathode. To account for the
occupancy differences in these states at finite temperatures T,
we introduce an occupancy factor F (T ):

F (T ) = f (Ev, T )[1 − f (Ec, T )]

− f (Ec, T )[1 − f (Ev, T )]

= f (Ev, T ) − f (Ec, T ), (10)

where f (E , T ) is the Fermi-Dirac distribution at an energy
E relative to the Fermi level. The temperature dependence
is included by populating the Kohn-Sham DFT states at an
electronic temperature T with the occupancy of each state
described by a Fermi-Dirac distribution. The first term in
this expression represents the occupation of states available
for photoexcitation from the valence state to the conduction
state, while the second term represents the occupation of states
available for stimulated emission from the conduction state to
the valence state. Equation (10) is particularly important for
modelling the photoemission in metals in order to accurately
represent the photoexcitation probability of partially occupied
bands close to the Fermi level.

The optical perturbation Hamiltonian H ′ in Fermi’s golden
rule is given by

H ′ = −e

mc
�A · �p, (11)

where �A is the vector potential of the optical field and �p is
the momentum operator. Since the wave vector of the light
is small relative to the Brillouin-zone dimensions, the spatial
dependence of �A can be neglected and we can approximate the
Hamiltonian matrix elements as

〈ψ�k,c|H ′|ψ�k,v
〉2 = 〈ψ�k,c|

−e

mc
�A · �p|ψ�k,v

〉2

≈
( e

mc

)2
|A|2〈ψ�k,c| �p|ψ�k,v

〉2. (12)

Substituting the above Hamiltonian matrix elements into
Fermi’s golden rule gives

W (�k, ω, T ) = 2π

h̄

(
e

mc

)2

|A|2〈ψ�k,c| �p|ψ�k,v
〉2

× δ[Ec(�k) − Ev (�k) − h̄ω]

× [ f (Ev, T ) − f (Ec, T )]. (13)

For all i pairs of conduction-band states and valence-band
states we compute a relative photoexcitation probability
weight, wi,opt, as

wi,opt (�k, ω, T ) = 〈ψ�k,c| �p|ψ�k,v
〉2

× δ[Ec(�k) − Ev (�k) − h̄ω]

× [ f (Ev, T ) − f (Ec, T )]. (14)

To evaluate wi,opt within the framework of DFT, we follow the
methodology of Gajdoš et al. [21] and write the imaginary part
of the frequency-dependent macroscopic dielectric function
between a conduction-band state c and a valence-band state
v in the independent particle approximation as

ε
(2)
αβ (ω, �k)

= 4π2e2

�
lim
q→0

〈
uc+eαq(�k)

∣∣uv (�k)
〉

× 〈
uc+eβ q(�k)

∣∣uv (�k)
〉
δ[Ec(�k) − Ev (�k) − h̄ω], (15)

where uc+eαq(�k) is the cell periodic part of a pseudo–
wave function within the projector-augmented wave (PAW)
methodology and � is the volume of the unit cell. The
macroscopic dielectric function is evaluated at the k point
�k perturbed by a small momentum q in a Cartesian direc-
tion eα corresponding to the direction of the polarization of
the incident radiation. The macroscopic dielectric function
in Eq. (15) can be related to Eq. (14) by substituting the
momentum operator with the gradient operator and writing
the cell periodic part of the Kohn-Sham wave functions as a
first-order Taylor expansion. Since the frequency-dependent
macroscopic dielectric function, ε

(2)
αβ (ω, �k), is directly pro-

portional to the absorption coefficient, we can relate the
DFT calculated macroscopic dielectric function to the relative
photoexcitation probability weight by

wi,opt = ε
(2)
αβ (ω, �k)

× [ f (Ev, T ) − f (Ec, T )]. (16)

Finally, we evaluate δ(x) in Eq. (15) as

δ(x) = 1

σ

e−x/σ

(1 + e−x/σ )2 , (17)

where σ represents the lifetime broadening of the excited
states. We assume a value of σ = 0.20 eV for all calculations
in this work (see Appendix A).

In this work, we calculate the intrinsic emittance for inci-
dent radiation that is polarized normal to the surface of the
photocathode. However, the photoexcitation probability for
any general incident angle can be calculated by substituting
the relevant macroscopic dielectric function ε

(2)
αβ into Eq. (16).
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The Dirac delta function weight given by Eq. (17) and the
photoexcitation matrix elements, 〈ψ�k,c| �p|ψ�k,v

〉2F (T ), seen in
Eq. (13) are plotted for PbTe(111) in Figs. 3(a) and 3(b),
respectively.

