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Fate of an electron beam in graphene: Coulomb relaxation or plasma instability?
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Electron beams in two-dimensional systems can provide a useful tool to study energy-momentum relaxation
of electrons and to generate microwave radiation stemming from plasma-beam instabilities. Naturally, these two
applications cannot coexist: if instability exists, it strongly distorts the distribution function of beam electrons;
if scattering is strong, it typically suppresses plasma instabilities. Here, we study the role of inevitable electron-
electron (e-e) collisions on possible plasma beam instabilities in graphene and show that scattering effects are
far less trivial. We find that an unstable plasma mode associated with beam bunching is stabilized already
by weak e-e collisions. Quite surprisingly, further enhancement of e-e collisions results in loss compensation
and self-excitation of an ordinary graphene plasmon mode. Such instability is interpreted as viscous transfer
of momentum from an electron beam to two-dimensional plasmons. Its growth rate reaches its maximum at
hydrodynamic-to-ballistic crossover, when plasmon wavelength and electron mean free path are of the same
order of magnitude.
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I. INTRODUCTION

The cornerstone of Landau Fermi liquid theory is weak
scattering of a single electron excitation over the Fermi
surface. The corresponding scattering rate due to electron-
electron (e-e) collisions γee is proportional to excitation en-
ergy squared δε2 in three dimensions [1]. In reduced dimen-
sions, the e-e scattering becomes stronger, which leads to non-
Fermi-liquid behavior in one dimension [2] and log-enhanced
scattering (∼δε2 ln |δε|/T ) in two dimensions [3]. Scattering
among two-dimensional (2D) electrons has recently regained
great attention [4] as it leads to novel fluidlike transport
observed in numerous experiments [5–8].

While a single electron above the Fermi surface inevitably
ends up with scattering, the fate of an electron bunch can
be far more interesting. Namely, the appearance of a beam
over the steady electron background results in a pair of new
excitation modes with complex conjugate frequencies, one
of which is unstable (growing) [9–11]. This phenomenon of
plasma beam instability has been actively studied since the
1950s in connection with nuclear fission problem [12] and
solar bursts [13].

The resurrection of interest to the fate of electron beams
in 2D systems is dictated by two reasons. First, relaxation
of the injected beam can provide valuable information on
the rate of e-e scattering and its energy dependence that is
challenging to access with other techniques [14–18]. Sec-
ond, if the plasma-beam instability does indeed develop,
the resulting oscillations can form the basis of solid-state
terahertz sources [19–22]. Naturally, these two applications
cannot coexist: plasma instability distorts the energy spectra
of beam electrons hindering the determination of scattering
mechanisms [23]. At the same time, strong scattering of
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beam electrons (e-e scattering being the unavoidable one) is
generally believed to suppress the instabilities.

The idea of collisionless (ballistic) transport being the
prerequisite of instability [19,20,22] was scarcely doubted,
though real studies of beam instabilities in two dimensions
in the presence of e-e collisions are lacking [24]. In this
paper, we establish the criteria of beam instabilities and beam
relaxation in graphene in the presence of e-e collisions of
arbitrary strength.

First of all, we calculate the characteristics of instability
associated with beam bunching in graphene (i.e., frequency
and growth rate). We focus on importance of nonlocal effects
in polarizability for correct determination of growth rate;
such effects were ignored in preceding studies [25]. Quite
expectantly, we find that already weak e-e scattering sup-
presses such instability. Further on, we find a new unexpected
instability at the hydrodynamic-to-ballistic crossover where
Knudsen number Kn = qv0τee is order of unity (q is the
plasmon wave vector, v0 is the Fermi velocity in graphene,
and τee = γ −1

ee is mean time between e-e collisions). In this
regime, the normal graphene plasmons become unstable in
the presence of beam, while the physics of instability can be
attributed to viscous momentum transfer between beam and
collective modes. The effect of e-e collisions on collective
modes in this regime is highly nonperturbative; still it can be
handled analytically using model collision integrals [1,26,27].
While promotion of plasmon instabilities by e-e collisions
looks counterintuitive, several such examples can be found in
bulk Maxwellian plasmas [28].

