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Excited-state trions in two-dimensional materials

Jun Yan
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

Kalman Varga
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

® (Received 7 May 2020; revised manuscript received 10 June 2020; accepted 12 June 2020;
published 22 June 2020)

Using the complex scaling and the stabilization method combined with the stochastic variational approach,
we have shown that there are narrow resonance states in two-dimensional three particle systems of electrons and
holes interacting via a screened Coulomb interaction. These resonances are loosely bound systems of excited
state excitons with a third particle circling around them. Recent experimental studies of excited state trions

might be explained and identified by these resonant states.

DOI: 10.1103/PhysRevB.101.235435

I. INTRODUCTION

Monolayers of transition metal dichalcogenides (TMD)
are chemically and mechanically stable making them ideal
systems for studying physics in two dimensions (2D). The re-
duced dimensionality leads to a notably strong Coulomb inter-
action between charge carriers [1]. This enhanced interaction,
in turn, leads to the formation of tightly bound excitons [2—6],
charged excitons (trions) [7—11], and biexcitons [12-21].

Theoretical studies [22—40] played an important role in
predicting the stability and properties of these electron-hole
complexes. Energies of excitons can be calculated by solving
the Bethe-Salpeter equation (BSE) in the quasiparticle band
structure framework [25,26,41]. The effective mass approach
with 2D interaction potential has also been successfully used
to calculate binding energies [22,23,27-32,35,37,39,42-44] in
good agreement with the BSE approach and the experimental
results. In the effective mass models the excitonic systems are
considered to be few particle systems, e.g., the trion is the
bound state of three particles. Other interpretations also exist
where trions are described as excitons dressed by interactions
with a Fermi sea of excess carriers [38].

Recent experimental studies have shown the existence of
excited state trions in TMDs [11,45]. This is somewhat sur-
prising, because the trion has no known bound excited state.
In fact neither the H™ (p,e™, e™) nor the Ps™ (e*,e",e")
ion has bound states in two or three dimensions [46—49]. The
H™ and Ps™ ion, however, has many resonant states in three
dimensions [50-52].

In this paper we will investigate the existence of these
resonant states in 2D materials. Unlike bound states, the
resonances have complex energies and spatially extended non-
L? wave functions. Conventional variational approaches based
on square integrable real basis functions cannot be directly
used to calculate these resonant excited states. We will use two

“kalman.varga @vanderbilt.edu

2469-9950/2020/101(23)/235435(12)

235435-1

distinct approaches, the real stabilization method [53], and the
complex scaling (CS) [54,55] approach to finding the resonant
states. Both of these approaches need a flexible variational ba-
sis. We will use the stochastic variational method (SVM) [56]
with explicitly correlated Gaussians (ECG) [46] to generate
basis states.

The stabilization method (SM) [53] is based on the ob-
servation that a sufficiently large-square integrable basis set
yields good approximations to the inner part of the exact
resonance wave functions at energies equal to the eigenvalues
of the Hamiltonian matrix. Eigenvalues belonging to resonant
states remain stable when the basis dimension is increased.
The degree of stability of the eigenvalues approximating the
energy of the resonance is proportional to the width of the
resonance. The complex energy of the resonance state can
be extracted from the change in the stable eigenvalue as the
size of the basis increases.

In the complex scaling method [54,55], the coordinates are
rotated into the complex plane and resonant wave function
becomes square integrable and can be expanded in terms of
real basis functions. The trajectory of the eigenenergies of the
Hamiltonian as a function of rotation angle is very different
for bound, scattering, and resonance states. The energy and
width of the resonances can be determined from the converged
position of the complex eigenvalues.

The stochastic variational method will be used to generate
a square-integrable basis using explicitly correlated Gaussians
[46] for the CS and SM calculations. The SVM has been
previously shown to achieve accuracy of up to 8-10 digits
when describing the binding energies of similar systems such
as Ho, H;r, and the positronium molecule (Ps;) [48,57]. This
method has proven to be well suited for describing the binding
energies of excitonic structures ranging from the two-body
exciton to five-body exciton-trion systems [30,47,49]. Pre-
viously, we have shown that this method yields values that
agree with other calculations and experimental findings for
the binding energies of excitons and trions in TMDs [30,31].

©2020 American Physical Society
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II. FORMALISM
A. Hamiltonian and basis functions

The nonrelativistic Hamiltonian of an excitonic few-
particle system is given by

N 2

N
H= _Z;ZE—WV?-FZV(”U), 8

i<j
where r;; = |r; —r;|, and r;, m;, are the 2D position vector
and the effective mass of the particle.

