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Anharmonicity of the acoustic modes of graphene
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The anharmonicity of the acoustic phonon dispersion of graphene has been studied by the harmonic linear
response (HLR) approach at finite temperature. This is a nonperturbative method based on the linear response of
the system to applied forces, as derived from equilibrium computer simulations. Anharmonic shifts are analyzed
in the long-wavelength limit at room temperature, with emphasis on the effect of applied tensile or compressive
in-plane stress. The simulation results are compared with available analytical models, based either on first-order
perturbation theory or on a description by anomalous exponents. The simulations show better agreement to the
expectations of the perturbational approach. The effect of temperature and zero-point vibrations on the acoustic
out-of-plane anharmonic shifts of graphene are briefly reviewed.
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I. INTRODUCTION

Geim and Novoselov made the seminal discovery that
graphene, a two dimensional, one-atom width layer found
as stacks in graphite, can be manipulated as a stable pla-
nar layer [1]. Graphene flakes have been characterized by
optical, electrical, mechanical, and transport methods [2,3].
Two-dimensional (2D) crystalline solids were expected to lose
their long-range ordering as a consequence of spatial atomic
fluctuations caused by zero-point vibrations and temperature
[4]. The unexpected stability of crystalline flat membranes,
like graphene, has been explained by anharmonic effects,
caused by the coupling between in-plane and out-of-plane
vibrational modes [5,6].

The simplest treatment of anharmonic effects in solids
is the quasiharmonic approximation (QHA). This approach
considers that the angular frequency ω of each phonon may
change with the volume of the crystal (or in-plane area in 2D
solids) but does not depend explicitly on temperature. The
volume dependence is described by the Gruneisen constants
γω and the harmonic limit implies γω = 0. The usual quasi-
harmonic behavior corresponds to values γω > 0, but certain
solids display γω < 0 for some phonons. Negative Gruneisen
constants appear in solids with tetrahedral coordination, as
diamond, silicon, quartz, or ice Ih, and also in anisotropic
structures such as graphite and graphene [7,8]. A set of long-
wavelength acoustic modes with γω < 0 is the origin of the
negative thermal expansion of solids at low temperatures. The
negative thermal expansion of graphene has been studied both
experimentally and theoretically by the QHA and perturbation
theory methods, as well as by computer simulations [8–11].
The shortcomings of the QHA to describe anharmonic effects
in graphene is evident by its incapability to reproduce the

*ramirez@icmm.csic.es

crossover from a negative to a positive thermal expansion
coefficient as the temperature increases [8].

Anharmonic effects beyond those described by the QHA
are often called explicitly anharmonic [12]. They are caused
by higher-than-quadratic terms in the potential energy. They
produce frequency shifts, with respect to the harmonic limit,
that depend explicitly on the temperature. The explicit anhar-
monicity of the ZA out-of-plane acoustic modes of graphene
has been analyzed by using perturbation theory [6,11,13–15].
The main perturbational result is that, in the long-wavelength
limit, the harmonic (H) acoustic ZA dispersion ρω2

ZA = κk4

of an unstressed graphene layer is renormalized to ρω2
ZA =

σk2 + κk4. Here ρ is the surface density, κ is the bending
rigidity, σ is the fluctuation tension, and k is the modulus
of the wave vector k. The tension σ defines the lowest-order
wave vector dependence of the spatial out-of-plane fluctua-
tions [16,17].

Two physical consequences are derived from the explicit
anharmonicity of the ZA phonons in graphene. The first is
related to the mean quadratic amplitude h2 of the out-of-
plane modes. In the harmonic limit, the quadratic amplitude
increases linearly with the number of layer atoms h2 ∼ N,

leading to a catastrophic divergence in the thermodynamic
limit. However, the anharmonic renormalization displays a
less critical divergence as h2 ∼ ln N , explaining an increased
stabilization of the flat layer. The second consequence is that
the acoustic sound velocity vZA = (∂ωZA/∂k)k=0 vanishes in
the harmonic limit, but becomes finite by explicit anharmonic-
ity [14,15].

An alternative theoretical framework to explain the sta-
bility of a flat graphene layer is based on the description of
the explicit anharmonicity by a k-dependent renormalization
of the bending constant κ, giving rise to an acoustic ZA
dispersion ρω2

ZA = κk4−η. η is a positive anomalous exponent
that was estimated as η = 0.82 within the self-consistent
screening approximation [18]. The numerical analysis of
out-of-plane amplitudes in several computer simulations of
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graphene provides values in a range η = 0.67–1.1 [5,19].
However, the exponent η is believed to be a universal quantity,
so that the variability reported in computer simulation remains
unexplained [2]. Within this model, the mean quadratic ampli-
tude h2 ∼ N1−(η/2) becomes much smaller than the harmonic
expectation, stabilizing the flat layer. However, the acoustic
sound velocity vZA vanishes, in disagreement to the perturba-
tion theory results.

The question about which model (perturbation theory vs
anomalous exponent) provides better agreement to experiment
has not been unambiguously answered, as neither the disper-
sion relation of the ZA modes in the long-wavelength limit nor
the associated sound velocity have been measured yet. Several
computer simulations published so far are interpreted in terms
of the anomalous exponent model [5,19–22], but there are
exceptions [23]. In spite of the absence of definite evidence,
there seems to be a certain consensus that the anomalous
exponent model is the correct one for graphene [2].

In this paper we study the explicit anharmonicity of the
acoustic phonon dispersion bands of graphene (two in-plane
and one ZA branches) using the empirical long-range car-
bon bond order (LCBOPII) model [24]. The harmonic lin-
ear response (HLR) method is a nonperturbative approach
used to study anharmonic vibrations from the analysis of
spatial trajectories generated by equilibrium simulations. The
method was originally proposed in the framework of quan-
tum path-integral (PI) simulations [25]. It has been recently
applied to derive the dispersion bands of 2D solids such as a
graphene monolayer, a graphene bilayer, and graphane [26].
The explicit anharmonicity derived by the HLR method will
be compared to the expectations of the available analytical
models (perturbation theory vs anomalous exponent).

The paper is organized as follows. The computational
method for the calculation of the phonon dispersion of
graphene is presented in Sec. II. The expectation of the QHA
is discussed in Sec. III. The study of the explicit anharmonic-
ity of the acoustic bands of graphene at 300 K as a function
of the in-plane stress is found in Sec. IV. The comparison of
simulation results and analytical models is the focus of Sec. V.
Temperature and quantum effects in the anharmonicity of the
out-of-plane modes of graphene are commented in Sec. VI.
The paper closes with a summary.

II. COMPUTATIONAL METHOD

In this section, a minimum set of technical details is pre-
sented concerning the simulation method and the calculation
of phonon dispersion relations in graphene. Further technical
information can be found in Refs. [23,26].