The interest to graphene is motivated by the dominant role
of e-e scattering in graphene-based heterostructures [7,29] due
to low impurity density and high energy of optical phonons.
In addition, formation of high-density electron beams with
collimated velocities is easily achievable with graphene tun-
nel junctions [30,31] and geometrically patterned contacts
[32,33].
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II. THEORY OF ELECTRON BEAM STABILITY
IN GRAPHENE

In a canonical problem of plasma-beam instability, the
electron beam in collimated in momentum space rather than
in real space. The momentum collimation is readily achieved
upon electron injection through tunnel junctions [30]. The
angular distribution of tunnel-injected electrons is Gaussian,
and its width shrinks with reducing the barrier transparency.
In the following calculations, we shall mimic the distribu-
tion function of beam electrons as a delta function, fb(k) =
nbδ(k − kb), where nb is the density of injected electrons with
momentum around kb and the delta function is normalized
according to g(2π )−2

∫
d2k δ(k − kb) = 1 (g = 4 is the spin-

valley degeneracy). The steady-state distribution function of
electrons thus reads

f0(k) = fF (k) + nbδ(k − kb), (1)

where fF (k) is the Fermi function of background equilibrium
electrons.

We are to analyze the electromagnetic stability of distri-
butions (1). Such analysis is based on evaluation of dielectric
function ε(q, ω) of an electron system followed by the search
of unstable roots for plasmon dispersion relation ε(q, ω) = 0.
In turn, evaluation of dielectric function requires the knowl-
edge of polarizability 	(q, ω) being the proportionality co-
efficient between induced electron density δnqω and electric
potential δϕqω, δnqω = 	(q, ω)e δϕqω. The latter is found
from a kinetic equation governing the electron distribution
function f :

∂ f

∂t
+ vk

∂ f

∂r
+ ∂V

∂r
∂ f

∂k
= Cee{ f }. (2)

Above, vk = v0k/k is the electron velocity in graphene and
V (r) = −eϕ(r) is the potential energy in electric field. The
right-hand side is the electron-electron (e-e) collision integral.

To preserve the main features of e-e collisions and main-
tain analytical tractability, we adopt Cee in the generalized
relaxation-time approximation [26,27,34]. In this model, all
perturbations of distribution function are relaxed toward local
equilibrium

Cee{ f } = f − feq

τee
, (3)

feq(k) =
[

1 + exp

{
εk − kueq − μeq

Teq

}]−1

(4)

rather than to zero. Moreover, the parameters of this local

equilibrium, which are quasi-Fermi level μeq, drift velocity
ueq, and temperature Teq, are different from those of steady
background electrons. These parameters would be established
after equilibration of background electron plasma and beam,
and are determined from particle number, momentum, and
energy conservation laws. If the density of beam electrons
is small compared to equilibrium density n0, the equilibrium
drift velocity would be ueq ≈ v0(nb/n0)(kb/kF ).

We further proceed to linearization of the Boltzmann
equation with respect to small external potential V (r) =
−e δϕqωei(qr−ωt ). The distribution function acquires a cor-
rection δ fqω(k)eiqr−iωt , and so does the local equilibrium
function feq = f (0)

eq + δ feqeiqr−iωt . It is now possible to obtain

a formal solution for δ fqω(k) (the subscript qω will be sup-
pressed from now on):

δ f (k) = −q eδϕ ∂
∂k { fF (k) + fb(k)} + iγeeδ feq

ω + iγee − qvk
. (5)

Considerable precautions should be taken upon evalua-
tion of momentum derivative for beam distribution function
∂ fb(k)/∂k. Once the beam distribution is delta peaked in
momentum space, the derivative becomes ill defined. This
problem is resolved if one recalls that Boltzmann kinetic
equation is derived from the quantum Liouville equation in
the quasiclassical limit [34]. This procedure is described in
detail in Appendix A. Here, we provide only the resulting re-
placement rule for pathological terms (we set in the following
h̄ = 1):

q∂ fb(k)/∂k
ω + iγee − qvk

→ fb(k + q) − fb(k)

ω + iγee − εk+q + εk
, (6)

where εk = kv0 is the band dispersion in graphene.
The solution for the distribution function is accomplished

after one finds the parameters of local-equilibrium function

δ feq = δμ∂μ f (0)
eq + δu∂u f (0)

eq + δT ∂T f (0)
eq , (7)

using the conservation laws upon collisions. More precisely,
the time derivatives of particle number, momentum, and en-
ergy should turn to zero if collision integral (3) is evaluated
on distribution functions (5) and (7). This procedure leads us
to closed-form equations for local-equilibrium parameters δμ,
δu, and δT . These can be called generalized hydrodynamic
equations and are valid at an arbitrary value of Knudsen
number Kn = qv0τee. The final form of these equations is
quite cumbersome and presented in Appendix B, yet they
yield simple results in hydrodynamic (Kn � 1) and ballistic
(Kn � 1) limits.

