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Current distribution in metallic multilayers from resistance measurements
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The in-plane current profile within multilayers of the generic structure Ta/Pt/(CoNi)/Pt/Ta is investigated. A
large set of samples where the thickness of each layer was systematically varied was grown, followed by the
measurement of the sheet resistance of each sample. The data are analyzed by a series of increasingly elaborate
models, from a macroscopic engineering approach to mesoscopic transport theory. Non-negligible variations of
the estimated repartition of current between the layers are found. The importance of having additional structural
data is highlighted.
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I. INTRODUCTION

From its very beginnings, spintronics has relied on metal-
lic and semiconductor multilayers. The samples where gi-
ant magnetoresistance was discovered were indeed (Fe/Cr)
multilayers [1,2], with current flowing in the layers’ plane
(CIP geometry). The spin-transfer torque (STT) effect [3,4],
when used in the CIP geometry to drive magnetic domain
walls [5–8], also involves metallic or semiconductor multi-
layers with magnetic and nonmagnetic parts. In such samples,
only the total injected current is known, and its distribution
between the various layers is an open question: How much
of the current is diverted by the buffer layer or by the spacer
layer (in the case of spin-valve nanostrips [9] or of synthetic
antiferromagnet nanostrips [10]) affects the computed effi-
ciency of the STT-induced domain wall motion. The current
in the nonmagnetic layers also gives rise to a noncompensated
Oersted field in the magnetic layer, which affects the structure
and dynamics of the domain walls [11]. The spin-orbit torques
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(SOT), the latest family of current-induced torques in the
CIP geometry [12–15], also occur in such multilayer samples.
Here again, the distribution of the current between the various
layers is of crucial importance.

Presently there exists no direct method to observe how
current flows in the different layers of the multilayer sample;
hence indirect methods must be used. The most employed
one consists of using an effective conductivity for each layer,
applying the parallel conductors rule of macroscopic electrical
engineering to evaluate how much of the current flows in each
layer. This effective conductivity is either assumed or in some
cases obtained by growing a series of samples with changing
thickness of the layer(s) [15], again using the rules of macro-
scopic electrical engineering to obtain this conductivity.

However, the increase of the apparent resistivity of a metal
film when its thickness decreases below the mean free path
of electrons has been discussed as early as 1901 by Thomson
[16]. The development of this idea has led to the so-called
Fuchs-Sondheimer semiclassical model [17,18], which has
been further developed and refined.

In this paper, from an extensive series of metallic magnetic
multilayer samples where all thicknesses were varied, we
quantitatively compare the samples’ conductivities with a
number of models, with the goal of estimating the current
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FIG. 1. Measured sheet conductances (dots) vs thickness of each layer [panels (a)–(e)], followed by the thickness-resolved conductivity
plot for the reference sample as derived from the models (f). The fit of each thickness series by a linear law (model 1) is represented by solid
lines, whereas the global fit according to Eq. (1) (model 2) is drawn with dashed lines. No structural information is taken into account here,
so that the models used are called 1a and 2a. The global rms error is 0.493 mS.sq when fitting each series independently, increasing to 1.621
mS.sq for the global fit. In order to compare the slopes, panels (a)–(e) have the same scales.

distribution among the layers. The samples are emblematic
of present studies of STT and SOT causing, for example,
current-induced domain wall motion.

II. SAMPLE DESCRIPTION

The stack structure of the multilayer reference sample used
in this work is Ta 3/ Pt 1.6/ [Co 0.3/ Ni 0.6]×4/ Co 0.3/ Pt 1.6/
Ta 3, where thicknesses are given in nanometers. The stacks
were deposited by dc magnetron sputtering onto a thermally
oxidized Si substrate.