A. MD simulations

Classical molecular dynamics (MD) simulations of
graphene were performed in the NτT ensemble at temperature
T = 300 K and applied in-plane stress τ between −0.02
and 0.01 eV/Å2. τ > 0 (τ < 0) implies compressive (ten-
sile) stress. The interatomic forces were calculated with a
realistic interatomic potential, namely, the so-called LCBOPII
model. This is a long-range carbon bond order potential, fitted
to ab initio electronic structure calculations, aiming at the

description of carbon liquid and solid phases, first of all
graphite and diamond, as accurately as possible [24]. It has
been employed earlier to perform classical simulations of
liquid carbon [27], diamond, graphite [24], and graphene
layers [21,28,29]. It has been used to predict the carbon
phase diagram comprising graphite, diamond, and the liquid,
showing that the graphite-diamond transition line is in good
agreement with experimental data [30]. The LCBOPII model
has been found to give a good description of the elastic
properties, such as the Young’s modulus of graphene [28,31].
A brief account of the empirical LCBOPII model is presented
in Appendix A.

The simulation cell was a rectangular one with N = 8400
carbon atoms and similar lengths (L ∼ 148 Å) along the x
and y axis in the plane of the layer. The in-plane area per
atom is denoted as Ap. Periodic boundary conditions were
applied to the simulation cell in the xy plane. The MD
simulations of graphene were performed in the NτT ensemble
by allowing isotropic fluctuations of the in-plane area. The
equations of motion, which are summarized in Appendix B,
were integrated using different time steps for the fast and
slow degrees of freedom [32]. The employed time step for the
calculation of interatomic forces was �t = 1 fs. For the time
evolution of the thermostats and barostat variables we used a
time step of �t/4, as in earlier simulations [33]. The equili-
bration run comprised 105 MD steps. Trajectories with S =
5 × 104 spatial configurations were stored for further analysis
at equidistant intervals from a long simulation run with 107

MD steps. Long trajectories are mandatory for a reasonable
sampling of the sluggish long-wavelengths acoustic modes.

B. Phonon dispersion calculation

The HLR method is a nonperturbative approach to obtain
the phonon dispersion relations from the analysis of the spon-
taneous atomic fluctuations of the system, by either classical
or quantum PI simulations. This method requires only spatial
information (i.e., not atomic velocities). This is an advantage
in PIMD simulations as the atomic velocities do not carry true
physical information on the dynamics of the quantum particles
[34]. The physical basis and applicability of this method to 2D
solids has been explained in detail in Ref. [26]. For this reason,
only a succinct sketch of the method is given here.

From the stored trajectory one needs to calculate the in-
plane equilibrium positions of the cell atoms req,α j . α is an
index (1 or 2) that runs over the two basis atoms of a primitive
cell, while j is an index running over all the basis atoms α

in the simulation cell (N/2 α-type atoms). The equilibrium z
coordinate of the atoms in the flat layer can be set as zeq = 0,

without loss of generality.
If the instantaneous displacement vector of an atom from

its average position (req,α j, zeq) is denoted as (Xα j,Yα j, Zα j),
one needs to calculate symmetry adapted Bloch functions
X α (k) with the displacement coordinates as

X α (k) =
√

2m

N

N/2∑
j=1

Xα j exp(ikreq,α j ), (1)

where m is the carbon mass, and k is a wave
vector commensurate with the employed simulation
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cell [26]. The number of Bloch functions is 6, i.e.,
[X 1(k),Y 1(k), Z1(k), X 2(k),Y 2(k), Z2(k)], which
corresponds to the number of vibrational bands in
graphene. The covariance of symmetry adapted displacement
coordinates is calculated as

〈Cα (k)D
∗
β (k)〉 = S−1

S∑
s=1

(Cα (k)D
∗
β (k))s, (2)

where s is a running index for the stored trajectories, C and
D are any of the coordinates (X,Y, Z ), and α and β are any
of the basis atoms (1,2). The covariances form a 6 × 6 tensor
χ (k). The jth eigenvalue Δ j (k) of the tensor χ (k) provides
an estimation of the angular frequency associated with the jth
phonon branch of the 2D layer as [26]

ω2
j (k) = kBT

Δ j (k)
, (3)

where kB is the Boltzmann constant. Within the grid of wave
vectors k commensurate with the simulation cell, the two k
vectors with largest wavelength, oriented along either the x or
y directions, will be denoted as kmin. The modulus of these
vectors is kmin = 2π/L.

The phonon angular frequencies derived by the HLR
method are obtained from the atomic fluctuations at the
equilibrium volume of the solid at a given temperature. This
implies that the volume dependence of the vibrational modes,
i.e., the anharmonic effect described by a QHA approach, is
automatically included in the HLR method. In addition, the
HLR approach is able to describe anharmonic effects beyond
those described by a QHA. For example, in Ref. [35] the HLR
phonon frequencies of solid neon were compared with the
QHA result as a function of temperature in a range between
5–25 K, and also with the harmonic approach. The error,
with respect to the experimental data, of the harmonic phonon
frequency of the longitudinal phonon at the point X of the
Brillouin zone (BZ) of the fcc lattice amounts to 40%. The
QHA phonon frequency was derived by diagonalization of
the dynamic matrix at the equilibrium volume of the solid at
each temperature. The QHA phonon frequency improves the
harmonic result, but is still about 20% below the experimental
data in the studied temperature range. However, the HLR
result is off by less than 2%. Then the correlation between
atomic fluctuations, as analyzed by the HLR approach, is
sensitive to anharmonic effects that are absent in a QHA.

C. Phonon dispersion at 300 K

The phonon dispersion relations of graphene have been
derived by the HLR method at 300 K and in-plane stresses
τ in the range [−0.02, 0.01] eV/Å2. For τ = 0, the frequen-
cies ω j (k) along the symmetry directions in the hexagonal
Brillouin zone (BZ) are displayed as open circles in Fig. 1.
The density of points in the k grid is determined by the size
of the simulation cell and the shortest distance between k
points amounts to kmin = 0.042 Å−1. The average in-plane
area at 300 K is Ap = 2.6162 Å2/atom. The harmonic phonon
dispersion relations, as derived from the diagonalization of
the dynamical matrix using a denser grid of k points, are
displayed by closed circles. In the figure these points appear
as a continuous line. The in-plane area corresponding to the
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FIG. 1. The phonon dispersion relations of graphene at 300 K as
derived by the HLR method with the LCBOPII model are displayed
as open circles. The labels of the different branches are given. The
inset shows the acoustic region around point �, which is studied in
this work. The harmonic limit of the LCBOPII model, as derived
from the diagonalization of the dynamical matrix, is displayed by
closed circles.

minimum potential energy amounts to Ap = 2.6189 Å2/atom.
The phonon dispersion curves consist of three acoustic (A)
and three optical (O) bands. The atomic displacement vectors
of the phonons are either in-plane longitudinal (L), in-plane
transverse (T), or out-of-plane (Z). The linear dispersion of
the LA and TA modes in the long-wavelength limit (k →
0), typical for the acoustic modes of 3D solids, contrasts
with the k2 dependence of the ZA mode in the harmonic
approximation [36]. Differences between harmonic and HLR
dispersion curves are due to anharmonic effects. We are
particularly interested in the anharmonicity of the long wave-
length acoustic region (LA, TA, and ZA branches), close to
the special point �, a region shown by the inset of Fig. 1. The
largest anharmonic effect in the dispersion relations at 300 K
corresponds to a blueshift of the optical branches (LO and
TO). This anharmonic effect has been studied in Ref. [26] with
the conclusion that it is an artifact of the employed LCBOPII
model.

