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We develop a nonequilibrium auxiliary quantum master equation dual-boson method (aux-DB) and argue that
it presents a convenient way to describe steady states of correlated impurity models (such as single-molecule
optoelectronic devices) where electron and energy transport should be taken into account. The aux-DB is shown
to provide high accuracy with relatively low numerical cost. Theoretical analysis is followed by illustrative
simulations within generic junction models, where the scheme is benchmarked against numerically exact results.
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I. INTRODUCTION

The fast development of nanofabrication techniques com-
bined with advances in laser technology have led to tremen-
dous progress in optical studies of nanoscale systems. Optical
spectroscopy of single molecules in current-carrying junctions
has become reality. Surface-enhanced [1–3] and tip-enhanced
[4–6] Raman spectroscopies (SERS and TERS) as well as
bias-induced electroluminescence [7–13] measurements yield
information on the extent of heating of vibrational and elec-
tronic degrees of freedom in biased junctions, electron trans-
port noise characteristics, molecular structure, dynamics, and
chemistry. The combination of molecular electronics with
nonlinear optical spectroscopy has resulted in the emergence
of a new field of research coined optoelectronics [14,15].

The optical response of single-molecule junctions is only
possible due to the strong enhancement of the signal by
surface plasmons [16]. Large fields and confinement result
in a strong interaction between molecular and plasmonic
excitations. Note, also, the recent experiments on ultrastrong
light-matter interaction in single-molecule nanocavities (at the
moment, in the absence of electron current) [17,18]. At the
nanoscale, classical electrodynamics becomes inadequate as
it cannot describe quantum coherence and mixing between
plasmon and molecular exciton, while strong interactions
require one to go beyond perturbation theory.

The development of theoretical methods for the simulation
of strongly correlated open nonequilibrium impurity systems
is a prerequisite to model nanoscale molecular devices with
potential applications from optical characterization and con-
trol to energy harvesting, spintronics, and quantum compu-
tation. With numerically exact techniques, such as continu-
ous time quantum Monte Carlo [19–21] or renormalization
group methods [22–25], being computationally costly and
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thus mostly focused on simple models, relatively numerically
inexpensive and sufficiently accurate schemes for realistic
simulations are in high demand.

One such universal impurity solver is the nonequilib-
rium dual-fermion (DF) approach originally introduced in
Ref. [26]. Recently, the approach was modified [27] to reduce
computational cost and improve the ability to simulate steady
states of correlated impurity models. Note that the focus of
the dual-fermion approach is electron transport. At the same
time, simulations of optoelectronic devices require accounting
for energy transfer also.

Here, we introduce the auxiliary quantum master equa-
tion nonequilibrium dual-boson (aux-DB) method, which is
a universal nonequilibrium impurity solver that accounts for
both charge and energy transport in strongly correlated open
systems. Similar to the DF of Ref. [26] being the nonequi-
librium version of the equilibrium DF method [28–31] (DF-
inspired superperturbation theory), aux-DB has its origin in
the equilibrium DB approach [32–39]. Below, after introduc-
ing the nonequilibrium DB in Sec. II, in Sec. III we present an
auxiliary quantum master equation (QME) treatment within
the method. Theoretical considerations are followed by illus-
trative numerical simulations within generic junction models
in Sec. IV. Section V concludes.

II. NONEQUILIBRIUM DB THEORY

Here we present a short description of the aux-DB method.
Detailed derivations are given in Appendix A. Similar to the
DF method, in the nonequilibrium DB approach, one consid-
ers the reduced dynamics of an open quantum system with
interactions confined to the molecular subspace. Contrary to
the DF method, in addition to contacts (Fermi baths) the
system is also coupled to Bose bath(s). The effect of the baths
enters the effective action defined on the Keldysh contour [40]
via corresponding self-energies � (for Fermi baths) and �

(for Bose baths),

S[d̄, d] = d̄1
[
G−1

0 − �B
]

12 d2 − b̄1 �B
12 b2 + Sint[d̄, d]. (1)
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FIG. 1. Nonequilibrium junction model. Shown are (a) physical
model and (b) reference system within aux-DB approach.

Here and below, summation of repeating indices is assumed.
In (1), d̄i ≡ d̄mi (τi ) [di ≡ dmi (τi )] is the Grassmann vari-
able corresponding to the creation [annihilation] operator
d̂†

mi
(τi ) [d̂mi (τi )], which represents both molecular (spin-)

orbital mi and contour variable τi, of an electron in or-
bital mi in the Heisenberg picture [41]. bi = bmi

1mi
2
(τi ) ≡

d̄mi
1
(τi )dmi

2
(τi ) is the molecular excitation representing the

optical transition within the molecule from orbital mi
2 to

orbital mi
1 at contour variable τi. The sum over indices

includes the summation over molecular orbitals (optical
transitions) and contour integration:

∑
i . . . ≡ ∑

mi

∫
c dτi . . .