In order to estimate the current profile across the thickness,
the thickness of each layer involved was varied around its
reference value, the other layers having their reference thick-
ness. This led to a total of 42 samples, which were deposited
consecutively with no change of the deposition parameters.
The sheet resistance of each sample was measured, just after
deposition, by the four-probe technique, at five locations
across the wafer, and the average of these measurements was
taken. The five values were extremely close (less than 1%
difference), showing the uniformity of the film properties. The
reference sample was therefore fabricated five times. Slightly
different resistance values were measured for this sample
(from 58.2 to 64.3 �/sq, with no trend in time), the average
value being 61.2 �/sq and the standard deviation being 2.3
�/sq, 3.7% of the mean value. These variations can only be
attributed to slow fluctuations of the deposition conditions,
the noise with respect to the trend for each thickness series
being at most 1 �/sq. To remove this noise in the raw data,
the resistances of each thickness series were multiplied by a
series-specific factor such that the resistance of the reference
sample became 61.2 �/sq. (Using the raw data increases the

error of all fits because of the data intrinsic noise, and trying to
estimate the actual thicknesses is delicate.) The corresponding
sheet conductances are shown in Fig. 1. We recall that, for a
film of thickness d , the resistance of a strip of length L and
width W is R = ρL/(W d ) = (ρ/d )(L/W ), with ρ being the
apparent layer resistivity. This introduces R� = ρ/d the sheet
resistance, in ohms per square (�/sq), the aspect ratio of the
strip L/W being the number of squares of edge W that can
be inscribed in its length L. The sheet conductance G� is
the inverse of the sheet resistance, with units Siemens.square
(S.sq). In order to give the same weight to each thickness
series, the two Ta series with only five data points were
counted twice in the fitting.

III. INDEPENDENT LAYERS MODEL

The first analysis of the data that can be performed is based
on macroscopic electrical engineering, where current flows
in the different layers acting as parallel resistors. Each layer
(thickness di) is then described by a resistivity ρi (conductivity
σi = 1/ρi), its contribution to the sheet conductance being
σidi.

Model 1 determines the σi by a fit of the data, series by
series. The straight solid lines in Fig. 1 show that this applies
well to the data. The fitted slopes correspond to resistivities
82.6, 79.3, 34.3, 32.9, and 27.1 μ�. cm for the tantalum
underlayer, tantalum cap, platinum underlayer, platinum cap,
and CoNi multilayer, respectively. The two tantalum resis-
tivities are close and of the expected order of magnitude for
the high-resistivity β phase. Those of platinum are close also,
but about 3 times the pure metal value (10.7 μ�. cm). The
apparent resistivity of the (Co/Ni) multilayer is also about
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TABLE I. Models used to fit the resistance data, their rms errors, and parameters (layers are numbered from bottom to top, so 1 is the Ta
underlayer, etc.). Model 1 considers independent layers, fitting each thickness series separately. Model 2 also considers independent layers, but
fits all thickness series together. Model 3 is the Fuchs-Sondheimer model. Model 4 is the Mayadas-Shatzkes model, with a 2.0-nm oxidized Ta
cap, the grain size varying in proportion to the fcc layers’ thickness (model 4) or to the Pt underlayer thickness (model 4*). Suffix “a” indicates
that the nominal thicknesses are considered, whereas suffix “b” means that up to 2.0 nm of Ta cap was considered oxidized.

Model Error ρ1 ρ2 ρ3 ρ4 ρ5 λ1 λ2 λ3 λ4 λ5 T12 T23 T34 T45 Rgrain

(mS.sq) (μ�.cm) (μ�.cm) (μ�.cm) (μ�.cm) (μ�.cm) (nm) (nm) (nm) (nm) (nm)

1a 0.49 82.6 34.3 27.1 32.9 79.3
1b 0.42 82.6 34.3 27.1 32.9 62.2

2a 1.62 −8300 54.8 36.9 46.8 2590
2b 1.56 −807 56.8 38.3 48.2 101

3a 0.98 287 22.7 25.2 16.4 75.5 0.26 10.3 5.00 14.4 7.95 0 0 0 0
3b 0.83 247 20.8 23.3 18.5 60.0 0.3 11.3 5.40 12.7 10.0 0 0 0 0.78