C. Electron scattering

The second step in the Spicer three-step model [12]
involves the migration of photoexcited electrons to the
photocathode-vacuum interface, including electron scattering.
In our model, we neglect the impacts of both inelastic and
elastic electron scattering in the calculation of the intrinsic
emittance. Whereas electron-electron scattering does not im-
pact the calculated intrinsic emittance due to conservation of
momentum, ignoring the impacts of electron-phonon scatter-
ing is equivalent to neglecting the energy dependence on the
electron scattering mean free path as well as assuming that
the electron scattering probability is isotropic with respect
to the motion of the electron. The effects of these two as-
sumptions have been calculated for copper and were found
to cause an increase in the rms transverse momentum by
0.8% and 0.2%, respectively, when using an experimentally
determined electron-electron scattering length of 22 Å [13].
More generally, we expect this approximation to best hold
for materials with shorter skin depths, i.e., metals and more
strongly absorbing semiconductors.

D. Derivation of transmission probability

Finally, the third step in the Spicer three-step model in-
volves transmission of the electrons across the photocathode-
vacuum interface. From solving the Kohn-Sham equations, we
obtain the Kohn-Sham states within the photocathode, ψ�kin

(�r),
which can be expressed in terms of plane waves as

ψ�kin
(�r) = ei�kin�r

∑
�G

α�kin
( �G)ei �G�r

+ Rei�kref �r
∑

�G
α�kref

( �G)ei �G�r, (18)

where �kin = [kx,in, ky,in, kz,in] is the crystal momentum wave
vectors inside the photocathode, �kref is the crystal momentum
of internally reflected wave vectors, α�k are the plane-wave
expansion coefficients, �G are the reciprocal-lattice vectors,
and R is the probability coefficient for the internally reflected
wave function at the photocathode-vacuum interface.

At the photocathode-vacuum interface, we approximate the
work function as a step potential with height V0 located at z =
0. We then write the wave function of electrons transmitted
across the photocathode-vacuum interface in terms of plane
waves as

ψ�kout
(�r) = T

∑
�kout

α�kout
ei�kout�r, (19)

where �kout = [kx,out, ky,out, kz,out] and T is the probability coef-
ficient for the wave functions transmitted across the interface.
If we represent the emitted electrons as free electrons, then

FIG. 3. Weights used in the calculation of the PbTe (111)
intrinsic emittance: (a) Dirac delta function weight given by
Eq. (17) at h̄ω = 5 eV, (b) the photoexcitation matrix elements,
〈ψ�k,c| �p|ψ�k,v〉2F (T ), seen in Eq. (13), (c) the electron escape prob-
ability, wi,escape, given by Eq. (30), and (d) the total electron emission
weight wi given by Eq. (8) at h̄ω = 5 eV. The horizontal red lines in
(a) and (d) correspond to the incident photon energy, h̄ω = 5 eV,
whereas the red overlaid plot in (d) gives

√〈k2
x 〉 as a function of

h̄ω. The conduction-band states below the vacuum level are omitted
here for clarity. The plots shown here are for the PBE calculated
PbTe states without fitting to the experimental band gap or electron
effective mass. The weights in (d) are calculated as the product of
the weights in plots (a)–(c). A video illustrating the incident photon
energy dependence of (d) is given in the Supplemental Material [22].
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kz,out is given by

kz,out =
√

2m

h̄2 (E − V0) − k2
x,out − k2

y,out, (20)

where E is the energy of the photoexcited electron with
respect to the Fermi level.

At the photocathode-vacuum interface, defined as �rint =
[x, y, 0], these wave functions must satisfy the boundary con-
ditions, ψ�kin

(�rint ) = ψ�kout
(�rint ) and ∂

∂z ψ�kin
(�rint ) = ∂

∂z ψ�kout
(�rint ).