(
∑

mi
1,m

i
2

∫
c dτi . . .). G−1

0 is the inverse free Green’s function
(GF) [42],[

G−1
0

]
12 ≡ δ(τ1, τ2)

[
i∂τ1δm1,m2 − H0

m1m2
(τ1)

] − �irr
12, (2)

and �B and �B are, respectively, self-energies due to coupling
to Fermi (contacts) and Bose (plasmon) baths,

�B
m1m2

(τ1, τ2) = Vm1kgk (τ1, τ2)Vkm2 ,

�B
m1m2,m3m4

(τ1, τ2) = Vm1m2,αdα (τ1, τ2)Vα,m3m4 .
(3)

In Eqs. (2) and (3), H0
m1m2

(τ ) is the noninteracting part of the
molecular Hamiltonian, �irr

m1m2
(τ1, τ2) ∼ δ(τ1, τ2) is the irreg-

ular self-energy, Vmk and Vm1m2,α are matrix elements for the
electron transfer from contact state k to molecular orbital m,
and for optical electron transfer from orbital m1 to m2 with ab-
sorption of phonon in mode α, respectively. Here, gk (τ1, τ2) ≡
−i〈Tc ĉk (τ1) ĉ†

k (τ2)〉 and dα (τ1, τ2) ≡ −i〈Tc âα (τ1) â†
α (τ2)〉 are

GFs of the free electron in state k of the contacts and free
phonon in mode α. All intramolecular interactions are within
the (unspecified) contribution to the action Sint[d̄, d].

As in equilibrium DB [33], one introduces an exactly
solvable reference system (see below). Similarly to aux-DF
[27], the true baths are approximated by a finite number of
auxiliary discrete modes subject to Lindbladian evolution [see
Fig. 1(b)]. Thus, action of the reference system S̃[d̄, d] is
known and has the same general form (1) with true self-
energies �B and �B substituted by their approximate rep-
resentations �̃B and �̃B. The desired action S can then be
written as

S[d̄, d] = S̃[d̄, d] + d̄1 δ�B
12 d2 + b̄1 δ�B

12 b2, (4)

where δ�B ≡ �̃B − �B and δ�B ≡ �̃B − �B.
Because direct application of the standard diagrammatic

expansion around the interacting reference system is not

possible (the Wick’s theorem does not apply [43]), two ar-
tificial particles, dual fermion ( f ) and dual boson (η), are
introduced which are used to unravel the last two terms in (4)
via the Hubbard-Stratonovich transformation [44]. Integrating
out molecular fermions (d and d̄) and comparing the fourth-
order cumulant expansion of the resulting expression with the
general form of action for dual particles,

SD[ f ∗, f ] = f̄1
[(

GDF
0

)−1 − �DF
]

12 f2

+ η̄1
[(

DDB
0

)−1 − �DB
]

12 η2,
(5)

one gets(
GDF

0

)−1
12 = −g−1

12 − g−1
13 [δ�B]−1

34 g−1
42 ,

(
DDB

0

)−1
12 = −χ−1

12 − χ−1
13 [δ�B]−1

34 χ−1
42 ,

�DF
12 = {


13;42 + i(γ514 δ326 − γ512 δ346

+ γ532 δ146 − γ534 δ126)
[
DDB

0

]
65

}[
GDF

0

]
43

− (〈b̂†
5〉χ−1

54 γ312 + χ−1
35 〈b̂5〉δ124

)[
DDB

0

]
43,

�DB
12 = −i γ145 δ632

[
GDF

0

]
34

[
GDF

0

]
56.

(6)

Here, g12 and χ12 are single-particle GFs of fermion and
molecular excitation of the reference system, and γ123, δ123,
and 
13;24 are vertices [45] see Eq. (A12) and Fig. 5 in
Appendix A.

With dual-particle GFs,

(GDF ) = [(
GDF

0

)−1 − �DF
]−1

,

(DDB) = [(
DDB

0

)−1 − �DB
]−1

,
(7)

known, the single-particle (G) and two-particle (D) GFs of the
molecule are obtained from

G = (δ�B)−1 + [gδ�B]−1 GDF [δ�B g]−1,

D = (δ�B)−1 + [χ δ�B]−1 DDF [δ�B χ ]−1.
(8)

Note that the two-particle GF is a correlation function of the
molecular optical excitation operators. G yields information
on orbital populations, spectral functions, and electron current
in the junction, while D is used in the calculation of boson
(phonon) flux.