4b 0.71 247 31.1 18.0 11.8 60.0 0.3 7.6 7.0 19.9 10.0 0 0 0 0.97 0.19
4*b 0.67 247 29.7 12.1 14.1 60.0 0.3 7.9 10.4 16.7 10.0 0.24 1.0 1.0 1.0 0.57

four times the values of cobalt and nickel. At first sight, the
resistivity values obtained from such an analysis may sound
reasonable. When computing the sheet conductance of the
reference sample, however, one gets with these values G� =
31.4 mS.sq, close to twice the measured value (16.4 mS.sq).
Discarding the Ta thickness series results and assuming that
no current flows in Ta is not enough to solve the problem, as
this leads to G� = 23.9 mS.sq.

On the other hand, model 2 tries to fit globally all data,
according to

G� =
∑

i

σidi. (1)

The results of this model are shown in Fig. 1 by the dashed
lines. Negative resistivities are obtained for the Ta underlayer
thickness series (see Table I). This again proves that one
cannot treat the electrical conduction in such multilayers
made of nanometer-thick films by macroscopic engineering
arguments, a fact known for a long time for single layers.
Indeed, the well-known Fuchs-Sondheimer model [17–20]
with surface scattering leads to a reduction of current density
close to the surfaces, on a scale given by the electron mean
free path λ. (For example, with no specular scattering at both
surfaces, the apparent conductivity of a single layer is reduced
by a factor 2 for a thickness of d = 0.46λ.)

IV. FUCHS-SONDHEIMER MODEL

As the samples are multilayers, we use the multilayer
formalism described by Barnaś et al. [21] of the Fuchs-
Sondheimer (FS) model.

The detailed derivation of the model can be found in the
aforementioned publications, so here we present only the
resultant expressions. The distribution function for electrons
in a given layer can be written in the following form:

f (z, v) = f0(v) + g(z, v), (2)

where f0(v) is the equilibrium distribution function and
g(z, v) corresponds to the contribution induced by the external
electric field. The z direction is perpendicular to the interfaces
(Fig. 2). By solving the Boltzmann equation, one obtains the

general expression for g±(z, v) (g+ corresponding to the elec-
trons moving in the positive z direction, and g− corresponding
to the electrons moving in the negative z direction), with d
being the layer thickness:

g+(z, v) = eEτ

m

∂ f0(v)

∂vx

[
1 − F+(v) exp

( −z

τ |vz|
)]

,

g−(z, v) = eEτ

m

∂ f0(v)

∂vx

[
1 − F−(v) exp

(−(d − z)

τ |vz|
)]

, (3)

where F±(v) are functions to be determined from the bound-
ary conditions. The symbols e (e > 0) and m are the electron
charge and the effective mass, τ is the relaxation time, and vx

and vz are the components of the velocity vector in the x and
z directions, respectively.

FIG. 2. Scheme of the sample structure with the various pa-
rameters of the Fuchs-Sondheimer model applied to analyze the
conductivity data.
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A. Direct application to the data

We impose the Fuchs boundary conditions at the bottom
interface and the top interface using coefficients pbot and ptop

corresponding to the specularity factors [19]. For the inner
interfaces, similarly to Ref. [21], we introduce coefficients
of specular transmission T and reflection R which differ for
each interface (Fig. 2), but we neglect any angular dependence
of these coefficients, an approximation at the heart of the
FS model. We also neglect the refraction effects that may
occur when the Fermi velocities in adjacent materials are
different, and we assume the same transmission and reflection
coefficients for electrons incident on the interface from the
top and the bottom. For simplicity, we also neglect any spin
dependency of the coefficients, no magnetic field effects be-
ing investigated. For the (Co/Ni) multilayer, given the small
thickness of the individual layers, the atomic proximity of
Co and Ni, their good alloying properties, and the observed
weak variation of resistivity with alloy concentration [22], it
is treated as a single layer (alloy).