III. ANHARMONICITY IN THE QHA

In this section, predictions of the QHA are presented for
graphene, as derived with the employed LCBOPII model. The
QHA analysis here focuses on the determination of the signs
(+ or −) expected for the anharmonic shifts of the acoustic
LA, TA, and ZA vibrational modes as a function of the
applied in-plane stress and temperature. In Sec. IV the QHA
expectation will be compared to the actual anharmonicity as
derived by the HLR method. As a result of this comparison,
it will be clear that the QHA does not provide a realistic
description of the anharmonic shifts found for these modes.
For this reason, the analysis of the QHA here is mainly done
in qualitative terms.
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FIG. 2. The Gruneisen constants of the six phonon dispersion
bands of graphene along the �M symmetry direction are shown
by closed circles. The bands with z polarizations (ZO, ZA) display
γω < 0. The continuous line is the long-wavelength limit of γZA, as
given by Eq. (9) for τ = 0. The data correspond to the LCBOPII
model. Note the different vertical scales in the upper and lower parts
of the figure.

The dependence of the vibrational frequencies ω with the
in-plane stress τ and the temperature T is described within the
QHA by the Gruneisen constants. The Gruneisen constant for
a mode w is defined as

γω = −Ap

ω

∂ω

∂Ap
. (4)

By considering the definition of the in-plane compressional
modulus (the 2D analogous to the bulk modulus of 3D solids),

B = −Ap
∂τ

∂Ap
, (5)

the change of w with the in-plane stress τ is expressed as a
function of the Gruneisen constant as

∂ω

∂τ
= ∂ω

∂Ap

∂Ap

∂τ
= γωω

B
. (6)

Analogously, the change of w with T can be deduced by
considering the definition of γw and the thermal expansion
coefficient αT = A−1

p ∂Ap/∂T as

∂ω

∂T
= ∂ω

∂Ap

∂Ap

∂T
= −γωωαT . (7)

The Gruneisen constants of graphene along the symmetry
direction �M are presented in Fig. 2. γω was calculated
with Eq. (4) by a numerical differentiation of the harmonic
frequencies of the LCBOPII model using a relative increase
in the equilibrium area Ap of 0.2%. The LCBOPII results for
γω are in good agreement with the ab initio calculation of
Ref. [8]. The vibrational bands LO, TO, LA, and TA display
γω > 0, i.e., the usual behavior found in most solids. These

TABLE I. Signs of the expected QHA shifts of the vibrational
frequencies of the acoustic LA, TA, and ZA modes in graphene. +
(−) indicates a blueshift (redshift) of the frequency of the modes.
The last two columns give the actual anharmonic shifts as derived
from the HLR approach in Sec. IV.

QHA HLR

γω
∂ω

∂T
∂ω

∂τ

∂ω

∂T
∂ω

∂τ

LA/TA >0 + + − −
ZA <0 − − + −

bands exhibit (x, y) polarization. The two z bands (ZO, ZA)
display however γω < 0.

The Gruneisen constants of the ZA modes diverge in the
limit k → 0. The QHA dispersion relation of the ZA band in
the long-wavelength limit is given as [37]

ρω2
ZA = −τk2 + κk4. (8)

The k2 term vanishes for an unstressed layer (τ = 0) at T →
0. By taking the τ derivative of the last expression and with
the help of Eq. (6), one gets

γZA = B

2τ − 2κk2
. (9)

The Gruneisen constant γZA displays a k−2 divergence when
τ = 0, in agreement with Ref. [37]. The long-wavelength
approximation for γZA in Eq. (9) is plotted by a continuous
line in Fig. 2, where we have used the bending constant
(κ = 1.5 eV) and the in-plane stiffness (B = 12.6 eV/Å2) cor-
responding to the harmonic limit at τ = 0. The approximation
for γZA is rather realistic in the whole BZ.

The QHA predictions for the sign (+ or −) of the fre-
quency shifts of the acoustic branches of graphene with both
temperature T and in-plane stress τ are summarized in Table I.
The results are derived from Eqs. (6) and (7). The signs of the
temperature shifts presented in Table I correspond to the case
where the thermal expansion coefficient in Eq. (7) is αT < 0,
which is the expected QHA behavior when γZA < 0 [8].

IV. EXPLICIT ANHARMONICITY

In this section, the anharmonic shifts of the acoustic vibra-
tional modes of graphene are analyzed by the HLR method.
This method is sensitive to both the volume dependent quasi-
harmonic effect and the temperature dependent explicit anhar-
monicity. The preponderance of explicit anharmonicity will
be identified by comparing the HLR results to the expectations
of the QHA. First, the anharmonicity of the mode with largest
wavelength of each band ω j (kmin) ( j = LA, TA, and ZA)
is studied. Second, the elastic coefficients of the layer are
derived from the k dependence of the acoustic dispersion
bands.

A. Acoustic modes with longest wavelengths

1. LA and TA modes

For the employed simulation cell size kmin = 2π/L =
0.042 Å−1. There are two wave vectors with modulus kmin,
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FIG. 3. Dependence of the angular frequency of the LA and TA
phonons of graphene with the in-plane stress τ for the two k points
with modulus kmin. The HLR wave numbers at 300 K are given by
open circles. The QHA results in the T → 0 limit are shown as
closed squares. Lines are guides to the eye.

oriented along the x and y axes [26]. The angular frequency
ω j (kmin) for the in-plane polarized bands ( j = LA and TA)
are displayed in Fig. 3 as a function of the in-plane stress. The
open circles show the HLR results at 300 K. The results for
the k points (kmin, 0) and (0, kmin) should be nearly identical,
apart from the statistical error of the simulation, as the layer
appears isotropic in the long-wavelength limit. At 300 K, one
observes a sharp redshift of the LA/TA frequencies as the
layer is compressed (τ increases), which is indicated with a
negative sign in the HLR column (∂ω/∂τ ) of Table I.