III. REFERENCE SYSTEM

Construction of a reference system to a large extent re-
lies on accurate reproduction of the physical system’s hy-
bridization functions �B and �B. The accurate choice of
the reference system parameters was recently discussed in
Refs. [46,47] for Bose baths and in Refs. [48–51] for Fermi
baths. Here we combine both considerations by introducing,
as the reference system, a physical system complemented
with a finite number of auxiliary unitary modes (A) subject to
Lindbladian evolution. This includes a finite number of sites
representing Fermi baths and modes representing a Bose bath
[see Fig. 1(b) and Appendix B]. The dynamics of the extended
SA system (molecule plus finite number of sites and modes) is
driven by Markov Lindblad-type evolution,

dρSA(t )

dt
= −iLρSA(t ). (9)
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Here, ρSA(t ) is the extended system density operator and L
is the Liouvillian. Note that Refs. [46] and [51] prove that,
in principle, the Markov dynamics of the extended system
can exactly reproduce non-Markov unitary dynamics of the
physical system S as long as the free correlation function
of the auxiliary modes accurately reproduces the correlation
function of the full baths. However, in realistic calculations,
this representation is approximate due to a restriction on
number of auxiliary sites and modes which can be taken in
consideration. Thus, the aux-DB accounting for the difference
between true and reference system hybridization functions,
given by Eq. (6), is very useful to correct the approximate
mapping.

The aux-DB approach, given by Eqs. (5)–(8), requires
single- and two-particle GFs g and χ and vertices 
, γ , and
δ of the reference system as an input. Those are obtained by
solving the QME (9) and employing the quantum regression
relation (see Appendix C for details).

Below we focus on the steady state and consider a refer-
ence system of size small enough that exact diagonalization
can be employed. For larger systems, more advanced methods
(e.g., matrix product states [49]) may be used. We note
that while matrix product states (MPS) only work for one-
dimensional (1D) problems, this does not impose limitation
on the dimensionality of the original (physical) problem be-
cause any number and geometry of couplings in the physical
problem can be mapped onto an effectively 1D formulation in
the auxiliary reference system with only two (for Fermi) or
one (for Bose) baths.

IV. NUMERICAL RESULTS AND DISCUSSION

Here we illustrate the aux-DB method with numerical
simulations within generic junction models: the resonant level
model (RLM) and Anderson impurity model (AIM) coupled
to Fermi and Bose baths.

A. Model

We apply the aux-DB method to generic models with a
junction constructed from a system S coupled to two Fermi
(L and R) and one boson (P) bath [see Fig. 1(a)]. The Hamil-
tonian is

Ĥ = ĤS +
∑

B=L,R,P

(ĤB + V̂SB), (10)

where

ĤL(R) =
∑

k∈L(R)

εk ĉ†
k ĉk,

ĤP =
∑
α∈P

ωα â†
α âα

(11)

are the Hamiltonians of the contact L (R) and phonon bath P.
Also,

V̂SL (R) =
∑

m

∑
k∈L (R)

(Vmkd̂†
mĉk + H.c.),

V̂SP =
∑

m1,m2

∑
α∈P

V α
m1m2

(
b̂m1m2 + b̂†

m1m2

)
(âα + â†

α )
(12)

describe the electron transfer between the system and contact
L (R), and the coupling to phonon α in the thermal bath P,
respectively. Here, d̂†

m (d̂m) and ĉ†
k (ĉk) creates (annihilates)

the electron in orbital m on the system and in state k of the
contacts, respectively, â†

α (âα) creates (annihilates) the phonon
in mode α, and b̂m1m2 = d̂†

m1
d̂m2 .

For the system Hamiltonian, we consider the resonant level
model (RLM),

ĤS = ε0 n̂, (13)

and Anderson impurity model (AIM),

ĤS =
∑

m=1,2

ε0 n̂m + Un̂1n̂2. (14)

Here, n̂m = d̂†
md̂m and U is the Coulomb repulsion. In the

AIM, two types of coupling to the thermal bath are con-
sidered: symmetric, V α

m1m2
= δm1,m2V

α
m1

, and antisymmetric,
V α

m1m2
= δm1,m2 (−1)m1V α

m1
.

Using Eq. (8), we calculate single- and two-particle GFs
and employ them to evaluate the spectral functions Am(E )
electron current IL [52] at the left interface and phonon energy
flux JP [15] out of the system

Am(E ) = − 1

π
Im Gr

mm(E ),

IL = −IR =
∫

dE

2π
Tr

[
�<

L (E ) G>(E ) − �B >
L (E ) G<(E )

]
,

JP =
∫

dE

2π
E Tr[�<

P (E )D>(E ) − �>
P (E )D<(E )] (15)

at the steady state. Here, <, > and r are, respectively, lesser,
greater, and retarded projections of the GFs, self-energies �

and � are defined in Eq. (3), and the trace is over molecular
orbitals in expression for IL(R) and over intra-molecular tran-
sitions in expression for JP.

The reference system for both models utilizes five auxiliary
sites: four mediating coupling of the physical site to full
and empty Fermi baths and one five-level system mediating
coupling between the physical site and empty Bose bath [see
Fig. 1(b) and Appendix B]. As mentioned earlier, bigger sizes
of the auxiliary system require implementation of advanced
methods (e.g., based on MPS) to solve the auxiliary QME.
Here, we restrict our consideration to small sizes which can be
evaluated by direct diagonalization of the Liouvillian. We note
that while for such small size, representation of the physical
hybridization function in the auxiliary system is of limited
quality (see Fig. 6), the aux-DB superperturbation expansion
in the difference of the two hybridization functions allows one
to obtain high-quality results even for small reference system
sizes.