III. RESULTS

A. Beam instability in graphene: Collisionless case

The polarization 	(q, ω) of an electron system with in-
jected beam in the absence of collisions is the sum of indi-
vidual contributions from steady electrons 	0(q, ω) and the
beam 	b(q, ω). The dielectric function ε(q, ω) governing the
collective response is therefore

ε = 1 + V0[	0 + 	b] ≡ ε0 + V0	b, (8)

where we have introduced the Fourier transform of Coulomb
potential in 2D V0 = 2πe2/κ|q| (κ is the beackground dielec-
tric constant), and dielectric function of equilibrium graphene
electrons ε0 = 1 + V0	0.

The polarization of equilibrium electrons in the classical
limit (q � kF , ω � εF ) is given by (see [35] and Appendix A)

	0(q, ω) = 2

π

kF

v0

⎡
⎣1 − ω√

(ω + i0)2 − q2v2
0

⎤
⎦. (9)

It is important that frequently adopted long-wavelength ex-
pansion of polarizability (q → 0) may be applicable only for
fast waves with phase velocity, ω/q � v0 [36]. We will see
that unstable modes generated by beam are slow (ω/q < v0).
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Therefore, the full form of polarization (9) should be used for
stability analysis [37].

The beam polarization is given by

	b = nb

[
1

ω − ω−
b0

− 1

ω − ω+
b0

]
. (10)

It is proportional to the small density of beam electrons nb,
yet it is highly resonant in frequency. The poles of beam po-
larization are located at two beam-induced collective modes:

ω±
b0 = qvb ± qv0 sin2 θ

q

2kb
. (11)

The frequency of these modes is almost zero in the reference
frame of a beam, except for a small correction due to quantum
effects. These quantum corrections are important to lift the
degeneracy of beam-induced modes and correctly capture the
low-density behavior of instability.

Interaction of beam with background electrons through
self-consistent field results in modification of beam modes.
Their frequencies are changed according to

ω±
b = qvb ± qv0| sin θ |

[(
q sin θ

2kb

)2

+ V0(q)nb/kbv0

ε0(q, qvb)

]1/2

.

(12)
The beam-induced modes are no longer stable, indepen-

dent of beam density nb. Indeed, the dielectric function of
graphene has a nonzero imaginary part at ω = qvb < qv0,
which signifies collisionless intraband absorption (Landau
damping). The double sign before the square root in (12)
implies that one mode (ω+

b ) is decaying while the other one
(ω−

b ) is growing in time. The appearance of an unstable
beam-induced mode is clearly seen in the plot of loss function
−Imε−1(q, ω) in Fig. 1(a); the negative sign of loss function
at the lowest mode implies its instability.

The instability growth rate depends on beam density lin-
early at small nb < n0(q/kb) and approximately as n1/2

b at
larger values. The low-density limit can be described only
with an account of quantum corrections to beam-induced
modes.

The beam-induced modes always lie in the domain of
intraband absorption ω < qv0, where the dielectric function of
background electrons has a positive imaginary part, Imε0 > 0
[as shown in Fig. 1(b)]. It may look counterintuitive that an
absorptive dielectric function may give rise to plasmon gain,
as it follows from Eq. (12). This is explained by the fact
that the energy of electromagnetic oscillations W (q, ω) with
frequency ω−

b is negative [38]. The time derivative of oscilla-
tion energy is negative in absorptive media dW (q, ω)/dt < 0,
which corresponds to the growth of the absolute value of
energy.