In the case of an excitonic system in 2D, the interaction
potential V(r;;) is given by the 2D screened electrostatic
interaction potential derived by Keldysh [58]

V(rij) = %Vm(ﬁ), 2)
Kro ro
where
Vap(r) = %[Ho(r) — Yo(r)]. 3)

This potential has been adopted in most of the calculations.
Alternative potentials have also been proposed [59] to better
describe three atomic sheets that compose a monolayer TMD.
In the screened potential g; is the charge of the ith particle,
and ry is the screening length indicative of the medium. « is
the average environmental dielectric constant. Hy and Y, are
the Struve function and Bessel function of the second kind,
respectively.

The nonlocal macroscopic screening, inherent to 2D sys-
tems, distinguishes this potential from its 3D Coulombic
counterpart [25]. The length scale of this screening is deter-
mined by the 2D layer polarizability xop as ro = 27 xop/k-
In the limit of very strong screening (ryp — 00), the potential
exhibits a logarithmic divergence, while in the limit of small
screening length (rg — 0), V(r;;) approaches the usual 1/r
behavior of the Coulomb potential.

The variational method is used to calculate the energy of
the system. As a trial function we choose a 2D form of the
correlated Gaussians [46,56]:

N
1
exp—i ZA,-jr,--rj, (4)

i,j=1

where A;; are the nonlinear parameters. The above form of the
CG belongs to M = 0. To allow for M # O states, we multiply
the basis by

N
[ T&n . )
i=1

where

En(p) = (x +iy)". (6)
Thus our nonrestrictive CG function reads as
N | N
Du(r) = A (H sm,(r,»>> exp ) =5 > Ayrirpt. (1)
i=1 ij=1

where M = my +my + --- + my, m; are integers, and A is
an antisymmetrizing operator. This function is coupled with

the spin function xsm, to form the trial function. The nonlin-
ear parameters are optimized using the stochastic variational
method [46,56].

ECG are very popular in atomic physics and quantum
chemistry [46]. The main advantages of ECG bases are
(1) their matrix elements are analytically available for a
general N-particle system, (2) they are flexible enough to ap-
proximate rapidly changing functions, and (3) the permutation
symmetry can be easily imposed.

Reference [46] provides a thorough review of the appli-
cations of the ECG basis in various problems. Benchmark
tests presented for atoms with N =2 — 5 electrons show
that the ECG basis can produce up to ten digit accuracy for
2-3 electron atoms. The ECG basis has also proven to be
very accurate in calculating weakly bound states. A series
of positronic atoms have been predicted using the stochastic
variational method with an ECG basis [48,60]. The binding
energy of these systems [46] ranges from 0.001 to 0.04 a.u.
(1 a.u. is 27.211 eV) with weakly bound diffuse structures
similar to those studied here.

B. Complex scaling

The complex scaling method was originally proposed by
Aguilar, Balslev, and Combes [61,62]. The CS is introduced
by a transformation U () with a scaling angle 6 for the radial
coordinate r

U@ ru='@)=ré", 8)
where U(8)U~'(0) = 1. The Schrodinger equation, HY =
E W, is transformed as

Hw? = EOwY, 9)

HY =U@®)HU'(9), (10)

To solve Eq. (10), the wave functions \If,f(r) are expanded in
terms of ECG basis functions:

K

W (r) = cu(0) Dy, (r), (11)

i=1

leading to the generalized complex eigenvalue problem

K K
ZHS cik(0) = € Z Oijcjx(0), (12)
j=1 j=1
Hf = (04 |H"|®4), (13)
0;; = (Ou,|®y,), (14)

where Hfj are the matrix elements of the complex-scaled
Hamiltonian and O;; is the overlap of the basis functions.
In the case of Coulomb interactions the CS Hamiltonian is
particularly simple:

Hj = e T + 7"V, (15)

where T;; and V;; are the kinetic and potential energy matrices
of the ECG basis functions.

The ABC theorem of Aguilar, Combes, and Balslev [61,62]
describes the properties of the of the CS eigenstates:
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(a) Energies of bound states are invariant with respect to
the rotation angle.

(b) Resonance states can be described by
integrable functions.

(c) The continuum spectra start at the threshold energies
corresponding to the decays of the system into subsystems.
The spectra are rotated clockwise by 26 from the positive real
energy axis.

In the CS method the resonances are determined by finding
the position where the complex eigenvalues are stabilized with
respect to the rotation angle:

oE
30 lo=0

opt

square-

= min. (16)

Once the position of resonance is determined, the resonance
energy (E,) and total width (I') are given by

E,—i3l. (17)

C. Stabilization method

In this method we also use a variational ECG basis ansatz
K
) = i @, (r), (18)
i=1
but now we use the dimension of the basis, K, as a parameter
(expansion length). The corresponding generalized real eigen-
value problem reads as

K K
D Hij,cii®) = € Y Ouje;i(6), (19)
j=1 j=1

Hf, = (D, |H|Dy,), (20)
where ei(K ) is the variational estimate to the energy of the ith

state of the system. In the following we will use E; for the
energy of the ith state dropping the basis dimension (K) if it
is not important.