B. Numerical results

We start from consideration of the RLM studied within
the numerically exact quantum Monte Carlo (QMC) approach
in Ref. [53]. Parameters (in arbitrary energy units E0) are
kBT = 0.2 and ε0 = 3.2. Following Ref. [53], Fermi baths
are treated within the wide-band approximation (WBA) with
a soft cutoff: 
L/R(E ) = 
L/R/[1 + eν(E−EC )][1 + e−ν(E−EC )]
with ν = 5, EC = 20 and 
L = 
R = 0.5; and the Bose bath
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FIG. 2. Electron IL and phonon JP fluxes. Shown are results for
the (a) RLM and (b) AIM. In (a), aux-DB results (solid blue line) are
benchmarked vs the numerically exact QMC calculation of Ref. [53].
(b) Comparison of the aux-DB results for the AIM with U = 0 and
U = 7.5. The solid blue line presents the RLM simulations within
aux-DB and is the same in both panels.

is characterized by spectral density J (ω) = γω/{[(ω/ω0)2 −
1]2 + [γω0ω/(2M2

0 )]2} with γ = 0.1, ω0 = 5, and M0 = 4.
Bias was applied symmetrically: μL = −μR = |e|V/2. The
results of the simulation are presented in terms of units of
bias V0 = E0/|e|, flux I0 = E0/h̄, and energy flux J0 = E2

0 /h̄.
Figure 2(a) compares the aux-DB results (solid line) with the
numerically exact QMC (circles) simulations of Ref. [53].

Aux-DB simulations of the AIM with symmetric coupling
to the Bose bath for U = 0 (dotted line) and U = 7.5 (dashed
line) Coulomb interaction are shown in Fig. 2(b). Note that
even in the absence of Coulomb interaction, the results of
simulations are significantly different from the results of the
RLM (compare the dotted and solid lines). This is due to the
effective electron-electron interaction induced by coupling to
the common Bose bath and the effect can be understood within
an effective negative-U model (ε̃0 = ε0 − M2

0/ω0 and Ũ =
U − 2M2

0/ω0), which predicts the doubly populated state
E2 = 2ε̃0 + Ũ = −6.4 to be the ground state of the U = 0
quantum dot with energy gap of 6 to its singly populated state
E1 = ε̃0 = 0. This shows that the use of spinless models in
studies of inelastic transport should be done with caution. For
U = 7.5 (dash-dotted line), no current blockade is observed
because the electron transition from the ground state is gap-
less. It is interesting to note that in a blockaded region, the
energy (phonon) flux is higher than for resonant tunneling
[compare the double-dotted and dash-double-dotted lines in
Fig. 2(b)], which indicates the predominantly elastic character
of resonant transport.

0.1

0.2

0.3

A
E 0

-20 -10 0 10
E / E0

QME
aux-DB0
aux-DB

0

0.05

0.1

0.15

A
E 0

-10 0 10
E / E0

(a)

(b)

FIG. 3. Spectral function A for the AIM with (a) symmetric (U =
0, Vsd = 6) and (b) antisymmetric (U = 5, Vsd = 0) couplings to the
thermal bath P. Shown are results of the auxiliary QME (dotted red
line), zero-order (dashed green line), and first-order (solid blue line)
aux-DB approaches. The inset in (a) shows the aux-DB results for
the RLM.

Figure 3 shows spectral functions simulated within the
QME (dotted line), zero (dashed line), and first (solid line)
aux-DB approaches for the cases of symmetric [Fig. 3(a)]
and antisymmetric [Fig. 3(b)] couplings to the thermal bath.
Figure 3(a) shows results for the AIM with U = 0, M0 = 4
and symmetric coupling at Vsd = 6. The corresponding RLM
results are given in the inset. While in the RLM aux-DB is
already accurate in the zero order, the AIM U = 0 results
are significantly renormalized when vertex corrections are
taken into account. Figure 3(b) shows the results for the
AIM with kBT = 0, U = 5 and ε0 = −U/2, M0 = 0.1 and
antisymmetric coupling at zero bias. One sees that in this case
also, vertex corrections are important: they are necessary to
reproduce the Kondo feature.

Figure 4(a) shows that Kondo is destroyed when increasing
coupling strength M0 to the thermal bath (compare the dotted
and dashed lines). The effect is due to the bath-induced
dephasing. Nonequilibrium simulation (solid line) shows the
Kondo feature splitting. Finally, in Fig. 4(b), we show an
increase of Coulomb peaks broadening with an increase of
the coupling M0. Here, parameters are kBT = 0, U = 5, and
ε0 = −U/2, so that particle-hole symmetry is fulfilled. As
previously noted, Fermi baths are considered within the WBA
with ν = 10 and EC = 20. The Bose bath is taken to be ohmic:
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FIG. 4. Spectral function A of the AIM with antisymmetric cou-
pling to thermal bath P. Shown are results for several molecule-
thermal bath coupling strengths, with (a) destruction of the Kondo
peak by dephasing induced by coupling to thermal bath and
(b) broadening of the Coulomb peaks (for comparison, all Coulomb
peaks are shifted to a common maximum set at E = 0).