Application of these boundary conditions leads to a set of
N equations of N variables, where N is twice the number
of layers in the sample (for every layer we have F±). These
equations are the spin-independent versions of the ones shown
in Ref. [21]. We introduce β, the angle between the z axis
and the velocity vector v, and λ = vFτ the electron mean free
path, with vF being the Fermi velocity. Note that all mentioned
parameters (λ, vF, τ, m) will generally differ for each layer.
In correspondence with Ref. [21], we define yAB = mAτB

mBτA
to

take into account the difference in electronic properties of two
adjacent materials A and B. In our calculations we set yAB =
σB/σA, where σA (σB) is the bulk conductivity of material
A (B). These equations are solved numerically for each β to
obtain F±(β ).

The final formula for the apparent conductivity of a single
layer is

σi = σ0,i − 3

4

σ0,i

di
λi

∫ π/2

0
dβ sin3 β cos β[Fi,+(β ) + Fi,−(β )]

×
[

1 − exp

(
− di

λi cos β

)]
, (4)

where σ0,i and di are the bulk conductivity and thickness of
layer number i, respectively. By Eq. (1), we obtain the sheet
conductance of the multilayer sample, which is compared to
the experimental results.

The total number of parameters entering the fit is 20
(Fig. 2), and it is further reduced. First, following Barnaś et al.
[21], we neglect reflection at the inner boundaries, the work
functions being very close for all metal layers. Second, we fix
the ρλ product to the reference values for each layer [23,24].
The values adopted for the ρλ product (in f �.m2) were, from
bottom (Ta underlayer) to top (Ta cap), 0.74, 2.35, 1.26, 2.35,
and 6.0; see next section for justification of the choices for
the Ta values. Additionally, upper boundaries for the mean
free path λ, equivalent to lower boundaries for the resistivity
ρ given by the best samples values, were set at 0.3, 22, 18, 22,
and 10 nm, respectively. Third, we set pbot = ptop = 0 on the
outer boundaries, as they correspond to layers carrying little
current so that the fit error depends weakly on them. After this
reduction we are left with nine parameters for all 42 samples.
We fit the mean free paths of all the layers and transmission
coefficients at all four inner interfaces.

The best fit of all data by the FS model (model 3) is shown
in Fig. 3, together with the corresponding computed current
profile across the thickness, for the reference sample. The
rms error of this fit is 0.978 mS.sq; it is larger than that of
the nonphysical fit of each thickness series (model 1), but

FIG. 3. Fuchs-Sondheimer fit of all the data, with assumptions described in the text, and without any input from the structural
characterization. The resulting rms error is 0.978 mS.sq (model 3a).
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TABLE II. Current distribution in the sample calculated by the various models (In is the proportion of the total
current that flows in layer n, in percent). See Table I for the definition of models, their fitted parameters, and the
residual error of each fit. Model 0 is the uniform distribution of current throughout the sample, the variant (model 0*)
assuming that no current flows in the tantalum, because of its very high resistivity in the amorphous phase.

Model Nominal thicknesses (models “a”) With oxidized Ta cap (models “b”)

I1 I2 I3 I4 I5 I1 I2 I3 I4 I5

0 23 12 30 12 23 27 14 35 14 9
0* 0 23 55 23 0 0 23 55 23 0

1 12 15 46 16 12 12 16 49 17 6
2 −0.2 17 62 20 0.7 −2 17 60 20 6
3 6 12 58 13 11 7 12 61 14 6

4 7 9 63 14 6
4* 7 14 56 16 7

much lower than the error of the engineeringlike independent
layers model (model 2). The obtained parameters are given in
Table I, and the current partitions between the different layers
as computed by the various models are compared in Table II.