In a classical T → 0 limit, the temperature dependent
explicit anharmonicity vanishes, and the QHA becomes exact.
This is only true in a classical limit. In the real world, there ap-
pears explicit anharmonicity even at T → 0, as consequence
of the zero-point vibration. In Fig. 3 we have plotted the QHA
frequencies at T → 0 (closed squares). These values were
derived by numerical diagonalization of the dynamical matrix
with the equilibrium area at T → 0 for each τ . The QHA
angular frequencies display a small blueshift as the in-plane
stress τ increases (see Table I). This result contrasts with the
redshift revealed by the HLR method.

In the QHA, the frequency shift for the LA/TA modes
is positive (blueshift) for rising temperature (see Table I).
However, one finds that the HLR frequencies at 300 K are red-
shifted with respect to the T → 0 limit. This behavior agrees
with the anharmonicity derived by perturbation theory for the
in-plane LA/TA modes [6]. Thus, the QHA alone is unable
to predict correctly even the sign of the frequency shifts for
the LA/TA modes as a function of either the temperature or
the in-plane stress. This analysis points out the importance
of the explicit anharmonicity for the long-wavelength LA/TA
modes in graphene.
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FIG. 4. Dependence of the angular frequency of the ZA phonons
of graphene with the in-plane stress τ for the two k points with
modulus kmin. The HLR frequencies at 300 K are given by circles.
The broken line is a two-parameter fit (d, τC) to ωZA = d (τC − τ )1/2.
The QHA results in the T → 0 limit, derived by diagonalization of
the dynamical matrix, are shown as squares. The continuous line
corresponds to Eq. (10). The filled triangles represent the critical
stress τc, where the soft mode ωZA(kmin) becomes unstable.

2. ZA mode

In the low temperature limit (T → 0), the dispersion of the
ZA mode for long wavelengths is given in the QHA by Eq. (8).
For the k vectors with modulus kmin, one gets

ωZA = kmin

(
τC − τ

ρ

)1/2

. (10)

For the cell with N = 8400 atoms, the critical stress τC =
κk2

min = 3 × 10−3 eV/Å2. The critical stress τC signals the
point where the phonon mode becomes soft and its angular
frequency vanishes, ωZA(kmin) = 0. The angular frequency
ωZA(kmin) as a function of τ given by Eq. (10) is plotted in
Fig. 4 as a continuous line. The open squares were calculated
by diagonalization of the dynamical matrix for the area Ap

in equilibrium at T → 0 for given stress τ . As τ increases
up to the critical stress τC , the mode ωZA(kmin) becomes soft,
and the finite flat layer becomes mechanically unstable. The
instability leads to a static deformation via sinusoidal wrinkles
with wave vector kmin [38,39].

At 300 K, the HLR angular frequencies ωZA(kmin) are
displayed as a function of τ in Fig. 4 (open circles). The ZA
phonons are blueshifted with respect to the T → 0 limit. This
contrasts with the redshift found for the LA/TA modes by
rising temperature in Fig. 4. The blueshift for the ZA modes
implies that the critical stress τC increases with temperature.
In other words, the mechanical stability of the flat layer
increases as temperature rises. The critical stress amounts to
τC = 1.2 × 10−2 eV/Å2 at 300 K. It is important to recall
that the value of τC displays a significant finite size effect,
as τC depends on kmin = 2π/L. The calculation of the critical
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FIG. 5. LA and TA dispersion relations of graphene at in-plane
stress τ = 0 (open squares) and 0.01 eV/Å2 (open circles). The
two bands can be distinguished as the slope of the LA branch is
larger. The dotted lines are least square fits of the simulation data
to the analytic function in Eq. (11). The harmonic result at τ = 0 is
displayed by broken lines. At the compressive stress τ = 0.01 eV/Å2

the layer is close to its limit of mechanical stability.

stress for additional cell sizes with N = 1500 and 960 atoms,
gives the result τC = 3.2 × 10−2 and 5.4 × 10−2 eV/Å2, re-
spectively. These values imply that the finite size effect in τC

has a N−1 dependence. The smaller the size of the simulation
cell, the larger the stability of the flat morphology of the layer
[40].

The shifts of the frequency of the ZA modes found by the
HLR method by raising either the temperature (blueshift) or
the in-plane stress (redshift) are summarized in Table I. The
QHA predicts effects of opposite sign to the HLR method in
the three acoustic bands of graphene (LA, TA, and ZA) when
the temperature increases. However, the frequency shift of the
ZA modes with the in-plane stress τ has, in the QHA, the same
sign as in the HLR method.

B. LA, TA dispersions

The acoustic LA and TA phonon dispersions at two in-
plane stresses (τ = 0 and 0.01 eV/Å2) are displayed for
k vectors with k < 0.15 eV/Å2 in Fig. 5. For comparison,
the LA/TA harmonic phonon dispersions at τ = 0 are also
plotted. The anharmonicity caused by increasing the tem-
perature and the in-plane stress is reflected by redshifts of
the LA/TA dispersion curves with respect to the harmonic
ones. Longitudinal (vL) and transverse (vT ) sound velocities
were derived from the slope of the dispersion curves in the
long-wavelength limit (k → 0) by a least squares fit of the
function

ω = (v2k2 + f k3)1/2, (11)
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FIG. 6. In-plane stress dependence of the elastic constants of
graphene at 300 K as derived from the slopes of the LA and TA
phonon dispersion bands in the long-wavelength limit. Shown are
the unilateral compressional modulus (B′), the shear modulus (μ),
the in-plane compressional modulus (B), the Lamé’s first coefficient
(λ), and the Poisson’s ratio (ν). The in-plane compressional modulus,
derived from the fluctuation formula of the NτT ensemble [Eq. (16)],
is displayed by closed triangles. The broken line is a least squares fit
of the closed triangles by Eq. (17). The continuous lines are guides
to the eye.

where v is the sound velocity, and f is a fitting constant. For
an isotropic elastic layer, the sound velocities are related to
the elastic constants by

vT =
(

μ

ρ

)1/2

, (12)

vL =
(

B′

ρ

)1/2

, (13)

where μ is the shear modulus (Lamé’s second coefficient), and
B′ is the unilateral compressional modulus defined as [41]

B′ = λ + 2μ, (14)

with λ being the Lamé’s first coefficient. The in-plane com-
pressional modulus is derived from μ and B′ as

B = B′ − μ = λ + μ, (15)

while the Poisson’s ratio can be obtained from ν = λ/B′
[41]. The in-plane stress dependence of the elastic moduli
μ, B′, B, λ, and ν of graphene, as derived from the HLR
analysis, is presented in Fig. 6. The Poisson’s ratio has been
scaled by a factor of 10 to be visible in the plot. All elastic
constants display a sharp decrease with positive (compressive)
in-plane stress. The Lamé’s first coefficient λ takes the value
0.9 eV/Å2 at τ = 0, while it is reduced to λ = 0.1 eV/Å2

at τ = 10−2 eV/Å2. This compressive stress is close to the
limit of mechanical stability of the employed simulation cell
at 300 K, τC = 1.2 × 10−2 eV/Å2. The Poisson’s ratio ν,
proportional to the Lamé’s first coefficient λ, remains positive
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TABLE II. The in-plane area Ap, the elastic moduli μ and λ, the surface tension σ , and the bending rigidity κ of graphene as derived from
NτT simulations at T = 300 K and N = 8400 atoms. The harmonic limit is also given.