J (ω) = M0 ω e−ω/ωC with ωC = 20. To facilitate comparison,
the peaks are shifted and scaled so that their maxima coincide
and are equal to 1.

V. CONCLUSION

The nonequilibrium DF approach introduced originally in
Ref. [26] and its optimization for steady-state simulations—
the aux-DF approach [27]—are promising methods for mod-
eling strongly correlated open systems. Contrary to the usual
diagrammatic expansions, the methods can treat systems with
no small parameter available. This is the situation often en-
countered in single-molecule optoelectronic devices, which
are at the forefront of experimental and theoretical research
due to interesting fundamental problems and applicational
perspectives in energy nanomaterials, spintronics, and quan-
tum computation. However, application of the aux-DF to
simulations of optoelectronic devices is hindered by its in-
ability to account for energy exchange between the molecule
and plasmonic field. The latter is crucial in modeling of the
devices.

Here we proposed a nonequilibrium method, the aux-DB
approach, which accounts for both electron and energy fluxes
between system and baths. The nonequilibrium aux-DB is

a superperturbation theory inspired by the equilibrium DB
method [32] proposed as a generalization of the extended
dynamical mean-field theory (DMFT). Employing auxiliary
QME and choosing an infinite reference system makes the
approach advantageous in treating the steady states.

We utilized generic junction models of a molecule coupled
to two Fermi leads and Bose phonon bath. The aux-DB
was benchmarked vs the numerically exact QMC results of
Ref. [53]. We showed that the scheme is both accurate and
relatively numerically inexpensive. Further development of
the method and its application to realistic systems is a goal
for future research.
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APPENDIX A: DERIVATION OF DUAL-BOSON
EQUATIONS-OF-MOTION

Here we present the derivation of the expressions for the
zero-order GFs, GDF

0 and DDB
0 , and self-energies, �DF and

�DB, for the dual-boson technique, given by Eq. (6) of the
main text.

We consider a physical system which consists of the
molecule (d) coupled to Fermi (c) and Bose (a) baths. Its
partition function on the Keldysh contour is [40]

Z =
∫

c
D[d̄, d, c̄, c, ā, a] eiS[d̄,d,c̄,c,ā,a], (A1)

where

S[d̄, d, c̄, c, ā, a] = d̄1
[
G−1

0

]
12d2 + Sint[d̄, d] + c̄1

[
g−1

B

]
12c2

+ ā1
[
d−1

B

]
12a2 + d̄1V12c2 + c̄2V21d1

+ b̄1V12a2 + ā2V21b1 (A2)

is the action of an interacting system (molecule) coupled
to noninteracting contacts (Fermi bath) and plasmon (Bose
bath). Here, G−1

0 is defined in Eq. (2) of the main text and g−1
B

and d−1
B are the inverse GFs for free electrons in the contacts

and free photons in the Bose bath,
[
g−1

B

]
12 = δ(τ1, τ2)

[
i∂τ1 − εk

]
,[

d−1
B

]
12 = δ(τ1, τ2)

[
i∂τ1 − ωα

]
.

(A3)

After integrating out the baths degrees of freedom [41], one
gets the effective action presented in Eq. (1) of the main text.

Next, we introduce an exactly solvable reference system,
which is identical to the original one in all intrasystem inter-
actions, but differs from it by its hybridization function. The
effective action of the original system will be related to that
of the reference system via Eq. (4) of the main text. Because
direct application of the perturbation theory to Eq. (4) is not
possible, we apply two Hubbard-Stratonovich transformations
to introduce new particles, dual fermion ( f ) and dual boson
(η), which disentangle the last two terms in Eq. (4). Following
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Ref. [33], we get

ed̄1N12d2 = Z f

∫
c

D[ f̄ , f ] e− f̄1α
f
12[N−1]23α

f
34 f4+ f̄1α

f
12d2+d̄1α

f
12 f2 ,

eb̄1M12b2 = Zb

∫
c

D[η̄, η] e−η̄1α
b
12[M−1]23α

b
34η4+η̄1α

b
12b2+b̄1α

b
12η2 ,

(A4)

with

α f = i g−1, N = i δ�B, Z f = (det [α f N−1 α f ])−1,

αb = i χ−1, M = i δ�B, Zb = det [αb M−1 αb].
(A5)

Applying the transformation to the partition function (A1)
with the action given by Eq. (4) of the main text yields

Z = Z f Zb

∫
c

D[d̄, d, f̄ , f , η̄, η]eiS[d̄,d, f̄ , f ,η̄,η], (A6)

where

S[d̄, d, f̄ , f , η̄, η]

= S̃[d∗, d] − f̄1 g−1
12 [δ�B]−1

23 g−1
34 f4 + f̄1 g−1

12 d2 + d̄1 g−1
12 f2

−η̄1χ
−1
12 [δ�B]−1

23 χ−1
34 η4 + η̄1 χ−1

12 b2 + b̄1 χ−1
12 η2. (A7)

Thus, auxiliary quasiparticles—dual fermion ( f ) and dual
boson (η)—were introduced.