The plasmon gain appears in the thresholdless manner in
the absence of e-e collisions, i.e., even a very small density
of beam electrons gives rise to a proportionally small growth
rate. Absence of threshold is inherited from the spatial dis-
persion of conductivity and resulting Landau damping. The
thresholdless character of beam instability is not intrinsic to
graphene; already in collisionless warm three-dimensional
Maxwell plasma the Landau damping similarly gave rise to
a beam instability [38]. However, reduction of temperature

(a)

(b)

(c)

FIG. 1. Beam instability in a collisionless electron system in
graphene. Panel (a) shows the calculated loss function −Imε−1(q, ω)
for graphene electrons with a beam in the ballistic regime. Fermi
energy εF = 100 meV, beam density nb/n0 = 0.1, collision fre-
quency h̄γee = 600 μeV, and κ = 4. Panel (b) shows the dispersion
of normal plasmon (ωpl, green line) and two beam-induced modes
(ω±

b , red and blue lines). Dashed lines show the tenfold magnified
damping and growth rates of beam-induced modes. Panel (c) shows
the growth rate of a beam-induced mode (scaled by Fermi energy)
maximized with respect to wave vector q and propagation angle θ .
Inset shows the momentum distribution of electrons in the problem
of beam instability.

in the Maxwell plasma led to an exponential suppression of
Landau damping. A special property of graphene and degen-
erate 2D electron systems in general is that Landau damping
is never parametrically small, and cannot be neglected in the
problem of beam instability.

It is possible to reveal the limiting values of instability
growth rate with variation of wave vector q, propagation
angle θ , and Coulomb interaction strength αc = e2/κ h̄v0. A
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close inspection of Eq. (12) shows that instability growth
is favored by strong Coulomb interactions, i.e., Imω−

b is a
growing function of αc. It reaches the maximum at the largest
physically reasonable value e2/h̄v0 ≈ 2.2. For the same rea-
son, instability in gated structures would be weaker, as the
presence of gate at distance d effectively renormalizes αc →
(e2/h̄κv0)(1 − e−2|q|d ). When varying the propagation angle
θ and wave vector q, the growth rate reaches its maximum at
θ ∼ π/5 and q ∼ kF . The result of constrained optimization
of the beam instability growth rate with respect to q (in the
range q ∈ [0; kF ]) and θ ∈ [0; π/2] is shown in Fig. 1(c) (see
Appendix C for details).

We find that with a realistically small density of beam
electrons nb/n0 ≈ 0.1, the maximum achievable growth rate
of beam instability is ∼0.02εF . It becomes comparable to e-e
collision frequency at temperatures T ≈ 0.1εF . For realistic
Fermi energy ∼100 meV, this corresponds to the liquid nitro-
gen temperature.

As the temperature is increased, e-e collisions destroy
the ordinary beam instability. As far as the beam density is
small (nb/n0 � 1) and collisions can be treated perturbatively
(γee � ω

(±)
b ), the effect of collisions is trivial and results in

a shift of beam mode frequency by −iγee. The in-scattering
terms of collision integral can be neglected in this regime
as they are proportional to the product of beam density and
scattering rate. This result can be physically interpreted by
smallness of phase space occupied by beam electrons, which
results in low probability of electron scattering in the direction
of beam propagation. Such a conclusion holds for an arbitrary
model of e-e scattering and is not limited to the generalized
relaxation time approximation analyzed here.

B. Excitation of graphene plasmons by injected electrons:
Strong e-e collisions

The situation changes radically for e-e collisions with
frequency comparable to that of plasmon modes. Numerically,
it corresponds to terahertz frequencies in graphene at room
temperature [39]. For ordinary plasmon modes in equilibrium
with ωpl ≈ v0

√
4αckF q, this frequency range is characterized

by strong viscous damping [27]. This result is illustrated in
Fig. 2(b) with the red line. It shows that the damping rate
of the bulk graphene plasmon vs e-e collision frequency has
a maximum located at the crossover between ballistic and
hydrodynamic regimes.

When the beam is injected into an electron plasma with
strong e-e collisions, the maximum in the damping rate is
transformed into the maximum of the growth rate, as shown in
Fig. 2(b) with blue and black lines. The beam-induced modes
are completely suppressed in this regime, as clearly seen in
the plot of loss function for strong collisions in Fig. 2(a). We
have verified that both plasmon damping and beam-induced
instability disappear in the deep hydrodynamic regime (γee →
∞) and in the ballistic regime (γee → 0). Both effects appear
as first-order corrections to plasmon dispersion in Knudsen
number Kn = qv0τee; in the absence of the beam the viscous
damping equals ω′′ = qv0Kn/4. The fact that beam-induced
instability appears at the same order in Kn as viscosity enables
us to interpret it as viscous momentum transfer between
electron beam and normal plasmon modes.