τ (eV/Å2) Ap (Å2/atom) μ (eV/Å2) λ (eV/Å2) σ (eV/Å2) κ (eV)

H 0 2.6189 9.3 3.3 0 1.49
NτT 0.01 2.6103 3.6 0.1 −0.006 1.70
NτT 0 2.6162 6.9 0.9 0.008 1.70
NτT −0.01 2.6195 7.5 1.8 0.017 1.69
NτT −0.02 2.6223 7.7 2.3 0.025 1.71

in the whole range of studied in-plane stresses. In Table II
we summarized the results for the Lamé’s coefficients of
graphene at 300 K.

Experimental phonon dispersion relations of a quasifree-
standing graphene sample grown on Pt(111), characterized
by the weakest graphene-metal interaction, have been deter-
mined by high-resolution electron energy loss spectroscopy
(HREELS). The sound velocities derived from the slopes of
the TA and LA branches were 14.0 and 22.0 km/s, respec-
tively [31]. An optical technique to probe the acoustic TA and
LA phonon branches of graphene near the � point by double
resonant Raman scattering reported acoustic sound velocities
of 12.9 and 19.9 km/s, respectively [42]. The sound velocities
in Fig. 6 for the unstressed graphene layer (τ = 0) are 12.1
and 17.7 km/s, respectively, in reasonable agreement to the
previous experimental data.

It is interesting to compare the compressional modulus B
(open triangles in Fig. 6) derived from the LA/TA phonon
dispersion relations, to the value derived from the fluctuation
formula corresponding to the NτT ensemble [40,43],

B = ApkBT

NδA2
p

. (16)

The quadratic deviation δA2
p is the ensemble average 〈A2

p〉 −
〈Ap〉2. The closed triangles in Fig. 6 display B calculated
by the fluctuation formula at several in-plane stresses for
MD simulations using cells with N = 8400 atoms. These
MD results for the compressional modulus B seem to be
systematically smaller than those derived via Eq. (15). This
difference was already observed in Ref. [26] for simulations
cells with N = 960 atoms, and was attributed to the out-of-
plane fluctuations of the layer that make the layer lose a strict
2D character.

For a 2D solid approaching a mechanical instability, the
compressional modulus is expected to display the following
dependence with the in-plane stress τ (see Appendix C),

B = b(τC − τ )1/2, (17)

where b is a constant, and τC is the critical stress for the
instability to occur. The broken line in Fig. 6 displays a least
squares fit of Eq. (17) to the simulation data (closed triangles).
The fitted parameters amount to b = 58 eV1/2/Å and τC =
1.2 × 10−2 eV/Å2. This new independent estimation of the
critical stress τC is in agreement with the value derived in
Fig. 4 by studying the soft mode ωZA(kmin) of the ZA band
with the HLR method.

C. ZA dispersion

The ZA phonon band of graphene for wave vectors with
k < 0.2 Å−1 is displayed as a function of the in-plane stress at
a temperature of 300 K in Fig. 7. In Sec. IV A the anharmonic
shifts found in the frequency of the ZA mode were a blueshift
by rising temperature and a redshift as the in-plane stress
increases (see Table I). The ZA dispersion band has been fitted
to the expression

ρω2
ZA = σk2 + κk4 + dk6, (18)

where the surface tension σ , the bending rigidity κ , and d
are fitting parameters. The least squares fit included all wave
vectors with k < 0.3 Å−1. In the QHA at T → 0, the relation
between the surface tension σ and the in-plane stress τ is
σ = −τ [see Eq. (8)]. It is interesting to study to which extent
the temperature dependent explicit anharmonicity modifies
this QHA relation.

The results of the least squares fits are plotted by con-
tinuous lines in Fig. 7. The fluctuation tension σ0 for the
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FIG. 7. ZA dispersion relations of graphene at 300 K as a func-
tion of the in-plane stress (τ ) as derived with the LCBOPII model by
the HLR method. The values of τ are in eV/Å2. The continuous lines
are the least squares fit of the simulation data to the analytic function
in Eq. (18). The dotted line shows the linear term of the fitted function
for τ = 0 (open squares). The broken line is the harmonic limit of the
LCBOPII model derived by diagonalization of the dynamical matrix
at τ = 0. At the compressive stress τ = 0.01 eV/Å2 the flat layer is
close to its limit of mechanical stability.
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FIG. 8. (a) The fluctuation tension σ is displayed as a function of
the in-plane stress τ . The broken line is the QHA at T → 0 K, σ =
−τ . The open circles are results from the ZA dispersion relations
derived by the HLR method at 300 K. The explicit anharmonicity of
graphene is the origin that the curve at 300 K is shifted with respect to
the T → 0 limit. The critical stress τC corresponding to the employed
cell size (N = 8400) is indicated by an arrow and a closed circle.
τC is larger at 300 K than in the T → 0 K limit. (b) In-plane stress
dependence of the bending constant κ at 300 K and in the T → 0
limit.

unstressed layer (τ = 0) is finite and amounts to σ0 = 8 ×
10−3 eV/Å2, which translates into a finite sound velocity
vZA = (σ0/ρ)1/2 = 0.4 km/s. The linear term vZAk of the
ZA dispersion band at τ = 0 is displayed by a dotted line
in Fig. 7. The harmonic limit at τ = 0, as derived from the
diagonalization of the dynamical matrix, is shown by a broken
line in Fig 7.