B. Use of structural data

On close inspection, the acquired data appear strange at
two instances. First, in the Ta cap series, one notices that the
first three points show nearly the same conductivities. A cross-
sectional transmission electron microscopy (TEM) image of
the reference sample, shown in Fig. 4, reveals that the Ta
cap layer is partly oxidized, with about 2 nm Ta consumed.
Thus, the various models’ fits were performed again under
this assumption (see Table I for the corresponding data). This
variant of the models is indicated by the suffix “b,” and suffix
“a” indicates that the models are applied to the data with
nominal thicknesses. For the independent layers model, the
rms error decreased to 0.423 mS.sq when fitting each series
separately, whereas in the case of the global fit the relative
decrease was smaller, the error reaching 1.555 mS.sq. For the
FS model, as shown in Fig. 5, the quality of the fit improves
markedly.

The TEM image also reveals that the crystalline structures
of the two Ta layers are different, the underlayer showing
no sign of crystallinity whereas the cap layer does. This is

FIG. 4. High-magnification cross-sectional TEM image of the
reference sample.

reflected in the fitted values of the FS model with the product
ρλ fixed according to the literature values for the two phases
of tantalum [24].

Second, the platinum underlayer series, when compared
to the FS fit [Fig. 5(b)], shows a break for the three lowest
thicknesses (0.4–1.2 nm). This is tentatively attributed to the
formation of textured crystallites as the Pt underlayer starts
growing on the amorphous Ta underlayer. These crystallites
were directly imaged in TEM (Fig. 6) for the reference
sample, giving a typical lateral size of 10 nm. The next section
describes the modeling of the additional electron scattering at
the grain boundaries.

V. EXTENDED FUCHS-SONDHEIMER MODEL

The FS model alone is not sufficient for the reproduction
of experimental data. One reason for that is the polycrystalline
structure of the layers in the sample, revealed, e.g., by TEM
imaging in both transverse cut (Fig. 4) and plane view (Fig. 6).
The boundaries between crystallites introduce an additional
scattering of the electrons that is not covered by the FS
model. This phenomenon was addressed by Mayadas and
Shatzkes [25].

The FS model also does not account for roughness and
thickness fluctuations of the layers, that naturally occur in the
samples. Several models have been proposed to account for
these phenomena; this will be studied in a second part.

A. Mayadas-Shatzkes model

The model by Mayadas et al. [25,26] introduces grain
boundary scattering into the FS model. For bulk samples or
thick films, grain boundaries have little effect on the resistivity
of metals as the grain size is much larger than the mean free
path; however, this is not the case for thin films, where the
distance between grain boundaries is much smaller.

The modification of the FS model to account for the
grain boundary scattering is simple to implement (for full
derivation, see Ref. [25]), the relaxation time being redefined
to

1

τ ∗ = 1

τ

(
1 + αvF

|vx|
)

= 1

τ

(
1 + α

| sin β cos φ|
)

:= M(β, φ)

τ
,

(5)
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FIG. 5. Fuchs-Sondheimer fit of all the data, taking into account a 2.0-nm oxidized Ta cap thickness. The corresponding rms error is 0.829
mS.sq (model 3b).

where φ is the angle between the x axis and the projection of
the velocity vector v into the xy plane. The parameter α carries
the information about the grains and is defined as

α = λ

D

Rgrain

1 − Rgrain
, (6)

with D being the typical grain diameter and Rgrain being the
grain boundary reflection coefficient.

The final formula for conductivity of a single polycrys-
talline layer thus reads

σ = 3

π

σ0

d

∫ π/2

0

∫ π/2

0
dφ dβ

cos2 φ sin3 β

M(β, φ)

×
{

2d − λ cos β

M(β, φ)
[F+(β, φ) + F−(β, φ)]

×
[

1 − exp

(
−d

λ

M(β, φ)

cos β

)]}
. (7)

For the fits, the ρλ products and zero reflectivities are
kept as before to make results comparable, but Rgrain is in-
cluded as an additional fit parameter, resulting in ten free
parameters. The cross-sectional TEM image (Fig. 4) gives
information on the grain structure. The Ta underlayer is found
to be amorphous, thus no grains are considered in the model
(technically, Rgrain = 0 is assumed for the Ta underlayer). For
the Ta cap layer, results are weakly sensitive to grains, and the
cross-sectional TEM image does not reveal them. No grain
effect is therefore assumed for this layer (Rgrain = 0). For the
two platinum layers and the Co/Ni layers, which all grow with
an fcc (111) texture (Fig. 6), cylindrical grains are considered,
with the same reflection coefficient Rgrain.