The simplest version of the stabilization method [53]
is based on the Hylleraas-Undheim theorem [63,64]. The
Hylleraas-Undheim theorem states that (i) comparing the vari-
ational energy estimates obtained with K trial wave functions
and the estimate obtained by adding one additional orthonor-
malized trial wave function (increasing the basis dimension to
K + 1), one finds that the new energy estimates are interleaved
with the old ones:

(K+1) (K) (K+1) (K) (K+1) (K) (K+1)
€ L€ <€ <€ ' <...€ < < €

S S T IR
21

&) are upper limits to the correspond-

and (ii) the eigenvalues ¢,
ing excited states.

By increasing the basis dimension (“expansion length”)
the real part of the resonance energies becomes “stable”.
This stabilization occurs because the inner part of the wave
function, at an energy in the resonant region, looks like
the wave function of a bound state. The amplitude of the
wave function in the asymptotic region is much smaller than
the amplitude of its inner part. The inner part of the wave func-
tion is expanded in a set of discrete exponentially decaying

functions, and then the Hamiltonian is diagonalized to yield

the approximate resonance energies directly. Once the basis
size is sufficiently large to represent the inner part, the energy
of this state barely changes when more basis states are added
because the asymptotic part is small and does not contribute
to the energy. The energies of the nonresonant scattering wave
functions, however, quickly change with the addition of basis
states because their asymptotic parts are large.

There are many variants of the stabilization method, one
can confine the wave functions with a potential and change
the range of confinement, scale the coordinates or perturb the
Hamiltonian in some way and find the stable states [65—69].
Most of these approaches can be used to extract the resonance
widths as well [65-69].

D. Stochastic optimization

The basis parameters can be efficiently chosen via the
stochastic variational method [56]. In this approach, the
variational parameters A;; of the ECG basis [see Eq. (7)]
are randomly selected, and the parameters giving the lowest
variational energy are retained as basis states. This procedure
can be fine-tuned into an efficient optimization scheme as
described in detail in Refs. [46,56].

In the present work, we found that the most efficient way
to build a flexible basis is as follows:

(i) Optimize the ground state on a small (K = 200) basis
selecting A;; from a parameter space which confines the
interparticle distances below 10 a.u.

(i) Expand the basis by optimizing the lowest [ states by
minimizing

l
D —ey (22)
i=1

for each K by SVM. Here € can be any number below the
lowest eigenvalue. In this step A;; is chosen to allow the
interparticle distances to extend up to 100 a.u. This helps
the description of the extended excited states.

E. Physical quantities

The following physical quantities will be used to describe
the properties of the system and characterize the quality of the
wave function. The pair correlation function is defined as

2 N
Cpy(r) = ) Wy smi—r—n|w). (23
i<j

NN —1

where p and ¢ stand for electrons or holes, so C,, is the
electron-electron and C,, is the electron-hole correlation func-
tion. Using C,,(7), the radial part of the correlation function,
the powers of interparticle distances are given by

(k) =27 / r*Cpg(r)r dr. (24)
0

F. Units

The effective electron and hole masses are denoted as

m; =memy and m; = mpmg, (25)
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where myg is the mass of the electron. One can define an
effective Bohr radius as

hZ
@ == (26)
ue
where e is the electron’s charge and
_ e 27)
H= mk + my
is the reduced mass. This can be also written as
1 i 1 e
*_K( +0) 2:K( +o)a0 J:m_7 (28)
me mpe me my

where ag = m’% is the hydrogenic Bohr radius (ag =
5.29177 A). With this one can define

o =ro/d", (29)

the screening length normalized by the Bohr radius. Similarly,
the effective Bohr energy

2

o M g (30)
T ka* k2(140) 0
where
Ey = é*/ag 31

is the Hartree energy (Ep = 27.211 eV).

The energy of the exciton and trion states only depends
on 7y and on the electron-hole mass ratio o. In the following
we will use atomic units. The energies of the exciton is
analytically known for 7y = 0 and o = 1 [70]:

EX — _;
ns (2”1 _ 1)2’

that is,—2 —2/9 and —2/25 a.u. for the 1s, 25, and the 3s
states, respectively.

To convert the results to eV and A one has to multiply
the energies by E* and the distances by «*. This is the same
convention as used in Refs. [23,29,31]

(32)

III. RESULTS AND DISCUSSION

In this section, we will present the results of the calcula-
tions. The energies and distances are in atomic units (a.u.)
unless noted otherwise. These units and their conversion to
meV and A are defined in Sec. I F. We will denote the relevant
energy levels of trion by E;, in particular Ej is the energy of
the bound ground state and E; (0 < i) is the energy of the ith
excited resonance state.