The values of the fitted parameters σ and κ are summarized
in Table II and plotted as a function of the in-plane stress in
Fig. 8. At given stress τ , the fluctuation tension σ is larger at
300 K than at T → 0. The dependence of σ with τ at 300 K
is linear. A least squares fit of the simulation results gives

σ = σ0 − 0.9τ. (19)

This relation is a consequence of the temperature dependent
explicit anharmonicity in graphene. The result contrast to the
QHA relation σ = −τ at T → 0. The bending rigidity κ is
at 300 K larger than at T → 0. κ remains nearly constant for
the studied in-plane stresses, even at the compressive stress
of 0.01 eV/Å2, close to the critical stress. However, the other
in-plane elastic moduli (B′ and μ) and the fluctuation tension
σ display a significant variation as a function of the in-plane
stress τ .
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FIG. 9. The difference ρω2
ZA − σk2 is represented as a function

of k for the four studied in-plane stresses. The values of τ are given
in eV/Å2. The results for the different stresses lie in the same curve.

At 300 K, the critical stress τC can be expressed with the
help of Eqs. (18) and (19) as

τC = σ0 + κk2
min

0.9
. (20)

and takes the value τC = 1.2 × 10−2 for the fitted results of
σ0 and κ . This is in agreement with the value of τC derived at
300 K from the τ dependence of ωZA(kmin) in Fig. 4.

For the range of in-plane stresses studied here, when τ

changes, the effect in the ZA band is limited to the σk2 term
of Eq. (18). In Fig. 9 the difference ρω2

ZA − σk2 is displayed
for the four simulated stresses and wave vectors with k <

0.4 Å−1. The resulting points lie all in the same curve, being
nearly indistinguishable.

V. COMPARISON TO ANALYTICAL MODELS

In this section, the simulations results for the ZA dis-
persion are compared with available analytical models. The
prediction of the anomalous exponent model in the long-
wavelength limit is a renormalization of the harmonic relation
ρω2

ZA = κk4, resulting in the ZA phonon dispersion ρω2
ZA =

κAk4−η, with η = 0.82 being an anomalous exponent [5,18].
To quantify the agreement between this anharmonic model
and the simulation results, we performed a two-parameter
least squares fit (κA, αA) of the points of the ZA bands shown
in Fig. 7 to the function

ρω2
ZA = κAkαA . (21)

The fitted region is the interval [kmin, kmax]. While kmin =
0.042 Å−1 is a fixed value, determined by the size of the
simulation cell, kmax is reduced from 0.6 to 0.1 Å−1. When
kmax = 0.6 Å−1, the fit includes a large region with 314 k
points. When kmax = 0.1 Å−1, the fit includes only the 10 k
points with the longest wavelengths. The change in the fitted
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FIG. 10. Value of the exponent αA derived from the fit of the
simulation results for ρω2

ZA to the anomalous exponent model κAkαA

[see Eq. (21)]. The numerical fit is performed including wave vectors
with modulus k < kmax. The results for the exponent αA are shown
as a function of kmax to quantify the convergence of the simulation
results to the long-wavelength limit in Eq. (21). τ values are given in
eV/Å2. The lines are guides to the eye.

parameters (κA, αA) as the value of kmax decreases, allows us
to visualize in which way the simulation results converge to
the long-wavelength limit given by Eq. (21).

The result of the fitted exponent αA = 4 − η as a function
of kmax is presented in Fig. 10. When kmax is large the exponent
αA takes a value close to 4 for the four studied in-plane
stresses, implying that ρω2

ZA displays an overall dispersion
that looks like k4 when k < 0.6 Å−1. As kmax decreases, the
exponent αA for the in-plane stresses τ � 0 reduces mono-
tonically towards lower values, which seem to converge in
the long-wavelength limit to αA = 2, which would imply a
long-wavelength dispersion for ρω2

ZA with a dominant k2

dependence. We do not see any qualitative difference between
τ < 0 (tensile stress) and τ = 0 (unstressed layer), only that
the convergence towards the limit αA = 2 is faster when the
in-plane stress becomes more tensile. The data in Fig. 10 do
not provide any evidence that the long-wavelength limit of
the dispersion ρω2

ZA when τ = 0 should behave as k3.2, as
predicted by the anomalous exponent model.

For the compressive in-plane stress τ = 0.01 eV/Å2, the
behavior of the exponent αA is qualitatively different. As
kmax becomes smaller the exponent αA approaches 4. The
interpretation of this behavior is that the compressed layer is
close to its limit of mechanical stability, where there appears
a soft phonon mode in the ZA band. This critical behavior
is signalized by a ρω2

ZA dispersion with k4 dependence. We
stress that here the k4 dependence of ρω2

ZA is a fingerprint of
a soft phonon mode in the flat layer. It would be misleading
to associate this k4 dependence close to the critical stress τC,

with an absence of anharmonic effects. In fact, the blueshift of
the harmonic ZA modes at 300 K by the temperature depen-
dent explicit anharmonicity, is compensated by an anharmonic
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FIG. 11. Value of the surface tension σ from the fit of ρω2
ZA to the

prediction of the perturbation theory σk2 + κk4. The numerical fit
is performed using only ZA angular frequencies with wave number
modulus k < kmax. The results of σ are shown as a function of kmax

to study the convergence of the model to the long-wavelength limit.
τ values are given in eV/Å2. The lines are guides to the eye.

redshift when the in-plane stress becomes more compressive
(see Table I). At the critical stress τC , both anharmonic effects
compensate each other, and the ZA dispersion takes the form
of a k4 dependence, signalizing the appearance of a soft ZA
mode in the anharmonic layer.

Perturbation theory predicts the long-wavelength limit of
the ZA band of graphene as ρω2

ZA = σk2 + κk4. We have
tested this model against our simulation results by the same
method used to check the anomalous exponent model. Then,
a two-parameter least squares fit (σ, κ) of the ZA dispersion
is made in the interval [kmin, kmax]. The result for the surface
tension σ as a function of kmax is displayed for the studied
in-plane stresses in Fig. 11. As kmax decreases, σ shows
a monotonic convergence towards a constant value in the
long-wavelength limit. At each studied in-plane stress τ , the
relation σ > −τ is satisfied. This result differs from the QHA
expectation σ = −τ , because it is a consequence of explicit
anharmonicity.

Note that for the compressive stress τ = 0.01 eV/Å2, σ is
negative. For finite size simulation cells, where kmin = 2π/L
is finite, the ZA vibrational mode with lowest frequency
ρω2

ZA(kmin) = σk2
min + κk4

min may be positive, even if σ < 0.
It is at the critical stress τC that this mode becomes soft,
ρω2

ZA(kmin) = 0, and the flat surface morphology becomes
mechanically unstable. In the thermodynamic limit N → ∞,

the mechanical instability would correspond to a vanishing
value of the fluctuation tension (σ = 0), but for finite size cell
the soft mode appears at negative values of the surface tension
σ < 0.