In the absence of systematic TEM images, the variation
of the size of the grains as a function of the thickness of
these three layers has to be modeled. The following results are
based on speculations about the grain sizes. A study having

observed that platinum grains grow linearly with thickness
below 50 nm [27], two models (at least) can be considered:
The grain size is proportional to the Pt underlayer thickness
(model 4) or to the total fcc stack thickness (model 4*). In
both cases, the proportionality constant is such that, for the
reference thickness, the grain size matches the observed value
of 10 nm.

Figure 7 shows the results for model 4. The obtained value
Rgrain ≈ 0.2 is typical [25]. (A variant of model 4 was also
tried, in which Rgrain = 0.2 was fixed; the resulting rms errors
are 0.705 and 0.755 mS.sq for the models “b” and “*b,”
respectively.) A clear improvement is obtained relatively to
the FS model, the current partition between the layers being
slightly affected (see Table II). The evolution of the fitted
intrinsic parameters for the platinum underlayer is surprising,
and it differs from what is seen for the other fcc layers. As the

FIG. 6. Dark-field TEM plane view of the reference sample,
obtained by filtering out the (220) diffraction for Pt, Co, and Ni (see
diffraction pattern in inset).

235437-6



CURRENT DISTRIBUTION IN METALLIC MULTILAYERS … PHYSICAL REVIEW B 101, 235437 (2020)

FIG. 7. Mayadas-Shatzkes fit, with assumptions described in the text, taking into account that 2.0 nm of the Ta cap were oxidized, the grain
size varying in proportion to the Pt underlayer thickness (model 4b). The resulting rms error is 0.705 mS.sq. The curve downwards bends at
low platinum thickness in panel (b) directly depicts the assumption of model 4; it is absent in the other variant (model 4*, not shown).

fit is still not fully satisfactory (see the tantalum underlayer
data), a parasitic effect of the fit, which amounts to forcing
data to comply to a given framework, cannot be ruled out.
Such an effect was already observed for model 2, where
negative resistivity and current for the tantalum underlayer
were obtained. One should also not forget that, as more
extrinsic scattering sources are added (the interfaces are added
in model 3, the grains are added in model 4), the current distri-
bution becomes less dependent on the intrinsic parameters ρi

and λi.
The alternative grain size hypothesis (model 4*) delivers

a slightly better fit and redistributes the current more evenly
among the fcc layers, due to the fact that the fitted internal
specularity factors have reached unity. In addition, the grain
reflection coefficient is found to be much larger. This sensi-
tivity of the fitting might just signal the too large number of
free parameters. Globally however, models 4 and 4* predict
similar current partitions.

B. Thickness averaging

All the above modeling was assuming layers that are
perfect in the z direction, despite the common observation that
some sample roughness exists and that the layer thicknesses
fluctuate from place to place (see, for example, the cross-
sectional TEM image in Fig. 4). In the literature, it has
been proposed to account for this fact either by modifying
the specularity parameter [28–30] or by averaging over a
thickness distribution [31]. The latter model, considering only
one-dimensional thickness fluctuations, is clearly oversim-
plified. Two-dimensional fluctuations in conductor networks
have been deeply studied more recently, and an effective
medium approximation (EMA) has been shown to describe
well the regime beyond the percolation transition [32]. For

averaging in two dimensions, the EMA formula is an implicit
equation:

〈
σ − σ EMA

σ + σ EMA

〉
= 0, (8)

where the brackets denote the averaging over the probability
distribution ρ(σ )dσ .