A typical calculation starts with a SVM basis optimization
for the trion. On a single processor (Intel i7-6850K CPU
@3.6 GHz) that takes about 4 h for a basis size of K = 1500.
The CS requires a complex diagonalization of the K dimen-
sional complex Hamiltonian [Eq. (14)] for each 6 values. In
the SM approach one has to diagonalize the k dimensional real
Hamiltonian for k =1, ..., K. The SM and CS complement
each other in the identification of resonances.

\
1000 1500

FIG. 1. Energy levels versus basis dimension. The four excited
states energies (Ey, E,, E5 and E,) are nicely stabilized as the ener-
gies are converging with the increased basis size. 7y = 0 is used. The
dashed lines show the 2s, 3s, and 4s exciton energies. The energies
are in atomic units as defined in Sec. II F.

A. Spin singlet case

In this section we present the results for the spin singlet
state of the trion.

1. Stabilization method (7y = 0)

Figure 1 shows the stabilization of the of the energy of
trion resonance states. The lowest state, £; = —0.28 a.u., is
stabilized at a small (K = 200) basis dimension and its energy
remains unchanged after that. One can also see that at certain
K values there are “avoided crossings” of the neighboring
eigenvalues. The avoided crossing is a simple consequence
of the Hylleraas-Undheim theorem. Let us assume that an
isolated “stable” eigenvalue E;K ) approximates E;. With in-

creasing K the next higher eigenvalue, 6,('{?1’ decreases more
(K)

rapidly than the stable eigenvalue e](.K ), and pushes €;

](?1 approaches E; and becomes the

away

from E;. At this point €
stable eigenvalue.

)

T Y T R IS S SO U RO SRR
-25 225 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -025 O
E

T

FIG. 2. Trajectories of the complex rotated energies. The ener-
gies are rotated from 8 = 0 to 6 = 0.36 (in rad) with a step size of
A = 0.004 (in rad). ry = 0 is used. The energies are in atomic units
as defined in Sec. II F.
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FIG. 3. Trajectories of the excited states of trion on the complex energy plane. The energies are rotated from 6 = 0 to § = 0.1 with a step
size of A6 = 0.004 (in rad). 7 = 0 is used. The energies are in atomic units as defined in Sec. II F.

The next resonance state, E, is slightly below the 2s
threshold and it is also stable from about K = 300. There are
at least two more stable resonant states, E5 and E4 below the
3s threshold. Figure 1 also shows that many states converge
to the 2s and 3s thresholds from above. These states represent
dissociation into 2s and 3s excitons and an electron.

All these resonance states are stabilized as a straight hori-
zontal line which is a typical sign of a narrow resonance. This
is confirmed by complex scaling as we will see later.

2. Complex scaling method (7y = 0)

As an illustration of the CS calculation, Fig. 2 shows the
lowest 50 eigenvalues as the function of the rotation angle
for a trion with o = 0 and 7y = 0. The basis dimension in all
calculations is K = 1500. The ground state energy, Ey, is be-
low the 1s exciton energy (EfX = —2 a.u.), and the resonance
state (E; = —0.28 a.u.) below the 2s exciton threshold (EXS =
—2/9 a.u.) remains stable. The continuum states rotated to the
complex plane with an angle of 26. The first set of continuum
states is rotated from the 1s threshold, the second starts at the
2s threshold.

By enlarging the CS calculation results in Fig. 2 around the
resonant states, Fig. 3 shows 4 narrow resonance states in the
complex energy plane. These are the same 4 states that are
calculated by the stabilization method and shown in Fig. 1.
These are all very narrow resonances.

Reference [51] also found four resonant states in the 3D
case. The energies are different in 2D and 3D, but there are
two resonances below the 2s threshold in both 2D and 3D.

Reference [51] shows two resonances below the 3s threshold,
our complex scaling approach shows at least three states.
Figure 4 shows the electron-electron (C,.) and the electron-
hole (C,;,) correlation functions for the ground state of trion.
Due to the presence of the second electron the electron-
hole correlation function is somewhat wider than that of the
exciton. The electron-electron correlation function is pushed

C(r)

FIG. 4. Ground state correlation functions for 7y = 0 (left) and
7o = 1 (right). Electron-electron correlation, C:,(r) (dashed line),
electron-hole correlation, C.,(r) (solid line), and exciton electron-
hole correlation, C3,(r) (dashed-dotted line). The distances are in
atomic units as defined in Sec. ITF.
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FIG. 5. Excited state correlation functions for 7y = 0. Electron-
electron correlation, C.,(r) (dashed line), electron-hole correlation,
C!,(r) (solid line), and exciton electron-hole correlation, C.(r)
(dashed-dotted line). The distances are in atomic units as defined in
Sec. IIF.

away from the origin due to the repulsion. The structure of the
trion is more or less similar to a system where an electron is
orbiting around an exciton.