Solving the first boundary condition at the interface and using
�kin · �rint = �kref · �rint gives∑

Gz

∑
Gx,y

[
α�kin

( �G) + Rα�kref
( �G)

]
ei(�kin+ �G)�rint

= T
∑
kx,out

∑
ky,out

α�kout
ei�kout�rint . (21)

Eq. (21) then gives the conditions

kx,in + Gx = kx,out, (22)

ky,in + Gy = ky,out. (23)

Substituting these boundary conditions into Eq. (21) gives the
condition for every value of Gx and Gy:∑

Gz

α�kin
( �G) + Rα�kref

( �G) = T α�kout
. (24)

Now, solving for the boundary condition, ∂
∂z ψ�kin

(�rint ) =
∂
∂z ψ�kout

(�rint ), gives

∑
�G

i(Gz + kz,in )ei �G�rint ei�kin�rint α�kin
( �G)

+ i(Gz + kz,ref )Rei �G�rint ei�kref �rint α�kref
( �G)

− T
∑
�kout

ikz,oute
i�kout�rint α�kout

= 0. (25)

Equations (22) and (23) can then be substituted into Eq. (25)
to give for every value of Gx and Gy:∑

Gz

(Gz + kz,in )α�kin
( �G) + (Gz + kz,ref )Rα�kref

( �G)

− T kz,outα�kout
= 0. (26)

The transmission probability across the photocathode-vacuum
interface is given by(

∂
∂z ψ�kout

(�rint )
)
ψ∗

�kout
(�rint ) − c.c.(

∂
∂z ψ�kinc.

(�rint )
)
ψ∗

�kinc.
(�rint ) − c.c.

, (27)

where c.c. is the complex conjugate of the preceding term
and ψ�kinc.

(�r) is the incident wave function, given by ψ�kinc.
(�r) =∑

�G α�kin
( �G)ei(�kin+ �G)�r . The first term of the numerator of

Eq. (27) can be evaluated to give

T 2
∑
�kout

ikz,outα�kout
ei�kout�rint

×
∑
�k′

out

α∗
�k′

out
e−i�k′

out�rint

= T 2
∑
�kout

∑
�k′

out

ikz,outα�kout
α∗

�k′
out

ei(�kout−�k′
out )�rint . (28)

Similarly, the first term of the denominator of Eq. (27) can be
evaluated to give∑

�G

∑
�G′

i(kz,in + Gz ) × α�kin
( �G)α∗

�kin
( �G′)ei( �G− �G′ )�rint . (29)

Notably, if we only consider �G = �G′ = �0 components of the
incident Bloch state to contribute to the photoemission and
substitute in Eqs. (24) and (26), the transmission probability
is given by

2T 2ikz,outα�kout
α∗

�k′
out

2ikz,inα�kin
(�0)α∗

�kin
(�0)

= kz,out

kz,in

(
2kz,in

kz,out + kz,in

)2

= 4kz,inkz,out

(kz,out + kz,in )2 = wi,escape(�k), (30)

which is equivalent to the electron transmission probability
across a one-dimensional potential step. However, Eq. (30)
is strictly applicable only in cases where �G = �G′ = �0 com-
ponents of the Bloch waves are nonzero and kz,ref = −kz,in.
In this case, there is only one value of �kout that satisfies
kx,out = kx,in and ky,out = ky,in.

In general, Gx,y �= 0 terms in the Bloch states can lead to
photoemission at more than one value of �kout if they satisfy

2m

h̄2 (E − V0) >

(
kx,in + 2πn

a

)2

+
(

ky,in + 2π l

b

)2

, (31)

where a and b are the real-space lattice vectors that span the
transverse surface of the photocathode material and n and l
are integers. This constraint on �G ensures that the emitted
electrons have real kz,out in Eq. (20), which is required to give
a real transmission probability [Eq. (30)].

The values of �G which satisfy the constraint given by
Eq. (31) are plotted in Appendix B. For Rh(110), the lowest
excess energy that satisfies Eq. (31) is 2.54 eV, which is above
the experimentally relevant excess energies. For all intrinsic
emittance calculations in this work, we take emitted electron
energies to be sufficiently small that Eq. (31) holds for n = 0
and l = 0. In this case, there is a single beam of electrons
emitted.

The full Bloch solution for escape probability can be
obtained by combining Eqs. (24), (26), (28), and (29) as-
suming that the crystal/vacuum interface is perfectly sharp
on subatomic scales. In this work, we take Eq. (30) as an
approximation of wi,escape in consideration of more gradual
surface potential variation.

The wave vectors inside the material, �kin, used in the cal-
culation of the transmission probability are obtained directly
from the k points of the DFT calculation. For each pair of
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states with wave vector, �kin, obtained in Sec. II A, Eq. (30)
allows us to determine the probability of emitting an electron
with wave vector �kout. We note that this approach directly
incorporates the vacuum density of states and evanescent
states [Eq. (20)] into the calculation of the transmission co-
efficient. The value of wi,escape, given by Eq. (30), is plotted
for PbTe(111) in Fig. 3(c).