Integrating out of the real quasiparticle, d̄ and d , in (A6)
leads to

Z = Z f Zb Z̃
∫

c
D[ f̄ , f , η̄, η]eiS[ f̄ , f η̄,η], (A8)

with

S[ f̄ , f η̄, η] = f̄1
[
GDF

0

]−1

12 f2 + η̄1
[
DDB

0

]−1

12 η2

+V [ f̄ , f , η̄, η]. (A9)

Here, [GDF
0 ]−1

12 and [DDB
0 ]−1

12 are defined in Eq. (6) of the
main text, Z̃ is the partition function of the reference system,
and V [ f̄ , f , η̄, η] is the unknown interaction between dual
particles.

To get the interaction V [ f̄ , f , η̄, η], we expand (A6) in
the f − d and η − b interactions and integrate out real quasi-
particles, d̄ and d . Taking g and χ to be single-electron and
single-molecular excitation GFs of the reference system,

g12 = −i

Z̃

∫
c

D[d̄, d] d1d̄2 eiS̃[d̄,d] ≡ −i〈Tc d̂1 d̂†
2 〉ref ,

χ12 = −i

Z̃

∫
c

D[d̄, d] δb1 δb̄2 eiS̃[d̄,d] ≡ −i〈Tc b̂1 b̂†
2〉ref ,

(A10)

and comparing the resulting expression to the expansion of
(A8) yields the expression for V [ f̄ , f , η̄, η]. In particular, for

expansion up to fourth order in f̄ , f and second order in η̄, η,

V [ f̄ , f , η̄, η] = η̄1 χ−1
12 〈b2〉ref + 〈b̄1〉ref χ−1

12 η2

− i

4
f̄1 f̄3
13;24 f2 f4 − η̄1 γ123 f̄2 f3

− f̄3 f2 δ321 η1. (A11)

Here, γ123, δ321, and 
13;24 are vertices of the reference system,


13;24 = g−1
11′ g−1

33′ [−〈Tc d̂1′ d̂†
2′ d̂3′ d̂†

4′ 〉ref − g1′2′ g3′4′

+ g1′4′ g3′2′] g−1
2′2 g−1

4′4,

γ123 = χ−1
11′ g−1

22′ 〈Tc δb̂1′ d̂2′ d̂†
3′ 〉ref g−1

3′3,

δ321 = g−1
33′ 〈Tc d̂3′ d̂†

2′ δb̂†
1′ 〉ref χ−1

1′1 g−1
2′2.

(A12)

Here, Tc is the contour ordering operator, subscript re f in-
dicates the Markov Lindblad-type evolution of the reference
system, and δb̂ ≡ b̂ − 〈b̂〉ref . We note in passing that projec-
tions of the vertices γ123 and δ321 are related via

[
γ

s1s2s3
123

]∗ = −δ
s̄3 s̄2 s̄1
321 , (A13)

where s1,2,3 ∈ {−,+} indicate branches of the Keldysh con-
tour and s̄ is the branch opposite to s.

Finally, using (A8) with interaction given by (A11) in the
expansion of GFs for the dual particles,

G12 ≡ −i〈Tc f1 f̄2〉,
D12 ≡ −i〈Tc b1 b̄2〉,

(A14)

up to second order and employing the Wick’s theorem yields
the dual-particle self-energies given in Eq. (6) of the main text.
The corresponding diagrams are shown in Fig. 5.

APPENDIX B: FITTING HYBRIDIZATION FUNCTIONS
WITH AUXILIARY MODES

Recently, exact proof of the possibility to map unitary
evolution of a physical system onto Markov Lindblad-type
evolution of an auxiliary system was established for systems
interacting with Fermi [48–51] and Bose [46,47] baths. At the
heart of the mapping is the fitting of hybridization functions
of the physical system with the set of auxiliary modes in
the auxiliary system. Here, we give details of the fitting
procedure.

The explicit form for the Markov Lindblad-type QME (9)
is

dρSA(t )

dt
= −iLρSA(t ) ≡ −i[ĤSA, ρSA(t )] + DρSA(t ), (B1)
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FIG. 5. Contributions to diagrams for dual fermion, �DF , and dual boson, �DB, self-energies, given by Eq. (6). Directed solid and wavy
lines (black) indicate dual-fermion and dual-boson GFs, GDF

0 and DDB
0 , respectively. The triangles and square (blue) indicate vertices δ, γ and


 of the reference system.

with the Liouvillian taken as

ĤSA = ĤS +
∑
n1,n2

εm1m2 ĉ†
n1

ĉn2 +
∑
m,n

(tmnd̂†
mĉn + t∗

mnĉ†
nd̂m)

+
∑
β1,β2

ωβ1β2 ê†
β1

êβ2 +
∑

m1,m2,β

rβ
m1m2

(
b̂†

m1m2
+ b̂†

m1m2

)

× (êβ + ê†
β ),

Dρ =
∑
n1,n2

[

(R)

n1n2

(
ĉn2 ρ̂ ĉ†

n1
− 1

2

{
ρ̂, ĉ†

n1
ĉn2

})

+ 
(L)
n1n2

(
ĉ†

n1
ρ̂ ĉn2 − 1

2

{
ρ̂, ĉn2 ĉ†

n1

})]

+
∑
β1,β2

γ
(P)
β1β2

(
êβ2 ρ̂ ê†

β1
− 1

2

{
ê†
β1

êβ2 , ρ̂
})

.