The exciton plus electron structure of the excited states
shows a very similar tendency. Figure 5 shows the correlation
functions for the four resonance states. £, and E, are below
the 2s exciton threshold and they have a pronounced 2s
exciton plus an outer electron structure. The electron-hole cor-
relation function of the excited state trion is very similar to the
electron-hole density in the exciton. The difference between
the excited trion with energy E; and E, is that in the latter
the second electron is much farther away from the exciton
(as the electron-electron correlation function shows in Fig. 5).
In the trion with energy E; the electron-hole correlation has

-0.10

-0.15

m-0.20

-0.25

a long tail overlapping with the electron electron-correlation
function. The second electron strongly polarizes the exciton.
The excited trion binding is due to the significant overlap
between the electron-electron and electron-hole correlation
functions. The excited states with energy E3 and E4 show a
very similar tendency, an 3s exciton plus an electron far out
from the center.

3. Results for 0 < 7y

To calculate resonance states for 0 < 7y we use the ECG
basis that is generated by SVM for 7y = 0. The basis di-
mension is very large (K = 1500) and the basis is flexible
enough to be accurate for nonzero 7). Actually the 7o =0
case is the most challenging calculation because of the deep
Coulomb potential near the origin. Increasing 7, leads to less
attractive potential close to the origin, while the asymptotic
part (r > 5) of the potential still behaves like 1/r. This asymp-
totic Coulomb part determines the resonance wave functions
beyond r = 5 so one expects that the resonances also exist for
0< 7”0.

Using the ECG basis optimized for 7, = 0, we have diag-
onalized the Hamiltonian for different values of 7. This step
is an application of the SM approach to find resonance states
by changing the potential strength. The calculated resonance
energy, E, as a function 7, is shown in Fig. 6. To check
the SM approach we have also used the CS method. The
ECG basis was optimized for several 7y values and resonance
positions were calculated by CS. These calculations have
shown that resonance energy trajectory in Fig. 6 is accurate,
and the CS also allowed us the determination of the resonance
width (see Table I).

The calculated total energies and the binding energies for
the ground state and the lowest two resonance states are shown
in Figs. 7 and 8. We only show these two resonance states
because the energy of the higher states barely depends on 7
(see Table I). This is not surprising, the resonance states with

-0.10

-0.15

m-0.20

-0.25

FIG. 6. Change of energy levels as a function of 7. Left: By increasing 7, the potential weakens and the energy levels move upward. The
energy levels €3, €;. .. approximate the energy of the first resonance state E at different values of 7. At # = 0 the energy of the 22nd excited
state €,, approximates the excited trion state, E1. By increasing 7 €y moves upward, but at around 7, = 0.02 the energy level €,; moves
up faster and becomes nearly equal to the energy level €,,. The two energy levels cannot cross each other (avoided crossing) and E; will be
approximated by €;;. At 7y = 0.12 €50 approaches €,, and E; will be approximated by €,¢. The next approximation will be €9 and so on. Right:
Same as in the left, but the complete trajectory of E; as a function of 7, is highlighted (thick line). The energies and 7, are in atomic units as

defined in Sec. II F.
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TABLE 1. Energies and other properties of trion states for S = 0.

For 7y = 0 the ground state and five resonance states is shown. For

7o = 0.5 and 7y = 1 only four resonance state is listed because the energy of the 5th state is too close to the energy of the 3s exciton and the

accurate calculation is very difficult.