E. DFT details

The Vienna Ab initio Simulation Package (VASP 5.4.1)
[23] was used to perform all Kohn-Sham density functional
theory (KS-DFT) [19,20] computations with the projector
augmented-wave (PAW) method [24]. All photocathode struc-
tures were originally obtained from the Materials Project
database [25] and were further relaxed to an ionic step energy
convergence of 10−4 eV using self-consistent, periodic DFT.
For surface calculations, we create a slab of at least five
atomic layers to ensure that the surface energy is converged
with respect to the slab thickness. We also include a vacuum
space of at least 15 Å between periodic slabs to preclude
interactions between periodic images. The atoms in the slabs
were fixed to their bulk atomic positions and were not allowed
to relax. For both bulk and surface calculations, we use Miller
indices to denote the surface from which the electrons are
being emitted. In terms of our photoemission model, this
designation only affects the value of the work function used
in calculating the transmission probability and the transverse
direction. As an illustrative example, the intrinsic emittance
calculations shown here for bulk PbTe(111) are calculated
assuming photoexcitations occur only between bulk PbTe
states, that are then transported through the crystal and emitted
through the (111) surface of PbTe.

Obtaining the properties of a periodic system generally
involves integrating over all k points in the first Brillouin zone.
Computationally, these integrals are evaluated by performing
a weighted sum over a dense mesh of k points. For this
purpose, we use a uniform k-point mesh of at least 10 000
k points per reciprocal atom to sample the kz � 0 half of the
first Brillouin zone. A weight of wi,kpt is given to each k point
in the symmetry irreducible Brillouin zone, representing the
number of other equivalent k points. We consider two k points
to be equivalent if they are related by a symmetry operation of
the crystal’s symmetry group and also have the same scalar
projection onto the transverse or x axis, k2

x . Meeting both
of these symmetry conditions ensures that the total emission
weight, wi(�k, ω, T ), and the magnitude of k2

x at the two k
points are identical and both k points will provide equal contri-
butions to the intrinsic emittance. Nonunique k points can then
be removed until only unique k points remain in the Brillouin
zone. This approach ensures that non-high-symmetry k points
are included in the distribution of emitted electrons. The
component of �k in any reciprocal space direction �a can then be
determined from the scalar projection of �k onto �a. As such, we
calculate the scalar projection of all k points onto the x axis to
calculate k2

x .
All DFT calculations in this work represent the wave

function as an expansion of a plane-wave basis set. To ensure
convergence with respect to the size of the basis set, this

expansion is chosen to include all reciprocal-lattice vectors
up to a predetermined kinetic-energy cutoff. We use a kinetic-
energy cutoff of 300 eV for Rh, W, and Mo, 320 eV for
PbTe, and 520 eV for Cu. The number of bands included
in each calculation is set to ensure that the highest energy
conduction-band state at every k point is at least 5 eV above
the vacuum level.

The exchange-correlation energy is treated with the gen-
eralized gradient approximation (GGA) PBE functional for
all calculations [26]. However, the Perdew-Burke-Ernzerhof
(PBE) functional is known to generally underestimate the
quasiparticle band gap of semiconductors. For the calculation
of the intrinsic emittance of photocathodes, this often causes
a discrepancy between the calculated and experimental onset
of photoemission. With the GW approximation of many-
body perturbation theory, the quasiparticle bands of semi-
conducting photocathode materials can be more accurately
predicted without relying on experimental parametrization
[27,28]. However, most of the commonly used materials
databases only provide PBE calculated electronic structures.
Therefore, we choose to assess the performance of our model
with the PBE functional in order to illustrate the accuracy
that can be expected if using band structures from materials
databases.

To account for the errors in the PBE calculated band
structure, we shift the PBE calculated bands to match the
experimentally measured band gap. For PbTe, the PBE cal-
culated band gap is 0.80 eV with the Fermi level located
at the valence-band maximum. However, optical absorption
measurements of pure, single-crystal PbTe have determined
the optical band gap to be 0.19 eV at low temperatures,
with the Fermi level located at the conduction-band minimum
[29,30]. To match this experimental band structure, we shift
the PBE calculated conduction bands downwards by 0.80 eV
and the PBE calculated valence bands downwards by 0.19 eV.
After shifting the bands, we also scale the PBE calculated
PbTe conduction bands to match the experimentally measured
PbTe electron effective mass. This is performed by scaling the
energy of the conduction bands by the ratio of the DFT calcu-
lated electron effective mass of 0.15me to the experimentally
determined electron effective mass of 0.24me [31].