This effect has been implemented for all models, assuming
that the fcc grains, being slightly disoriented as proved by the
diffraction image, Fig. 6, can grow at different speeds with the
largest speed when the (111) plane lies perfectly horizontal.
To model this, a normal distribution of the growth rate was
taken, with a standard deviation expressed as a percentage p
as a variable parameter. This corresponds to recent detailed
studies in magnetic ultrathin films of skyrmion morphology
and pinning [33] and of domain wall dynamics [34]. Typical
values of p extracted from these works are p = 1–3%. To
compute the average in Eq. (8), for each data point, the
model values for all the fcc thicknesses modified according
to the same value of the normal probability law were used for
integration, repeating the average calculation for ten values
of σ EMA close to the model value in order to interpolate the
solution of the EMA equation.

It was found that the EMA refinement led to negligible
fitting error improvements and thus to negligible changes of
the fitting parameters, even if values of p as large as 5% were
considered. The mathematical reason for this is simple: As in
Eq. (8) the low conductances get a larger weight than the large
conductances, the bias of the EMA averaging is towards lower
conductances, with shifts that increase as the thickness vari-
ation is larger. This results in a systematic negative curvature
of the conductance versus thickness curves, quite the opposite
of the experimental trend.
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VI. CONCLUSION

The schematic types of models for the current distribution
are the following: Uniform current through the conductive
layers (model 0); constant conductivity for each layer, ob-
tained from the corresponding thickness series (model 1);
and the Fuchs-Sondheimer global model (model 3). We have
shown that increasingly better fits of the data are obtained
by considering more and more elaborate models (designated
by higher and higher model numbers), taking into account
additional structural data.

The remarks emerging from this work are the following.
(i) Comparing model 1 to model 3, we see that the former

underestimates the current in the CoNi multilayer, overesti-
mates it in the Pt layers, and largely overestimates it for the Ta
layers. This was to be expected, due to mean-free path effects.

(ii) Model 2 is too rarely employed, which is a pity as this
model shows directly the danger of model 1.

(iii) The Fuchs-Sondheimer model (model 3) provides
results that are not bracketed by the simplest models (models
0 and 1), as might have been assumed. These models should
therefore be taken as indicative only.

(iv) The Mayadas-Shatzkes model (model 4) does im-
prove the fit error, but does not modify much the current
distribution.

On this basis, the simplest way to improve model 1 seems
to be to perform a Fuchs-Sondheimer calculation with zero
specularity coefficients at the interfaces, using reasonable
values for the intrinsic parameters.

The work reported shows that collecting as much as pos-
sible structural data is desirable. From breaks of slope in a
thickness series one might guess that another phenomenon is
taking place, but it is always better to have an independent ob-

servation of it. The effect of including structural information
is not negligible, compare for example the current in the Ta
cap layer as deduced from models 3a and 3b.

Concerning nonuniformities, which are often invoked,
we have found that for these samples, at least, they play
a negligible role. This conclusion was reached using an
analytical averaging formula, simpler than numerical mod-
els proposed previously [35]. This conclusion opposes the
one reached some time ago by Hoffmann and Vancea [36],
probably due to the better quality of the films prepared
nowadays.

One feature of the data that remains unclear is the influence
of the Ta underlayer thickness on the sample conductivity.
The observed increase of sheet conductance with the thickness
of this layer is indeed too large, so that model 1 predicts a
large percentage of current in that layer. One may suspect
that this is a texture effect. The role of a Ta underlayer
on the subsequent growth of Pt, followed by Co, has been
indeed recently highlighted by measurements of the interfacial
Dzyaloshinskii-Moriya interaction [37], an antisymmetric ex-
change term arising at the Co/Pt interface, which is anticipated
to depend strongly on the interface quality [38]. To test this
hypothesis, TEM studies of the sample as the Ta underlayer
thickness is varied would be decisive.
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