7‘0 Er Ei Feh rgh (Seh Vee V?e 86’9
—2.2432 0 0.84 1.20 9.76 1.30 2.28 0.48
—0.2832 —8.8x 1078 4.09 20.93 0.22 7.38 59.98 9.52 x 1073
—0.2267 —1.4x 1073 9.98 171.58 0.26 18.98 414.41 2.37 x 1073
0 —0.1049 —1.7 x 107* 12.98 414.39 6.47 x 1072 24.07 957.33 1.92 x 107*
—0.0886 —1.2x 107 16.88 421.15 3.90 x 1072 32.10 1179.79 4.52 x 107*
—0.0814 -9.3x 1073 29.82 1463.13 2.86 x 1072 57.80 3627.17 8.11 x 1077
—0.8369 0 1.70 4.72 1.51 2.68 9.32 0.117
—-0.2217 —3.4x 1077 542 42.86 7.36 x 1072 9.73 113.38 1.03 x 107*
0.5 —0.1926 —5.8x 107 29.06 1954.90 3.76 x 1072 55.01 3911.25 2.19 x 1073
—0.0914 —1.6 x 107* 13.26 287.85 4.50 x 1072 24.17 720.18 1.25 x 1073
—0.0781 —2.1x 107 27.74 1065.93 1.65 x 1072 43.59 2224.40 5.70 x 1073
—0.5956 0 2.14 7.39 0.90 3.39 14.75 7.24 x 1072
—0.1918 —-2.2x 1077 6.19 51.91 5.56 x 1072 11.08 138.89 5.29 x 1072
1 —0.1715 —6.7 x 1073 29.85 1960.28 5.23 x 1073 56.23 3922.15 3.84 x 1072
—0.0841 —4.2 x 1074 18.16 829.50 434 x 1072 32.73 1809.85 1.93 x 1073
—0.0740 -39 x 107 25.11 1049.68 5.24 x 1073 45.55 2351.17 8.46 x 1073

higher energy only feel the 1/r tail of the potential, which
is independent of 7y. The weak 7, dependence is also true for
the resonances with energy E| and E, above 7y = 1. The mean
distances between particles at 7y = 1 are larger than » = 5 (see
Table 1) so these states are mostly affected by the Coulomb
tail. Energies E| and E, proportional to the energy of the 2s
trion (see Fig. 7) and the binding energy hardly changes (see
Fig. 8).

The energies and the average distances between particles
are compared in Table I for different 7, values. Compared
to the compact ground state trions, the electron-hole, and
electron-electron distances are very large in the excited states.
Table I also shows

aee = 99(0)9 (33)

the probability that the two electron or an electron and the hole
are at the same spatial position. This probability is decreasing

and Sy = Ceh(0)9

0.0

with the increased spatial distribution and the probability
for electron-hole is always larger than that of the electron-
electron.

The most interesting feature of the dependence of the
binding energies on 7 is that the excited states become more
bound than the ground state by increasing 7. The trajectory of
E| and E crosses at 7y = 0.55 and E, and E, crosses at 7y =
1.4. This happens because the ground state wave function
(see Fig. 4) is nonzero close to the origin and increasing
7o weakens the potential in that region and the ground state
binding energy rapidly decreases with ry as Fig. 8 shows. As it
was already mentioned, the excited states are mostly governed
by the Coulomb tail and their energies are less sensitive to 7.

The correlation functions of the excited states for 7y > 0
is very similar to the 7_0 case shown in Fig. 5, but spatially
more extended. This is because increasing 7 the total energies
are decreasing and the size of the states are increasing (see

0.0

25

FIG. 7. Energies as a function of 7. Left: Ground state energy trion, E, (solid line), 1s exciton energy (dashed line). Right: Excited state
energies of trion, E; and E; (solid lines), 25 exciton energy (dashed line), 3s exciton energy (dotted line). The energies and 7, are in atomic

units as defined in Sec. II F.
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FIG. 8. Top: Transition energies of exciton excited states as a
function of 7. Bottom: Binding energies of the ground and the two
lowest resonance states the ground and the two lowest resonance
states as a function of 7. The energies and 7, are in atomic units
as defined in Sec. II F.

Table I). As an illustration for the similarity we show the
ground state trion for 7y = 0 and 7y = 1 in Fig. 4.

We have also investigated the effect of electron and hole
mass ratio on the binding energy. Due to the different masses
the electron hole symmetry is broken so we have two dif-
ferent trions, ehh and eeh. To magnify the binding energy
differences, we have used a relatively large hole mass by
choosing o = 2/3. For smaller hole masses the tendencies
in the binding energies cannot be easily illustrated. Figure 9
shows the binding energy of ehh and eeh as a function of 7.
The heavier hole leads to larger binding energies compared
to the o0 = 1 case, and the ehh system is has larger binding
energy than eeh, except for the E, resonance where the two
energies are nearly equal. The mass difference also affects the
crossing points.

B. Spin triplet case

Similarly to the 3D case [51], we have also found two
resonances for spin triplet trions in 2D, one right below the 2s
threshold and one very close to the 3s threshold, so the binding
energies of these resonances is very small (see Table II). The
average distances in these systems are very similar to the those
of the singlet £ and Ej3, respectively.

Figure 10 compares the correlation function of the exciton
and the triplet trion resonances. Once again, the electron-hole
correlation function is very similar to the 2s and 3s exciton.
The peak of electron-electron correlation function, however,
is almost twice as far away then in the singlet case (see Fig. 5
E| and E3) because the two electron has parallel spins.