In the case of both semiconducting and metallic photo-
cathodes, an experimentally determined work function is used
to determine the lowest-lying conduction-band states which
can still give rise to photoemission. We find that the intrinsic
emittance at a given photon energy is relatively independent
on the value of the work function for photon energies more
than approximately 1 eV higher than the work function (see
Fig. 6).

III. MODEL PERFORMANCE

To gain some intuition into how the photoemission process
is represented by our model, we calculate the intrinsic emit-
tance of bulk PbTe(111) at 300 K with various different repre-
sentations of wi, shown in Fig. 4. By assigning various values
to wi, we can explore the significance of each step in the
photoemission process to the calculated intrinsic emittance.
We chose to perform this test of our method on PbTe(111)
because the intrinsic emittance measured as a function of

235447-7



EVAN R. ANTONIUK et al. PHYSICAL REVIEW B 101, 235447 (2020)

FIG. 4. Bulk PbTe(111) intrinsic emittance at 300 K cal-
culated with various different total emission probabilities wi.
The orange line exhibits a nonmonotonic relationship be-
tween intrinsic emittance and energy, indicating that the delta
function, δ[Ec(�k) − Ev (�k) − h̄ω], and optical matrix elements both
give rise to the nonmonotonic behavior. Reported experimental mea-
surements are also shown for comparison [10].

photon energy has been reported to display an interesting
nonmonotonic behavior, shown in Fig. 4 [10]. This behavior

cannot be captured by Eq. (5) (εint =
√

h̄ω−φ

3mc2 ) which predicts
the intrinsic emittance is a monotonically increasing function
of photon energy.

We first calculate the intrinsic emittance of PbTe(111) with
constant wi,opt and wi,escape, which is equivalent to assuming
that all pairs of initial and final states, ψ�k,v

(�r) and ψ�k,c(�r),
contribute equally to the photoemission, given that the photon
is energetic enough to induce the transition (blue line in
Fig. 4). This approach does display the correct behavior at
low photon energies, but fails to capture the experimentally
observed peak at h̄ω = 4.6 eV. This behavior is expected
with constant wi,opt, since assigning an equal contribution
to all possible optical transitions results in a monotonically
increasing calculated intrinsic emittance as higher kx states
become energetically accessible.

The effects of the electron transmission probability wi,escape

are illustrated by comparing the green and red lines in Fig. 4.
The inclusion of this probability seems to have minimal
qualitative impact on the calculated intrinsic emittance for
PbTe(111). This is in part due to the initial removal of
all conduction-band states located below the vacuum level.
Furthermore, wi,escape varies slowly over this energy range, as
shown in Fig. 3(c). For example, conduction states located 0.5
and 0.8 eV above the vacuum level in a photocathode with
a work function of 4 eV have transmission probabilities of
75% and 82%, respectively. Although wi,escape seems to have
a minimal impact on the calculated results, this is unlikely to
be true in general. However, it is computationally inexpensive
to calculate wi,escape and is essential for developing a generally
applicable photoemission model.

FIG. 5. Intrinsic emittance of bulk PbTe(111) at 300 K calculated
without any experimental scaling factors (blue), shifting the DFT
calculated bands to match the experimental band gap of 0.19 eV
[29] (orange), and fitting the bands to match the experimental band
gap and electron effective mass of 0.24me (green) [31]. The reported
experimental measurements of intrinsic emittance are also shown for
comparison (red) [10].

The experimentally observed peak at h̄ω = 4.6 eV appears
in our calculated results only upon inclusion of the Dirac
delta function and optical matrix element portions of wi,opt,
which assigns greater contributions to only the states which
satisfy Ec(�k) − Ev (�k) ∼= h̄ω. The observed decreases in the
intrinsic emittance with increasing photon energy can then
be explained by the emergence of optically active, low trans-
verse momentum states that are only accessible at sufficiently

FIG. 6. Calculated variation in the intrinsic emittance of bulk
PbTe(111) with respect to the work function φ. The precise value
of the work function has considerable impact on the calculated
emittance at the photoemission threshold, but is less significant at
high photon energies. The experimentally measured work function of
PbTe(111) is reported to be 4.0 eV [10] whereas the LDA calculated
work function is reported to be 4.21 and 4.54 eV for Pb and Te
terminated surfaces, respectively [18].
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FIG. 7. Effect of surface states on intrinsic emittance calculations. DFT calculated conduction-band states for a (a) Cu(100) surface slab
and (b) bulk Cu. The conduction-band states which can contribute to the photoemission are highlighted in blue (wi �= 0 at h̄ω � 5 eV). (c) DFT
calculated and experimental intrinsic emittance of Cu(100) at 300 K [32]. The experimentally observed low emittance at the photoemission
threshold in Cu(100) must arise from surface states, due to the absence of bulk states directly above the vacuum level. (d) The experimentally
measured intrinsic emittance for W(100) [33] is reasonably well described by both bulk and surface slab calculations, in contrast to Cu(100).

