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Numerical study of the rippling instability driven by electron-phonon coupling in graphene
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Suspended graphene exhibits ripples of size ranging from 50 to 100 Å and height ∼10 Å, however, their origin
remains undetermined. Previous theoretical works have proposed that rippling in graphene might be generated
by the coupling between the bending modes and the density of electrons. These theoretical studies proposed
that, in the thermodynamic limit, a membrane of single layer graphene becomes unstable for large enough
electron-phonon coupling, which signals a phase transition from a flat phase to a rippled one. Here, we find
the stable configuration of a suspended monolayer of graphene at T = 0 by minimizing the average energy of
a membrane where the Dirac electrons of graphene couple to elastic classical deformation fields. We find that
the electron-phonon coupling controls a transition from a stable flat configuration to a stable rippled phase. We
propose a scaling procedure that allows us to effectively reach larger system sizes. We find that the critical value
of the coupling gc rapidly decays as the system increases its size, in agreement with the experimental observation
of an unavoidable stable rippled state for suspended graphene membranes. This decay turns out to be controlled
by a power law with a critical exponent ∼1/2. Consistent arguments based on bifurcation theory indicate that
the phase transition is discontinuous at large scaling parameter k, that the jump in the order parameter decreases
as k−1/2, and that the phase transition becomes continuous at k = ∞, with the order parameter scaling as
(g − gc,∞)1/4.
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Graphene is a well studied material [1–4]. It has at-
tracted the attention of a broad scientific community due
to its unconventional electronic properties [2,4–7] and its
exceptional mechanical properties [8]. Its one-atom thickness
makes it the perfect candidate to test the effect that thermal
fluctuations can have on its elastic properties as a crystal
membrane [9–17]. Transmission electron microscopy shows
that suspended graphene membranes exhibit stable ripples,
remarkably different from the thermal fluctuations arising on a
flat configuration [18]. The out-of-plane deformations of free-
standing graphene influence its electronic properties, thereby
changing the electrical conductivity [19–21] and generating
spatially varying gauge potentials [5,22,23]. The latter induce
charge inhomogeneity [24] and underlie the formation of
electron-hole puddles [25].

Previous works of rippling and buckling phenomena have
studied a simplified model of Ising spins (modelling electronic
degrees of freedom) coupled to an elastic membrane. This
model exhibits a rich phase diagram with flat, buckled, and
rippled phases [26–28]. In 1D, the model can be analytically
solved and shown to have first and second order phase tran-
sitions when the temperature and the interaction between the
spins are controlled [29]. However, a more realistic approach
explaining the origin of rippling in suspended graphene and
involving electronic degrees of freedom is not yet developed

*These authors contributed equally to this work.

[30]. Previous theoretical studies [30–41] proposed that the
coupling between elastic and electronic degrees of freedom
might be at the origin of rippling in graphene, which would
arise as a phase transition controlled by the coupling strength.
However, in these works, the appearance of ripples is inferred
indirectly through a vanishing renormalized bending modulus
[32] or by a postulated soft mode at finite momentum [33].
A direct numerical calculation of ripples, and its effect on
the structure of the electronic band, is still missing and mo-
tivates our work. Here we use a realistic model of suspended
graphene membranes coupled to their electronic degrees of
freedom. Through numerical simulations, we show that stable
ripples in suspended graphene membranes can spontaneously
arise as a phase transition from a flat state as the electron-
strain coupling increases. We also show that as the coupling
increases a gap opens in the band structure. Finally, the
critical value of the coupling parameter tends to zero as the
system size increases, which agrees with the experimental
observation of unavoidable rippling of suspended graphene
membranes.

In our model, we consider a classical elastic membrane
with periodic boundary conditions, coupled to the quantum
Hamiltonian for Dirac electrons in graphene and discretized
in an effective hexagonal lattice, at zero temperature. The
spatial distributions of strain, heights, and electronic density
are strongly correlated with each other in the rippled phase.
Thus, ripples are not triggered by a buckling instability of a
clamped or supported finite membrane under tension. Instead,
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we show that they arise on a large sheet when the electron-
strain coupling is large enough to generate stable rippled
configurations, characterized by nonhomogeneous spatial dis-
tributions of strain. We can effectively simulate membranes of
larger size by properly defining a scaling parameter k = a/a0,
where a is the effective lattice constant and a0 = 2.46 Å is that
of pristine graphene. In the large system limit, the transition
happens at very low coupling, which agrees with experimental
observations of stable corrugated membranes [18]. Even more
interesting, we find that the critical value of the electron-
strain coupling decreases to zero as a power law ∼k−1/2 as
the scaling size k increases. The structure of this paper is
the following: We introduce the physical model in Sec. I; the
numerical scheme used to solve the model is presented in
Sec. II; Sec. III carries out a scaling analysis that allows us
to study samples of larger size; finally, we discuss our results
in Sec. IV.