FIG. 9. Binding energies as a function of 7, (solid line eeh with
o = 1, dotted line eeh with o = 2/3, dashed line ehh with o = 2/3.
The energies and 7 are in atomic units as defined in Sec. I F.

C. Comparison to experiments

In this section, we compare the calculated results to ex-
perimental measurements in monolayer TMDs sandwiched
between hexagonal boron nitride. The encapsulation of TMD
monolayers between atomically smooth hexagonal boron ni-
tride layers allows high quality optical measurements. Bind-
ing energies and radii of Rydberg exciton states and en-
ergies of charged excitons were measured in WS, [2,11],
WSe; [5,19,44,71-73], MoS; [1,7,74-76], MoSe; [75,77] and
MoTe, [75,77].

Using the parameters (u, ro, and k) given in Table I of
Ref. [75] we have calculated the binding energies and root
mean square distances of excitons and trions in WS,, WSe,,
MoSe,, MoS,, and MoTe, (Table III). Note, that in some
cases the 7, values are very different, but the energies are
very similar. For example, the binding energies of WS, and
WSe, are very close despite the difference in 7. This is
because of the change of binding energy between 7, = 0.59
and 7y = 0.84 is compensated by the slightly larger E* of
WSe,. E* is inversely proportional to 2 so small changes in
k can cause large energy changes.

The calculated binding energies and radii for excitons
(Table III) are in excellent agreement with the experimental
binding energy and radii of Table I of Ref. [75], reproducing
the fit of the model to experimental data of Ref. [75]. The
calculated exciton radii and energies are also in agreement
with the calculated and the experimental values for WSe;
[6] (the calculated rjh = 1.67nm for 1s and rfh = 6.96nm
for 2s, the experimental values are 1.7 and 6.6 nm, the
calculated E»; — Ej; is 124 meV, and the experimental value
is 130 meV).

In previous calculations (see Table II of Ref. [31]) for
TMDs suspended in vacuum or placed on SiO, substrate

TABLE II. Energies and other properties of trion states for § = 1,7 =0and o = 1.

Er Ei Ten re2h Seh Vee rgg ‘See
-0.2254 —5.0 x 10°¢ 11.94 256.66 0.16 22.88 599.55 1.5x 10712
-0.0845 —-12x107° 19.61 573.79 0.03 37.72 1568.04 1.9 x 1071
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FIG. 10. Ground state correlation functions for S = 1 resonances
below the 2s threshold (left) and below the 3s threshold (right).
Electron-electron correlation, C’,(r) (dashed line), electron-hole cor-
relation, C.,(r) (solid line), and exciton electron-hole correlation,
C,(r) (dashed-dotted line for 2s exciton (left) and 3s exciton (right).
The distances are in atomic units as defined in Sec. ITF.

the calculated and experimental energies of excitons were
50-100 meV different. The more accurate measurements us-
ing monolayer TMDs sandwiched between hexagonal boron
nitride layers allow the study of the Rydberg states of excitons
in a magnetic field and one can extract the binding energy
and radii of the Rydberg states [75]. These physical properties
then can be used to find the most suitable model parameters,
reducing the difference between the experimental and theoret-
ical binding energy of excitons to less than 5 meV.

The agreement of calculated and experimental binding
energies (Table III) is not as good as for excitons, but in
general it is similar to the agreement for the TMDs suspended
in vacuum or placed on SiO, surface [31,35]. Comparing
the experimental and calculated trion energies one has to
keep in mind that the model parameters were fitted to the
exciton measurements [75], but the trion energies were not
measured in the same experiment. For example, the Ey; — E;
energy difference was measured to be 141.7 meV for WS, in
Ref. [75]. The value of this transition energy is very important
to find the screening length. In Ref. [11] trion states at 31 and
37 meV were reported in WS,, but the E,; — E; difference
was measured to be 145 meV in this experiment. This small

TABLE III. Energies and mean distances in TMDs. Energies are in meV, distances and in nm, E{J =E, — Ey,, Eé’ =FE, — E,,, Eé’ = E; — Ey,.