-Im ( , )ε ω-1 q
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(b)
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FIG. 2. Excitation of normal graphene plasmons by electron
beam at the hydrodynamic-to-ballistic crossover. Panel (a) shows
the calculated loss function −Imε−1(q, ω) for graphene electrons
with εF = 150 meV, beam density nb/n0 = 0.095, collision fre-
quency h̄γee = 25 meV, and κ = 4. Panel (b) shows the calculated
damping/growth rate of normal graphene plasmons vs e-e collision
frequency at fixed wave vector q = T/(h̄v0 ) and various densities
of beam electrons. For small beam densities, the viscous damping
reaches its maximum at Kn ∼ 1; for large beam densities so does the
growth rate due to momentum transfer between beam and normal
plasmon modes.

The growth rate of “normal” graphene plasmons due to
viscous interaction with electron beam can be studied analyti-
cally by expansion of generalized hydrodynamic equations in
the limit of small Knudsen number. Noting that the real part of
normal plasmon frequency is almost unaffected by scattering,
we can obtain the damping/growth rate as

γ = qv0Kn
mhd
mb

P1(s, βeq) + P2(s, βeq) + nbP3(s, βeq)

P4(s, βeq) + nbP5(s, βeq)
, (13)

where s = ω/qv0 is the phase velocity scaled by Fermi ve-
locity, βeq = ueq/v0 is the dimensionless velocity of elec-
trons equilibrated with beam, mhd = ρeqv

2
0/neq and mb =

2neq/∂neq/∂μ are the “proper” electron masses in hydrody-
namic and ballistic regimes [27], and Pi(s, βeq) are polynomial
functions. To the leading order in beam density (and, hence,
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drift velocity) they are given by

P1 = 4s(1 − 2s2)2 − 4βeq(12s4 + 8s2 − 1), (14)

P2 = −4(4s5 − 5s3 + s) + 6(6s4 − 8s2 + 1)βeq, (15)

P3 = −16s5 + 20s3 + 6s2 − 4s − 2, (16)

P4 = −32s3 + 4βeq(26s2 − 1), (17)

P5 = −8s3 − 6s2 + 1. (18)

In the absence of electron beam, Eq. (13) readily repro-
duces the damping rate of equilibrium graphene plasmons
[27]:

γ0 = −qv0Kn

8

[
1 +

(
mhd

mb
− 1

)(
1

s
− 2s

)2
]
. (19)

The first term in square brackets is due to viscous damping.
The second one can be traced down to the intrinsic conduc-
tivity of Dirac fluid [40–43] which, in turn, is a result of
the nonconserved electric current upon collisions of Dirac
electrons.

The beam effects on plasmon growth are proportional to
the product of two small quantities, Knudsen number and rel-
ative density of beam electrons. It may be questioned whether
beam can make a pronounced effect on damping compared
to viscosity, the contribution of which is proportional to Kn
solely. It appears that such a situation is possible in the limit
of large wave phase velocity, s � 1. In this limit, the viscous
damping disappears but the beam-induced growth persists,
while the expression for the damping/growth rate acquires a
simple form:

γs�1 ≈ −1

2
qv0s2Kn

[
mhd

mb
− 1 − nb

]
. (20)

We observe therefore that beam-induced growth should com-
pete only with damping due to intrinsic conductivity and not
with the viscous damping. Further, in the limit of degenerate
carriers, εF /T � 1, the last type of damping disappears, and
the threshold density of beam electrons for onset of instability
can be relatively small:

nb

n0
≈ π2

3

T 2

ε2
F

. (21)

The threshold beam density for the onset of plasma instability
in the nearly hydrodynamic regime is a function of only
two parameters: dimensionless phase velocity s = ω/qv0 and
scaled Fermi energy. These universal dependences are shown
in Fig. 3 with solid lines; dashed lines correspond to analytical
low-temperature limits, Eq. (21). For small phase velocities
s ∼ 1, the threshold density becomes unachievably large as
the beam-induced momentum transfer cannot compensate for
viscous dissipation. At large velocities, the instability thresh-
old abruptly goes to zero.

IV. DISCUSSION AND CONCLUSIONS

We have revealed and theoretically studied two types
of plasma instabilities in graphene induced by injection of

(a)

(b)

FIG. 3. Instability of normal graphene plasmons in the nearly hy-
drodynamic regime Kn � 1. Panel (a) shows the calculated thresh-
old density of beam electrons for onset of instability vs wave velocity
at various Fermi energy (solid lines). Dashed lines show an analytical
approximation (21) to the threshold density. Panel (b) shows the color
map of threshold density vs phase velocity s and Fermi energy εF /T .

collimated electron beam. The first one is associated with
beam bunching, and appears for very weak electron-electron
collisions. The second one is associated with viscous trans-
fer of momentum from electron beam to collective plasmon
modes, and appears at moderate strength of e-e collisions,
ωτee ∼ 1.