high photon energies (see the Supplemental Material [22]).
Quantitatively, the best agreement with experiment is obtained
when we describe the full photoexcitation probability with
Eq. (8), illustrating the importance of including all of the
aforementioned steps in the photoemission process.

Figure 5 illustrates the performance of our model without
scaling the calculated conduction bands to match the experi-
mentally measured effective mass and band gap. We calculate
the PBE band gap of PbTe to be 0.82 eV and electron effective
mass to be 0.15me, whereas the experimentally measured
values are 0.19 eV and 0.24me, respectively [29,31]. In this
work, we choose to benchmark the performance of our model
with these experimental parameters included to illustrate how
well our model describes the photoemission process itself,
rather than how well semilocal DFT describes the electronic
structure of the material. In other words, we strive for the
errors reported in this work to represent the error if the
exact electronic structure is known. However, in materials
without experimental characterization, the accuracy of DFT
predictions of the intrinsic emittance will be impacted by the
inaccuracies of the chosen DFT functional. As illustrated in
Fig. 5, semilocal DFT accurately predicts the magnitude and
nonmonotonic behavior of the intrinsic emittance without any
experimental fitting of the band structure. However, the rela-
tionship between the intrinsic emittance and incident photon
energy is misaligned due to the overestimation of the GGA

band gap by 0.6 eV, compared to experimental measurements
[29].

Although considerable effort has been placed in accurately
measuring the work function of photocathodes, the measured
values of work function can vary by up to ±1 eV, as a result
of the measurement technique, temperature, sample geometry,
and the presence of contaminants on the photocathode surface
[34,35]. Since our method uses experimental work-function
values to determine which conduction-band states are en-
ergetic enough to permit electron emission, it is essential
to test the robustness of our model with respect to these
variations in measured work-function values. We choose to
use experimental work-function values in our model to allow
for a direct comparison of the intrinsic emittance predicted
by our model with the experimentally measured emittance.
However, PBE calculated work functions of elemental crystals
were previously found to agree with experimental values with
an average error of 0.30 eV, which is comparable to the exper-
imental precision [36]. Therefore, we expect the performance
of our model would not be significantly impacted by the use
of DFT calculated work functions, rather than experimentally
obtained work functions.

Figure 6 depicts the calculated intrinsic emittance of bulk
PbTe(111) for different values of work function. In the limit
of h̄ω  φ, the calculated intrinsic emittance is relatively
insensitive to the value of the work function. However, when
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h̄ω ≈ φ, the calculated intrinsic emittance is significantly
impacted by the choice of φ. This is expected since the
work function determines the minimum energy required by
optical transitions to contribute to photoemission. When h̄ω ≈
φ, the distribution of photoexcited electrons in k space is
restricted to the narrow range of conduction states which
satisfy Ec(�k) ≈ Evacuum. Given the high variation in possible
work-function values, we can expect to be more confident
in our model’s predictions at higher photon energies than
at lower photon energies. However, the variation of intrinsic
emittance with work function hints at the exciting possi-
bility of engineering low intrinsic emittance photocathodes
through precisely controlling the work function, such that
only states with low transverse momentum contribute to
photoemission.

The impact of including surface states in our calculations
is depicted in Fig. 7. Experimentally, Cu(100) exhibits low
intrinsic emittance at the photoemission threshold, which is
depicted by Fig. 7(c) [32]. However, the bulk conduction
bands calculated by DFT show an absence of photoemitting
conduction-band states until ∼7 eV above the Fermi level,
precluding low intrinsic emittance in bulk Cu for photon
energies below 7 eV. In comparison, the DFT-calculated
surface conduction bands show low transverse momentum
states directly above the vacuum level, in agreement with the
experimental measurements seen in Fig. 7(c). As such, this
example provides direct evidence for the necessity of includ-
ing surface states to accurately describe the photoemission in
some materials.