VI. TEMPERATURE AND QUANTUM EFFECTS

The analysis of the anharmonicity of the acoustic modes in
graphene at 300 K has been presented in the classical limit,
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FIG. 12. Temperature dependence of the fluctuation tension σ0

of graphene at in-plane stress τ = 0. The broken line is a fit of the
quantum PIMD results with a simulation cell with N = 960 atoms.
The dotted line represents the corresponding results in the classical
limit. Both results were taken from Ref. [38]. The filled diamonds
are the values of σ0 derived from perturbation theory in the quantum
limit in Ref. [11].

using a relatively large simulation cell N = 8400 atoms, and
very long simulations runs. With these conditions, quantum
PI simulations at low temperature would require an enormous
computational effort. In a recent paper we have presented clas-
sical and quantum PI simulations of graphene with a smaller
simulation cell N = 960 atoms [38]. The quantum PIMD
simulations were performed with in-plane stress τ = 0 and
temperatures in the range 25–1000 K. The smaller simulation
cell implies that the wave vector with smallest modulus is
kmin = 0.12 Å−1, i.e., about three times larger than that one
corresponding to a cell with N = 8400 atoms. The study of the
long-wavelength limit of the dispersion curves is less accurate
with smaller cells, due to the cutoff of all collective vibrations
with wavelengths larger than the cell dimension.

Nevertheless, the analysis of the long-wavelength limit of
the ZA band in Ref. [38] using a smaller cell is in good in
agreement with the analysis made in this paper. The fluctu-
ation tension σ0 at 300 K was of 8.7 ± 0.8 meV/Å2 with
N = 960 atoms, similar to our present result with a larger
simulation cell (σ0 = 8 meV/Å2). In the classical limit σ0

increases monotonously with temperature. The increase is a
consequence of the explicit anharmonicity and vanishes at
T → 0 in a classical limit. The main quantum effect in the
value of the fluctuation tension σ0 is that the anharmonicity is
finite even at T → 0, as a consequence of the zero-point vi-
bration. The extrapolated value at T → 0 is σ0 ∼ 2.5 meV/Å2

in the quantum case [38].
Further evidence of the agreement between our simulation

results and perturbation theory is presented in Fig. 12. We
have plotted the fit of the classical and quantum simulation
results for σ0 as a function of temperature, as derived in
Ref. [38] with a simulation cell with N = 960 atoms. The
temperature is presented in logarithmic scale to highlight

the difference between classical and quantum results. This
difference is significant only at temperatures below 100 K. In
addition, the results for the fluctuation tension σ0, which were
derived in the quantum limit from perturbation theory, are also
plotted in Fig. 12 [11]. The absence of any fitting parameter in
this comparison between simulation and perturbation theory
results provides further evidence for their striking agreement.

VII. SUMMARY

The anharmonicity of the acoustic phonon dispersion of
graphene has been studied in the long-wavelength limit with
the HLR method. This approach is based on the study of the
correlation between the fluctuations of atomic positions from
their equilibrium values by means of computer simulations.
We have studied the phonon dispersion relations of graphene
at 300 K and at various in-plane stresses, from a tensile stress
of −0.02 eV/Å2 to a compressive stress of 0.01 eV/Å2. The
latter is close to the mechanical stability limit of the flat layer,
where the phonons of the ZA dispersion band at � become
soft and cause the morphology of the flat layer to change
by formation of static sinusoidal wrinkles. The simulations
were performed at 300 K in the classical limit, which is a
reasonable approach for the acoustic phonon vibrations in the
long-wavelength limit. These are the modes having the lowest
vibrational energies in the solid.

The QHA analysis of the LA/TA vibrational bands shows
that this approach is unable to predict the anharmonicity
found for these modes. The frequency of the long-wavelength
limit of the LA/TA bands is predicted by the QHA to be
blueshifted as either the temperature T or the in-plane stress τ

increases. However, the HLR approach shows that the LA/TA
frequencies are redshifted by raising either T or τ . This is
a consequence of the explicit anharmonicity of these modes.
The redshift of the LA/TA vibrational bands with rising
temperature found in the simulation is in agreement with the
prediction of perturbation theory [6].

The analysis of the long-wavelength limit of the ZA band
reveals that the QHA is unable to predict the blueshift of
the frequency of these modes by increasing temperature. This
blueshift is an explicit anharmonic effect with deep influence
in the physical properties of the layer. It is responsible for
an increase in the mechanical stability of the flat layer. Both
zero-point atomic vibrations and a rise in temperature produce
a blueshift of the ZA band in the long-wavelength limit.
However, a (compressive) increase of the in-plane stress τ

of the layer produces a redshift of the frequency of the
ZA modes. This anharmonic effect has a different sign than
that one caused by temperature. Therefore, the increased
mechanical stability of the flat layer, caused by an increase
in T , can be compensated by the opposite effect of raising
the in-plane stress. An important conclusion is that for an
unstressed graphene membrane (τ = 0) this compensation is
not perfect, and the layer displays a small but finite fluctuation
tension (σ0 > 0) that determines the dispersion relation of the
ZA band in the long-wavelength limit as ρω2

ZA = σ0k2.
The simulation results for the long-wavelength limit of

the ZA band have been compared with the predictions of
two analytical models: perturbation theory and the anomalous
exponent model. Our results are in good agreement with
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perturbation theory, which predicts a finite fluctuation tension
(σ0 > 0) in the ZA band and a redshift of angular frequencies
in the LA/TA bands caused by finite temperature and zero-
point vibrations. The anomalous exponent model predicts a
vanishing sound velocity of the ZA phonons in the unstressed
layer that is not confirmed by our simulations.
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APPENDIX A: LCBOPII POTENTIAL

The total binding energy φ for a system consisting of N
carbon atoms is defined with the LCBOPII empirical potential
as [24]

φ = 1

2

N∑
i=1

N∑
j=1

[
Sdown

sr (di j )V sr(di j ) + Sup
lr (di j )V lr(di j )

+ 1

Zmr
i

Sup
mr(di j )V

mr(di j )

]
, (A1)

where V sr(di j ) describes short-range and covalent interac-
tions, V lr(di j ) accounts for long-range nonbonded interac-
tions, and V mr(di j ) represents the remainder of bonded (attrac-
tive) interactions between atoms at middle-range distances.
di j is the interatomic distance between atoms i and j. The
prefactor 1/Zmr

i takes into account many-body effects, with
Zmr

i being an effective middle-range coordination number
of atom i. The switch functions Sdown

sr , Sup
lr , and Sup

mr pro-
vide a smooth connection between the various interaction
contributions. The short-range interaction V sr(di j ) vanishes
at distances di j > 2.2 Å and describes both repulsive and
attractive pair potentials. The attractive term depends on bond
order factors that take into account many-body effects such
as conjugation, presence of antibonding states, and torsion.
The long-range interaction V lr cuts off smoothly long-range
interactions beyond 6 Å, while the middle-range attractive
interactions V lr depend on bond angles and on the presence
of dangling bonds. For a detailed account of the analytical
structure and parameters of this empirical potential we refer
to the original work in Ref. [24]. According to previous sim-
ulations [44], the torsion parameters of the original LCBOPII
model were slightly modified to increase the bending constant
of the graphene layer from κ = 0.8 to 1.5 eV at T → 0. The
last value displays better agreement to experimental data and
ab initio calculations [45].