Emergence of both instabilities requires spatially disper-
sive (nonlocal) electromagnetic response. In the case of
bunching instability, it is the nonlocal effect of Landau damp-
ing that gives rise to the growth of a lower beam-induced
mode. We note that the bunching instability persists if po-
larizability is described within a simplified local model [25],
but its characteristics are quite different from those obtained
with the realistic model. Particularly, the local model predicts
finite threshold density of beam electrons for instability onset,
in contrast to thresholdless onset found with an account of
Landau damping. The local model predicts the growth rate
proportional to n1/2

b , instead of linear growth rate ∝ nb in the
nonlocal model.

The above discussion was concentrated on stability of
a spatially uniform distribution comprising steady electrons
and collimated beam with energy slightly above the Fermi
surface. This picture is simplified, as the beam electrons will
undergo scattering and angular spreading upon propagation
over the steady Fermi sea. Within the adopted model of
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collision integral, the angular spreading would occur at length
l ∼ v0τee. However, one can expect that the actual length of
beam spreading would be longer.

First of all, the relaxation rates for even and odd harmon-
ics of distribution function in two dimensions are different,
τeven ≈ τee ≈ (T/εF )2τodd [44]. Due to this fact, the tempo-
ral evolution of beam features two characteristic steps [45]:
(1) angular spreading of electrons across δθ ∼ (T/εF )1/2 and
formation of hole “tail” in the opposite direction during time
τeven; (2) complete angular equilibration during time τodd. We
may suggest that spatial evolution of injected beam would also
feature two characteristic lengths, leven = v0τeven and lodd =
v0τodd. Stability study of “preequilibrium” beams with angular
width δθ is a subject of foregoing research.

A second feature of slow angular spreading is peculiar for
graphene and is associated with suppression of backscattering
due to the chiral nature of carriers. As shown in recent pump-
probe experiments [46], energy relaxation of hot carriers is
almost unidirectional, with much slower angular diffusion. It
is also possible to show that the presence of the beam itself
weakly affects the electron relaxation time. This is primarily
due to the small density of beam electrons nb/n0 � 1. Second,
the collision of two electrons belonging to a well-collimated
beam can lead only to a change in absolute values of carrier
momenta, not their directions. Therefore, such interbeam col-
lisions approximately preserve the angular collimation of the
beam.

It is instructive to compare the criteria of stability for
various distributions of drifting electrons. The above study
conjectured that electron beam, a distribution of highest possi-
ble anisotropy, is unstable in the absence of collisions without
any threshold in beam density. Another limiting case is locally
equilibrium distribution of drifting electrons, which represents
a Fermi distribution shifted by kudr in momentum space. Such
patterns of drifting electrons can lead to instabilities in double-
layer and grating-gated graphene, the velocity threshold being
udr � v0/

√
2 [47]. High threshold velocity is paid off by

insensitivity of hydrodynamic distributions to e-e collisions,
while electron beams are strongly affected by the latter. The
instability due to viscous momentum transfer from beam to
normal plasmon modes is an appealing exception from this
trade-off.
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APPENDIX A: EVALUATION OF POLARIZABILITY
WITH QUANTUM KINETIC EQUATION

To derive the polarizability of background electrons 	0

and beam 	b, we start with a kinetic equation for elec-
tron density matrix ρ = ρ0 + δρ. Here δρ is the field-
induced correction to the density matrix which varies in space
and time as eiqr−iωt ; ρ0(k, k′) = δk,k′ f0(k) ≡ δk,k′ [ fF (k) +
nbδ(k − kb)] is the part of the density matrix unperturbed by
field. It is represented by an equilibrium Fermi distribution
part and collimated beam. The kinetic equation reads (we

set h̄ = 1)

−iωδρ = −i[Ĥ0, δρ] − i[V̂ , ρ0] − γee(δρ − δρeq), (A1)

where Ĥ0 is the Hamiltonian of free electrons, and the
perturbation operator is represented by high-frequency field
V (k, k′) = −eδϕqδ(k, k + q). The relaxation term drives the
perturbations of distribution function toward local equilibrium
δρeq by conserving the number of particles, momentum, and
energy (for an explicit form of the relaxation term in the
quantum case, see [34]).