(B2)

Here, ĉ†
n (ĉn) and ê†

β (êβ) create (annihilate) the excitation in
auxiliary Fermi mode n and Bose mode β, respectively.

Following Refs. [49,51], we construct retarded �̃r and
Keldysh �̃K projections of the Fermi hybridization function
in the auxiliary system as

�̃r
m1m2

(E ) =
∑
n1,n2

tm1n1 G̃r
n1n2

(E ) t∗
m2n2

,

�̃K
m1m2

(E ) =
∑
n1,n2

tm1n1 G̃K
n1n2

(E ) t∗
m2n2

,
(B3)

where

G̃r (E ) =
[

E I − ε + i

2
(�(R) + �(L) )

]−1

,

G̃K (E ) = i G̃r (E ) (�(L) − �(R) ) G̃a(E )

(B4)

are retarded G̃r (E ) and Keldysh G̃K (E ) projections of the
Fermi auxiliary modes Green’s functions, and where G̃a(E ) ≡
[G̃r (E )]† is its advanced projection. Hybridization functions
(B3) should fit the corresponding hybridization functions,

�r
m1m2

(E ) =
∑

k∈{L,R}
Vm1k gr

k (E )Vkm2 ,

�K
m1m2

(E ) =
∑

k∈{L,R}
Vm1k gK

k (E )Vkm2 ,
(B5)

of the physical system. Here,

gr
k (E ) ≡ (E − εk + iδ)−1,

gK
k (E ) ≡ 2π i (2nk − 1)δ(E − εk )

(B6)

are the retarded and Keldysh projections of the free electron in
state k in contacts, nk is the Fermi-Dirac thermal distribution,
and δ = 0+

We construct the Bose hybridization function in the auxil-
iary system following Refs. [46,47]. For the physical system-
bosonic bath coupling taken in the form∑

m1m2

∑
α

V α
m1m2

(
b̂m1m2 + b̂†

m1m2

)
(âα + â†

α ), (B7)

the effect of the bosonic environment can be fully encoded by
the correlation function,

�m1m2,m3m4 (t − t ′)

=
∑

α

V α
m1m2

〈(âα + â†
α )(t ) (âα + â†

α )(t ′)〉V α
m3m4

. (B8)

Similarly, coupling to auxiliary Bose modes in (B2) is fully
described by the correlation function

�̃m1m2,m3m4 (t − t ′)

=
∑
β1,β2

rβ1
m1m2

〈(
êβ1 + ê†

β1

)
(t )

(
êβ2 + ê†

β2

)
(t ′)

〉
rβ2

m3m4

≡ i
∑
β1,β2

rβ1
m1m2

[
D̃>

β1β2
(t − t ′) + D̃<

β2β1
(t ′ − t )

]
.

(B9)

Here, D̃> and D̃< are the greater and lesser projections of the
Bose auxiliary mode Green’s function,

D̃β1β2 (τ1, τ2) = −i〈Tc êβ1 (τ1) ê†
β2

(τ2)〉. (B10)

The Fourier transform of the correlation function (B9) is

�̃m1m2,m3m4 (E ) = i
∑
β1,β2

rβ1
m1m2

[
D̃>

β1β2
(E ) + D̃<

β2β1
(−E )

]
.

(B11)
According to Ref. [46], in the auxiliary system, one considers
the Bose bath at zero temperature with eigenmodes spanning
the energy range from −∞ to +∞. Thus, greater and lesser
projections of the Green’s function (B10) satisfy

D̃>(E ) = −i D̃r (E ) γ (P) D̃a(E ),

D̃<(E ) = 0,
(B12)
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FIG. 6. Hybridization functions of the physical (solid blue line) and auxiliary (dashed red line) systems. Shown are the (a) retarded and
(b) Keldysh projections of the self-energy due to coupling to contacts and (c) hybridization function due to coupling to the thermal bath. Fitting
is done for parameters adopted in the first numerical example presented in the main text.

where

D̃r (E ) =
(

E I − ω + i

2
γ (P)

)−1

,

D̃a(E ) = [D̃r (E )]†

(B13)

are the retarded projection and advanced projections.
For the correlation function (B8) representing the physical

system and for the case of a thermal Bose bath with inverse
temperature β,

�m1m2,m3m4 (E ) =
(

1 + coth
βE

2

)[
Jm1m2,m3m4 (E ) θ (E )

− Jm3m4,m1m2 (−E ) θ (−E )
]
, (B14)

where

Jm1m2,m3m4 (E ) ≡ π
∑

α

V α
m1m2

V α
m3m4

δ(E − ωα ). (B15)

Following Ref. [47], we stress that although the auxiliary
Bose bath is taken at zero temperature, this does not restrict
the temperature of the Bose bath in the physical system:
the information about finite temperature will be provided by
parameters of the auxiliary Bose modes.