In our MD simulations of graphene we have derived the
potential energy φ of the layer with the LCBOPII model. The
atomic forces of the graphene configurations,

(Fxi, Fyi, Fzi ) =
(

− ∂φ

∂xi
,− ∂φ

∂yi
,−∂φ

∂zi

)
, i = 1, . . . N,

(A2)
were calculated analytically with the LCBOPII potential, as
well as the total derivative of the potential energy with respect
the in-plane area of the simulation cell dφ/dA. This derivative

is defined by the change of the potential energy of the simu-
lation cell upon an uniform isotropic strain in the xy plane.
These quantities are required in the dynamic equations used
to sample the NτT ensemble.

APPENDIX B: DYNAMIC EQUATIONS
FOR THE NτT ENSEMBLE

The dynamic equations that generate the NτT ensemble
are reviewed here from the original literature in Refs. [32,46–
49]. In order to produce the isothermal-isobaric ensemble, the
in-plane area of the simulation cell A = NAp is permitted to
undergo isotropic fluctuations. The employed extended sys-
tem scheme treats as dynamic variables the atomic positions
(xi, yi, zi ) and momenta (pxi, pyi, pzi ), with i = 1, . . . , N , the
in-plane area A, and the momentum associated with the log-
arithm of the in-plane area pA. In addition, chains of Nosé-
Hoover thermostats are employed to generate the thermal fluc-
tuations of the distributed positions (xi, yi, zi ), and momenta
(pxi, pyi, pzi ). An additional chain of thermostats is coupled to
the “barostat” to control the area fluctuations. The equations
of motion are [48,49]

ẋi = pxi

m
+ pA

W
xi, (B1)

żi = pzi

m
, (B2)

ṗxi = Fxi −
(

1 + 1

N

)
pA

W
pxi − pξxi1

Q
pxi, (B3)

ṗzi = Fzi − pξzi1

Q
pzi, (B4)

Ȧ = 2ApA

W
, (B5)

ṗA = 2A(τint − τ ) + 1

N

N∑
i=1

(
p2

xi + p2
yi

m

)
− pβ1

Qβ

pA, (B6)

ξ̇xi j = pξxi j

Q
, (B7)

ṗξxi1 =
(

p2
xi

m
− kBT

)
− pξxi1

pξxi2

Q
, (B8)

ṗξxi j =
(

p2
ξxi( j−1)

Q
− kBT

)
− pξxi j

pξxi( j+1)

Q
, 1 < j < M,

(B9)

ṗξxiM =
(

p2
ξxi(M−1)

Q
− kBT

)
, (B10)

β̇ j = pβ j

Qβ

, (B11)

ṗβ1 =
(

p2
A

W
− kBT

)
− pβ1

pβ2

Qβ

, (B12)
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ṗβ j =
(

p2
β( j−1)

Qβ

− kBT

)
− pβ j

pβ( j+1)

Qβ

, 1 < j < M,

(B13)

ṗβM =
(

p2
β(M−1)

Qβ

− kBT

)
. (B14)

The equations of motion for the (yi, pyi ) phase-space
coordinates are identical to those given for (xi, pxi ) upon
changing the subindex x by y. m is the carbon mass and
W is the mass of the barostat, which is coupled to the in-
plane (xi, pxi ) and (yi, pyi ) phase-space coordinates. There are
3NM thermostats (ξxi j, ξyi j, ξzi j ), with mass Q and momentum
(pξxi j, pξyi j, pξzi j ), with j = 1, . . . , M. Each of the 3N atomic
momentum coordinates is coupled to a different chain of
M Nosé-Hoover thermostats. The equations of motion for
(ξyi j, pξyi j ) and (ξzi j, pξzi j ) are identical to those given for
(ξxi j, pξxi j ) after changing the subindex x by y or z, respec-
tively. This massive thermostatting of the system is manda-
tory for MD path-integral simulations to avoid ergodicity
problems. For classical MD simulations it would be equally
appropriate to use a unique thermostat chain for all the atoms.
The only reason for using the massive thermostatting here
is that the additional computational cost is low and thus the
same homemade computer code can be used for both clas-
sical MD simulations and quantum PIMD simulations. The
barostat is coupled to a chain of M thermostats β j with mass
Qβ and momentum pβ j . The graphene simulations presented
here were done with M = 4, Q = 2 × 107 eV fs2, Qβ = 2 ×
109 eV fs2, and W = 3.2 × 1015 eV fs2. The internal in-plane
stress is

τint = 1

2A

[
N∑

i=1

(
p2

xi + p2
yi

m

)
− (2A)

dφ

dA

]
. (B15)

The equations of motion were integrated by employing ex-
plicit reversible integrators using factorization techniques for
the Liouville time evolution operator. We used the reversible
reference system propagator algorithm (RESPA), which
allows to define different time steps for the integration of fast
and slow degrees of freedom [32].

APPENDIX C: SPINODAL RELATION

The stability condition of a 2D solid requires that the free
energy F must be a convex function of its natural variables. In
particular, ∂2F/∂A2

p > 0. A mechanical instability appears at
the area Ap,C if [50–52](

∂2F

∂A2
p

)
Ap,C

= 0 . (C1)

The in-plane stress at the critical area is

τC = −
(

∂F

∂Ap

)
Ap,C

. (C2)

The Taylor expansion of F at the critical area Ap,C is, under
consideration of Eq. (C1) and up to the order O[(Ap − Ap,C )4],
given as

F = FC − τC (Ap − Ap,C ) + a(Ap − Ap,C )3, (C3)

where FC ≡ F (Ap,C ) and a is a constant proportional to the
third Ap derivative of F at the critical area Ap,C . The in-plane
stress is obtained by the derivative of the last equation as

τ = τC − 3a(Ap − Ap,C )2. (C4)

From this equation,

Ap = Ap,C +
(

1

3a

)1/2

(τC − τ )1/2. (C5)

By considering the definition of the 2D compressional mod-
ulus in Eq. (5) and with the help of Eqs. (C4) and (C5), one
gets

B = (3a)1/2Ap,C (τC − τ )1/2 + O(τC − τ ), (C6)

which gives us the dependence of the 2D compressional
modulus B with the in-plane stress τ expected close to the
spinodal instability of the layer at the critical stress τC . Our
simulation results for B(τ ) are in good agreement with the
last equation.
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