However, in other materials such as W(100), agreement
with the experimentally measured intrinsic emittance can
be obtained by including the bulk states only [Fig. 7(d)].
Surprisingly, slightly better agreement with the experimen-
tally measured intrinsic emittance is obtained when using a
bulk W simulation cell instead of a surface slab. This may
in part be due to our model assuming that all states are
receiving the same intensity of photons from the incident light
source. However, the intensity of light propagating through
the photocathode material will be attenuated by a factor of 1/e
once it travels a distance known as the skin depth. Therefore,
we might expect that the photoemission calculated with our
model will be better described by bulk states for materials with
large skin depths such as semiconductors.

The skin depth also plays an important role in the transport
of electrons to the surface of the photocathode. For an elec-
tron located a distance s beneath the photocathode surface,
the probability of reaching the surface without experiencing
electron-electron scattering, Fe−e(ω), is given by [13]

Fe−e(ω) = 1

1 + λopt (ω)
λe−e

, (32)

where λopt (ω)
λe−e

is the ratio of the optical absorption depth to
the electron-electron scattering mean free path. For materials
with small λopt (ω), the majority of electrons that contribute
to photoemission must be located near the surface. For Cu,
the DFT calculated skin depth has previously been reported
to be 400 Å at a photon energy of 5 eV, whereas the skin
depth of bulk W is 250 Å at a photon energy of 5 eV [37].

For comparison, the average escape length of semiconducting
GaAs is 6 × 104 Å at a photon energy of approximately 2 eV
[38], suggesting the photoemission of semiconductors to be
well described by bulk states. Based on these skin depths, one
might expect the photoemission of Cu to be better described
by bulk states than W, in opposition to what is shown in
Fig. 7. However, due to the absence of photoemitting bulk Cu
states, the experimentally observed photoemission threshold
at 4.5 eV in Cu(100) must arise from surface states. Generally,
we expect that materials with small skin depths will require
calculations of both the bulk and surface states to consis-
tently model the photoemission. Recently, a layer-by-layer
decomposition approach has been reported to account for the
differing light intensity incident on bulk and surface states
[39].

To test how well our model can generalize to a wide
range of materials, we calculate the intrinsic emittance for five
candidate materials [Cu(100), Rh(110), PbTe(111), Mo(100),
and W(100)] (Fig. 8). This list of materials includes two face-
centered-cubic (fcc) metals (Cu and Rh), two body-centered-
cubic (bcc) metals (Mo and W), and a rocksalt structure
semiconductor (PbTe). We also calculate the mean absolute
error (MAE) between our model and the experimental mea-
surements and compare this to the MAE of the analytical
expression given in Eq. (5) (Fig. 9). We find that the analytical
expression performs remarkably well for Cu, Mo, and W.
Since Eq. (5) assumes a free-electron model and constant
density of states, it works well for these elemental metals
where these assumptions are more valid than for semicon-
ductors and more complex metals. Furthermore, we expect
the optical transition probability to have a larger impact on
the photoemission in materials with complex band structures
(such as PbTe), rather than elemental metals (such as Cu).
This may allow the analytical model to accurately describe
the photoemission of simple metals, but prevents it from
generalizing well to all materials.

The analytical expression qualitatively fails to describe the
photoemission in PbTe(111) with a MAE of 0.270 μm/mm,
whereas our model achieves a MAE of 0.054 μm/mm (Fig. 9).
This performance is quite noteworthy in light of previous
modeling efforts on PbTe(111). A previous DFT-based pho-
toemission analysis [18] predicted the mean transverse en-
ergy of PbTe(111) to be 20× smaller than experimental
measurements [10]. Since this previous DFT-based analysis
represented the electronic structure of PbTe with the electron’s
effective mass, this result may highlight the limitations of
using effective mass to fully capture the complexity of the
photocathode’s electronic structure.

Across the five materials shown in Fig. 9, our model
achieved an average MAE of 0.044 μm/mm, with a maximum
MAE of 0.058 μm/mm. The analytical expression achieved
an average MAE of 0.088 μm/mm, with a maximum MAE
of 0.270 μm/mm. While our model performs slightly better
on average than the analytical expression, we note that our
model is considerably more robust at handling a wider range
of materials. This distinction becomes increasingly important
when attempting to predict the photoemission properties of
candidate photocathodes for which experimental data have
not been obtained. Whereas the analytical expression fails to
accurately predict the intrinsic emittance of Rh and PbTe,
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FIG. 8. Intrinsic emittance for five candidate materials [Cu(100), Rh(110), PbTe(111), Mo(100), and W(100)]. We compare the analytical
expression shown in Eq. (5), our DFT model, and previous experimental measurements [10,32,33,40]. The Rh, Mo, and W measurements
were obtained with a solenoid scan technique [40], whereas the Cu and PbTe measurements were obtained using a free-flight method [32]. We
calculated the intrinsic emittance of Cu(100) and Rh(110) from their surface bands, whereas we calculated the intrinsic emittance of W(100),
Mo(100), and PbTe(111) from their bulk bands. Experimentally, Rh(110) was observed to have a surface oxide layer during the intrinsic
emittance measurements, whereas Cu(100) was measured with an atomically flat and clean surface. The ability of our model to also account
for finite-temperature effects is also illustrated for Cu(100) at 300 and 30 K.