System Property Method WS, WSe, MoS, MoSe, MoTe,
7o 0.5942 0.8399 0.8923 1.3324 2.2489
Ey, Calc —178.7 —161.4 —220.2 —231.9 —176.9
Ey Exp —180° —167¢, —170" —221% —231° —177°
(r2) Calc 1.66 1.68 1.23 1.10 1.31
eh JIr2) Exp 1.8 1.7%0 1.2 1.1° 1.3
Ey Calc —37.8 —374 —51.8 —60.6 —52.8
J{r2) Calc 7.20 6.97 5.08 432 4.81
(rai) Exp 6.6°
E», — Ey, Calc 140.9 124 168.4 171.3 124.1
Ey — Ej, Exp 141.7¢ 130°,131" 170" 168, 1481, 152¢ 124
Ey Calc —194.4 -175.2 —238.8 —250.8 —190.5
Ey° Calc 15.7 13.8 16.6 18.9 13.6
Ey® Exp 27,31¢ 21,29° 17,25' 278
J(r2) Calc 3.01 3.05 2.2 2.0 24
(r2) Calc 4.24 4.03 3.2 2.8 3.4
E, Calc —54.1 —53.8 —744 —87.3 —75.5
E° Calc 16.3 16.4 22.6 26.6 227
eeh E® Exp 224 27¢
(r2,) Calc 8.5 8.83 6.1 5.5 5.8
(r2) Calc 13.9 14.20 9.9 8.8 9.4
E, Calc —48.0 —48.1 —66.8 —78.8 —67.9
E° Calc 10.2 10.7 15.1 18.2 15.1
(r2) Calc 54.9 45.8 29.0 28.2 293
(r2) Calc 77.6 64.9 41.1 40.0 414

“[751; °[6]; <[451; “[11]; °[171; "[741; [72]; "([781; '[761;[77].
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difference (141.7 meV to fit the parameter and 145 meV
in the measurement) would lead to a relatively large change
in the model parameters and would affect the binding energy
of the trions. Another factor to consider is the effective mass,
. The energy of the exciton only depends on p so the
experiments can only pinpoint the reduced mass but give
no guidance about the effective mass of the hole. In the
calculations presented in Table III we used m, = m;, (o = 1).
As it is illustrated in Fig. 9, using different values for the
electron and hole mass while keeping the reduced mass the
same increases the binding energies. For the energy of trions
in TMDs (see Table III) this would lead to a 3-5 meV increase
in binding energies.

The calculated binding energy for the excited-state trions
is about the same range as the ground state binding energies,
these excited states have relatively large binding energies.
An excited-state trion was recently reported in WS, [11] and
MoSe, [45] with binding energies close to the binding energy
of the ground state. The width of these resonance states is very
small and these are quasi-bound states. In the lower excited
state, E, the eh and ee distance about 2.5 to 3 times larger than
in the ground state. This state is a 2s exciton with a loosely
bound electron (or hole) circling around it. The second excited
state, E5, is even larger with tens of nanometers of distances
between ee and eh. Due to the large size, this state is a model
prediction in a perfect 2D system, but it is unlikely that this
can be measured in a real material.

Figure 8 can be used as a guide to analyzing the agreement
between the Keldysh potential based models and experiments.
If the energy differences between the Rydberg exciton states
are measured, one can choose the most suitable 7, value using
the top part of Fig. 8. This value then can be used to predict
the trion energies using the bottom part of Fig. 8.

IV. SUMMARY

Using the complex scaling and the stabilization method
combined with the stochastic variational approach, we have
studied resonance states of three-particle systems interacting
with a Coulomb and a screened Coulomb (Keldysh potential).
The stochastic variational method was used to generate a suit-
able square integrable basis of explicitly correlated Gaussians.
The stochastic variational method has been previously used

[31,35] to describe trions, biexcitons, and charged biexci-
tons in TMDs and in high precision calculations in atomic
and molecular systems [46]. We have used two independent
approaches, the CS, and the stabilization to calculate the
resonance states using real basis functions.

In 2D Coulomb three-particle systems with S = 0, we have
found three resonance states below the 2s and two resonance
states below the 3s two-particle (exciton) threshold. These
states can be envisioned as a 2s or 3s exciton with a third,
loosely bound particle circling around it. Comparing the cor-
relation functions of 2s and 3s excitons to those of the excited
trions confirm that picture. We have also found two resonance
states for § = 1. Resonance states similar to these have been
studied in 3D for Coulomb potential [51]. These resonances
are mostly due to the long tail of the Coulomb interaction
and they survive the confinement from 3D to 2D, despite
the fact that their energy and spatial extension radically
changes.

Screening the Coulomb interaction using a Keldysh po-
tential changes the energy of these resonances, but they re-
main narrow quasibound states. The screening decreases the
Coulomb potential at the origin, pushing the resonance wave
function farther out, so the interparticle distances quickly
increase. As the wave functions of the resonance states
are mostly feeling the Coulomb tail, the resonance energies
are less sensitive to the screening than the energy of the
ground state. At some screening length, the binding energy
of the resonance states will be larger than that of the ground
state.

We have calculated the energies and interparticle dis-
tances of these resonance states for various TMDs. Energies
of excited-state trions in WS, [11] and MoSe, [45] are
reasonably close to the values predicted by the calculations.
A closer agreement may require more elaborate calculations
including spin-orbit interactions and multiband Hamiltonians
as used, for example, in Ref. [35].
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