Finally, note that parameters εm1m2 , tmn, ωβ1β2 , rβ
m1m2

, 
(L)
n1n2

,


(R)
n1n2

, and γ
(P)
β1β2

of the Lindblad equations (B1) and (B2) are
used to fit hybridization functions (B5) and (B14) of the phys-
ical system with corresponding hybridization functions (B3)
and (B11) of the auxiliary model employing a cost function
to quantify deviation [51]. Figure 6 shows the hybridization
functions for the physical model (solid lines) and their fitting
with auxiliary modes (dashed lines) as utilized in simulations
of the RLM and AIM with symmetric coupling to the thermal
bath presented in the main text. We used four Fermi and one
Bose auxiliary modes to fit the corresponding hybridization
functions.

APPENDIX C: GREEN’S FUNCTIONS AND VERTICES
OF THE REFERENCE SYSTEM

To evaluate dual-particle self-energies, given by Eq. (6)
of the main text, one has to calculate GFs g and χ , given
by Eq. (A10), and vertices γ , δ, and 
, given by Eq. (A12),
of the reference system. These quantities are given by two-

(g and χ ), three- (γ , δ), and four-time (
) correlation func-
tions defined on the Keldysh contour. To provide these, we
utilize the quantum regression relation.

Because Markov Lindblad-type QME is used to solve the
reference system, we can employ the quantum regression
relation [54],

〈Tc Â(τ1) B̂(τ2) . . . Ẑ (τn)〉
= Tr[On U (tn, tn−1) . . .O2 U (t2, t1)O1 U (t1, 0) ρSA(0)],

(C1)

to evaluate the correlation functions. Here, ρSA(0) is the
steady-state density matrix of the extended system, U (ti, ti−1)
is the Liouville space evolution operator, and times ti are
ordered so that tn > tn−1 > · · · > t2 > t1 > 0. Oi is the Li-
ouville space superoperator corresponding to one of the op-
erators Â . . . Ẑ whose time is the i-th in the ordering. It acts
from the left (right) for the operator on the forward (back-
ward) branch of the contour. The steady-state density matrix
is found as a right eigenvector |R0 
 corresponding to the
Liouvillian eigenvalue λ0 = 0. Using spectral decomposition
of the Liouvillian, the evolution operator can be presented in
its eigenbasis as

U (ti, ti−1) =
∑

γ

|Rγ 
 e−iλγ (ti−ti−1 ) � Lγ |. (C2)

For evaluation of single- and two-particle GFs, besides the L
of Eq. (9) of the main text, we will also need Liouvillians
L(±1) and L(±2). These are evolution operator generators for
Liouville space vectors |S1S2 
 with different number NS of
electrons in states |S1〉 and |S2〉: NS1 − NS2 = ±1,±2.

Using (C2) in (C1) yields expressions for the single-
particle (g and χ ) and two-particle GFs of the reference sys-
tem. To do so, we have to consider several projections (con-
tour orderings) and time orderings. In particular, evaluation of
two-time correlation functions requires consideration of 21 =
2 projections with 2! = 2 time orderings for each projection.
Three-time correlation functions will require consideration of
22 = 4 projections with 3! = 6 time orderings. Evaluation of
the four-time correlation function requires consideration of
23 = 8 projections with 4! = 24 time orderings. Evaluating
projections, one has to take care of the sign of the Fermi
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operators permutations,

〈Tc Ô1(τ1) Ô2(τ2) . . . ÔN (τN )〉ref

= (−1)P
〈〈

I|Oθ1 U
(
tθ1 , tθ2

)
Oθ2 U

(
tθ2 , tθ3

) · · ·
· · ·OθNU

(
tθN , 0

)|ρSA(0)
〉〉
. (C3)

Here, P is the number of Fermi interchanges in the permu-
tation of operators Ôi by Tc, 〈〈I| is the Liouville space bra
representation of the Hilbert space identity operator, θi are in-
dices of operators Ôi rearranged in such a way that tθ1 > tθ2 >

· · · > tθN (tθi is real time corresponding to contour variable

τθi ), U is the Liouville space evolution superoperator defined
in Eq. (11), and Oθi are the Liouville space superoperators
corresponding to the Hilbert space operators Ôi,

Oi|ρ〉〉 =
{
O−

i |ρ〉〉 ≡ Ôi ρ̂, forward branch
O+

i |ρ〉〉 ≡ ρ̂ Ôi, backward branch.
(C4)

Further details on evaluation of the multitime correlation
functions can be found in Ref. [27].

Once single- and two-particle GFs of the reference system
are known, the vertices required in Eq. (6) of the main text can
be calculated from their definitions, given by Eq. (A12).
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