the MAE of our model is comparable to the experimental
precision for all materials tested (Fig. 9), demonstrating the
utility of our model as a tool for engineering new photocath-
ode materials. Furthermore, since the analytical expression
is expected to work well on metals with free-electron-like
valence bands, the performance of the analytical expression
shown here is likely better than for most materials. There is a
need for more experimentally acquired frequency-dependent
photoemission data for a broad spectrum of materials beyond
elemental metals to further validate this approach.

In conclusion, we have developed a generalizable DFT-
based photoemission model, which has been demonstrated
to quantitatively agree with experimental photoemission data
for a diverse range of photocathode candidates. Coupled with
the relatively low cost of DFT-based simulations, the general
nature of our model may enable the rapid screening of thou-
sands of photocathode candidates. Furthermore, we expect
our model will pave the way for future studies on a wide
variety of photonic materials, providing a fast and accurate
method to explore novel photocathode and photoemissive
technologies.
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FIG. 10. Effect of σ [Eq. (17)] on the calculated intrinsic emit-
tance of bulk PbTe(111). We assume a lifetime broadening of σ =
0.20 eV for all intrinsic emittance calculations in this work.
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APPENDIX A: EFFECT OF σ ON CALCULATED
INTRINSIC EMITTANCE

The Dirac delta function δ in Eq. (17) ensures the con-
servation of energy between the initial and final electronic
states and the photon being absorbed. Physically, σ in Eq. (17)
represents the lifetime broadening of the excited states. Since
σ is difficult to calculate from DFT calculations, we solve
Eq. (17) with an assumed value of σ = 0.20 eV. Figure 10
illustrates the calculated emittance of PbTe if we were to
assume different values of σ . Larger values of σ allow for
more pairs of initial-final electronic states to have a larger con-
tribution to the emittance, which smooths the data. However,
even in the case of σ = 0.01 eV, the results are qualitatively
similar to the case of σ = 0.20 eV.

APPENDIX B: ALLOWABLE VALUES OF RECIPROCAL
LATTICE VECTOR, �G

To determine the range of excess energies that Eq. (30) can
be used to describe the electron transmission probability, we
calculate the maximum excess energy that prevents Gx,y �= 0
from contributing to the photoemission [Eq. (31)] for Rh(110)
(Fig. 11). Rh(110) is the material with the largest lattice
constants included in this work, which gives a lower bound
on the maximum excess energy that satisfies Eq. (31) for all
studied materials. For Rh(110), the lowest excess energy that
satisfies Eq. (31) with Gx,y �= 0 is 2.54 eV, which is above the
experimentally relevant excess energies. However, emission
associated with Gx,y �= 0 may occur in more complex crystals
with larger lattice constants or surface reconstructions, lead-
ing to an increased emittance.

FIG. 11. Maximum excess energy (E − V0) that prevents Gx,y �=
0 terms of Eq. (29) from contributing to the photoemission of
Rh(110) for (a) Gx = 2π

a , Gy = 0 and (b) Gx = 0, Gy = 2π

b .

FIG. 12. Minimum lattice constant (a) of general photocathode
materials that allow for Gx �= 0 to contribute to the photoemission,
with Gy = 0, ky = 0 [Eq. (31)].
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In general, we expect the Gx,y �= 0 reciprocal-lattice vec-
tors to contribute to the distribution of photoemitted electrons
at lower excess energies for materials with larger lattice
constants. To quantify this effect, we calculate the minimum
lattice constant that we can ignore the contribution to the

photoemission from Gx,y �= 0, given by Eq. (31) (Fig. 12). For
a typical range of experimental excess energies of up to 2 eV,
Gx,y �= 0 reciprocal-lattice vectors will not contribute to the
photoemission for any material with a lattice constant smaller
than 4.33 Å.
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