In the following, we shall ignore the two-band nature
of electrons in graphene as we are ultimately interested in
transition to the classical limit (q � kF , ω � εF ). The only
purpose of the quantum kinetic equation is to properly handle
the highly singular distribution of beam electrons. The kinetic
equation for density matrix (A1) is readily solved in a plane-
wave basis; in momentum representation its only nonzero
elements are those between k and k + q:

δρ(k, k + q) = eδϕq[ f0(k) − f0(k + q)] + iγeeδ feq(k)

ω − εk+q + εk + iγee
.

(A2)
Above, δ feq(k) is the field-induced variation of the local-
equilibrium distribution function:

δ feq(k) = δμeq∂μ feq + δueq∂u feq + δTeq∂T feq. (A3)

In the following, we will pass to the classical limit in all terms
of (A2) not containing the singular beam distribution function,
i.e., set

fF (k) − fF (k + q) ≈ −q
∂ fF

∂k
, εk − εk+q ≈ −qvk. (A4)

The density matrix (and distribution functions) of noninteract-
ing particles (γee → 0) are additive. In other words, they can
be represented as sums of those due to background electrons
and the beam, namely

δρ(k, k + q) = eδϕq
−q∂ fF /∂k

ω − qvk + i0

+ eδϕqnb
δ(k − kb) − δ(k + q − kb)

ω − εk+q + εk + i0
. (A5)

Knowing the density matrix, one finds the field-induced elec-
tron density δnq = ∑

k δρ(k, k + q) and the polarizability
δnq = 	(q, ω)eδϕq. In accordance with decomposition (A5),
the polarizability is presented as

	(q, ω) = 	0(q, ω) + 	b(q, ω), (A6)

	0(q, ω) = −
∑

k

q∂ fF /∂k
ω − qvk + i0

= 2

π

kF

v0

⎡
⎣1 − ω√

(ω + i0)2 − q2v2
0

⎤
⎦, (A7)

	b(q, ω) = nb

∑
k

δ(k − kb) − δ(k + q − kb)

ω − εk+q + εk + i0

= nb

[
1

ω − εkb+q + εkb

− 1

ω − εkb + εkb−q

]
.

(A8)
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Going beyond the classical limit is important in the energy
denominators of the beam polarizability. One can approximate

εkb+q − εkb ≈ qvb − qv0 sin2 θ
q

2kb
, (A9)

εkb − εkb−q ≈ qvb + qv0 sin2 θ
q

2kb
, (A10)

where vb = v0k0/k0 is the velocity of beam electrons and θ is
the angle between beam and plasmon propagation direction.
Expressions (A8) for beam polarizability and expansions (A9)
and (A10) justify the form of polarizability (10) used in the
main text:

	b = nb

[
ω − qvb + qv0 sin2 θ

q

2kb

]−1

− nb

[
ω − qvb − qv0 sin2 θ

q

2kb

]−1

. (A11)

We can perform an explicit subtraction in (A11) and neglect a
small difference in denominators. We shall arrive therefore at
the polarizability 	̃b used in Ref. [25]:

	̃b = −nb
qv0 sin2 θq/kb

(ω − qvb)2 . (A12)

The latter equation does not capture the splitting of
beam-induced modes clearly seen in calculated dispersions
[Figs. 1(a) and 1(b)]. It can be applicable only at large
densities of beam electrons nb/n0 � q/kb.

APPENDIX B: GENERALIZED
HYDRODYNAMIC EQUATIONS

We repeat the derivation steps of generalized hydrody-
namic equations that enable one to find the parameters of local
equilibrium distribution function δμ, δu, δT at given external
potential δϕ. The details can be found in [47]. The derivation
is based on conservation of particle number, momentum, and
energy upon e-e collisions. These conservation laws can be
symbolically presented as∑

k

gkCee{δ f (k)} = 0, (B1)

where gk = {1, k, εk} is the vector of conserved quantities.
With model integral of e-e collisions (3), the above require-
ment simplifies to∑

k

gk[δ f (k) − δ feq(k)] = 0, (B2)

where δ f (k) is given by (5) and δ feq(k) by Eq. (7). Upon
performing integration over momentum space, we are led to a
system of generalized hydrodynamic equations.

Formulation of this system in terms of δμ, δu, and δT is
inconvenient. Instead, we pass to the variations of particle
density δn, relativistic velocity δβ = δu/v0, and mass density
δρ. These variations are bound by equations of state:

δn = ∂n

∂μ
δμ + 3βn

1 − β2
δβ + 2n − μ∂n/∂μ

T
δT, (B3)

δρ = (ρ − μn/v2
0 )

3δT

T
+ 5βρ

1 − β2
δβ. (B4)

Introducing the vector of unknown quantities x =
{δn/n, δβ, δρ/ρ}, we can formulate the generalized
hydrodynamic equations in a symbolic matrix form

M̂x = fpl + fb, (B5)

where fpl and fb can be considered as generalized forces
acting on background electron plasma and electron beam. The
hydrodynamic matrix has the form

M̂ =

⎛
⎜⎝

1 − iγ̃eeJ02 −iγ̃ee∂βJ02 0

0 1 − 2i
3 γ̃ee∂βJ13 βeq − 2i

3 γ̃eeJ13

0 βeq − iγ̃ee∂βJ03 1 − iγ̃eeJ03

⎞
⎟⎠,

(B6)

where we have introduced the dimensionless strength of e-e
collisions γ̃ee = (qv0τ )−1 = Kn−1. The dimensionless quan-
tities Jnm depend only on equilibrium velocity βeq and ratio
a = (ω + iγee)/qv0:

Jnm(a, β ) = (1 − β2)m− 1
2

2π

∫ 2π

0

cosnθ dθ

(1 − β cos θ )m(a − cos θ )
.

(B7)

The force vectors have the form

fpl = −2

⎛
⎜⎜⎝

J10

mkv
2
0

J20

mhd v2
0

3J10/2
mhd v2

0

⎞
⎟⎟⎠, (B8)

fb = nb

n

⎛
⎜⎜⎜⎝

1
ω+iγee−ω−

b
− 1

ω+iγee−ω+
b

1
mhd v2

0

(
kbv0 cos θ

ω+iγee−ω−
b

− kbv0 cos θ+qv0

ω+iγee−ω+
b

)
1

2mhd v2
0/3

(
εkb

ω+iγee−ω−
b

− εkb+q

ω+iγee−ω+
b

)
⎞
⎟⎟⎟⎠, (B9)

where we have introduced ‘kinetic’ and ‘hydrodynamic’
masses of carriers in graphene, mk = 2n/(v2

0∂n/∂μ) and
mhd = ρ/n. Though quite tedious, the system enables a full
analytical treatment at arbitrary e-e collision frequency.

APPENDIX C: MAXIMUM ACHIEVABLE GROWTH
RATE OF BEAM INSTABILITY

In this section, we maximize the growth rate of beam
instability with respect to wave vector q, propagation angle θ ,
and Coulomb coupling strength αc. We shall assume kb ≈ kF

as the energy of a beam is quickly relaxed, while angular
spreading can be relatively slow. To perform maximization,
we introduce the dimensionless wave vector q̃ = q/kb, and
rewrite Eq. (12) for the lowest mode as

ω−
b

εF
= q̃ cos θ − q̃| sin θ |

[(
q̃ sin θ

2

)2

+ pbαc

q̃ + 4αcF (s)

]1/2

,

(C1)

F (s) = 1 + is√
1 − s2

. (C2)
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FIG. 4. Values of wave propagation angle with respect to the
beam θ and wave vector q/kF delivering the maximum for the
instability growth rate. The wave vector is constrained below kF to
guarantee the validity of quasiclassical approximation.

The function F (s) depends only on mode phase velocity s =
ω/qv0. For the lowest beam mode, we can approximate s ≈
cos θ − (q̃/2) sin2 θ .

Imaginary part (growth rate) of beam mode frequency
(C1) is a continuously growing function of αc; therefore, we
constrain αc to its maximum possible value for suspended
graphene αc ≈ 2.2. With variation of q̃, the growth rate has a
maximum which can be achieved both below and above kF . To
stay within the applicability of quasiclassical approximation,
we restrict q < kF (q̃ < 1). Finally, with variation of angle, the
growth rate achieves a maximum in the vicinity of θ ∼ π/5.

The result of constrained optimization of Eq. (C1)
with respect to the remaining two variables is shown in
Fig. 1(c). The values of angle and wave vector deliver-
ing the optimum for growth rate, θopt and qopt, are shown
in Fig. 4.
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