I. THE MODEL

We describe the elastic deformations of a membrane of
monolayer graphene by the vector field u = (ux, uy, h), where
ux, uy are the in-plane deformations of the membrane with
respect to the equilibrium position and h the out-of-plane
shift. In the long-wavelength limit, the elastic energy of
the membrane can be defined in terms of the strain tensor
ui j = 1

2 (∂iu j + ∂ jui + ∂ih∂ jh) as [42]:

Eel = 1

2

∫
d2r

[
κ (∇2h)2 + λu2

ii + 2μu2
i j

]
, (1)

where repeated indices i, j = x, y are implicitly summed.
Here κ is the bending rigidity and λ,μ are the Lamé coef-
ficients. The energy (1) and the displacement vector are dis-
cretized on the honeycomb lattice. We assume that there is a
direct coupling between the electronic charge density and the
strain, and that the kinetic energy of the electrons is described
by the nearest neighbors tight-binding approximation. Upon
discretizing the Dirac Hamiltonian for electrons in graphene,
we have the following Hamiltonian:

Ĥe = −t
∑

〈R,R′〉σ
(â†

Rσ b̂R′σ + H.c.) (2)

− g
∑

R

(n̂(R) − n0)uii(R). (3)

Here h̄ = 1, t is the hopping integral which, for pristine
graphene, is approximatively t0 = 2.7 eV, and 〈R, R′〉 indicate
nearest neighbors sites in the hexagonal lattice. â and b̂ are the
annihilation operators for a fermion in the A and B sublattices
of the honeycomb lattice, respectively, σ is the spin index, and
g is the coupling strength. In (3), we consider a scalar electron-
strain potential that couples the charge density at each lattice
point with the strain at that point of the membrane. Other
coupling terms considered in previous works, such as a gauge
field that induces current fluctuations, see, e.g., Ref. [43],
are suppressed in the long-wavelength limit [32,33]. In (3),
n0 = 1 is the equilibrium occupation number for the undoped
system, and n̂(R) is the local occupation number:

n̂(R) =
{∑

σ â†
Rσ âRσ , if R ∈ A∑

σ b̂†
Rσ b̂Rσ if R ∈ B

. (4)

Within this approximation, the graphene Fermi velocity is
vF = √

3t0a0/2h̄. The Dirac dispersion is an approximation
to the electronic structure of graphene at low energies, and
it is, in turn, based on an atomistic model which considers
the two bands formed by the pz carbon orbitals. Note that the
lattice discretization of the Dirac equation that we use, Eq. (3),
although based on sites in a honeycomb lattice, is not directly
related to atomic orbitals. Finally, the complete Hamiltonian
for the graphene membrane coupled to the electron density
distribution is given by:

Ĥ = Eel + Ĥe. (5)

Typical values for graphene are κ = 0.82 eV, λ =
19.67 eV/a2

0, and μ = 57.13 eV/a2
0, where a0 = 2.46 Å

is the lattice constant. Finally, we have: λ0 = 3.25 eV Å−2

and μ0 = 9.44 eV Å−2 [30,44]. There is no consensus about
the magnitude of the electron-phonon coupling g; recent
estimates give values in the range g ∼ 4–50 eV [45–47].

It is worth noting that we do not include the Coulomb
repulsion between the electrons. A discussion of the role of
Coulomb interactions can be found in Ref. [31]. The defor-
mation of the membrane generates charge “puddles” that have
been shown to have a small quantum capacitance and hence
would not prevent the rippled phase [31,32]. The overall effect
of the Coulomb interaction is to increase the critical value of
the electron-phonon coupling as compared to its bare value
[33] and would not change our main results. In addition, the
long range part of the Coulomb interaction is screened by
the environment in many realistic setups, making its effect
negligible.

We study the Hamiltonian of Eq. (5) within the Born-
Oppenheimer (adiabatic) approximation, in which the quan-
tum problem for the electrons is solved by treating the elastic
fields classically. In this approach, the displacements u en-
ter in the quantum problem as external parameters, via the
interaction term proportional to g in (3). The total energy
of the membrane is then a functional of the displacement
fields:

Etot[u] = 〈
Ĥ

〉
, (6)

where the brackets denote the quantum average as computed
by means of Ĥ itself:

〈Ô〉 ≡ Tr{e−Ĥ/KBT Ô}
Tr{e−Ĥ/KBT } , (7)

where KB is the Boltzmann constant, T the temperature, and
Ô any operator.

In this work we study the equilibrium configurations of the
membrane at T = 0, which reduces the quantum averages in
(6) to sums over the eigenvalues of the quantum operators. At
T = 0, the equilibrium state of the system minimizes the total
energy (6) with respect to the displacements. To solve the min-
imization problem, we consider its Euler-Lagrange equations.
They are the eigenvalue problem for the Hamiltonian (5) and
the extremal equations (equilibrium condition):

δEtot[u]

δu(r)
= 0. (8)
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Thus, the Euler-Lagrange equations constitute a nonlinear
eigenvalue problem because the solution of (8) enters the
Hamiltonian Ĥ through (3), which, in turn, modifies (8). At
T = 0 the functional derivatives of Etot can be performed by
means of the Feynman-Hellmann theorem, which allows us
to switch the order in which the derivatives and the quantum

average are computed: δEtot [u]
δu(r) = 〈 δĤ

δu(r) 〉. Then (8) becomes:

δEel [u]

δu(r)
− g

∑
R

[〈n̂(R)〉 − n0]
δuii(R)

δu(r)
= 0, (9)

which, in turn, is equivalent to the following system:

λ∂x

(
∂xux + ∂yuy + |∇h|2

2

)
+ μ∂x[2∂xux + (∂xh)2] + μ∂y(∂yux + ∂xuy + ∂xh∂yh) = g∂xδρ(x, y), (10a)

λ∂y

(
∂xux + ∂yuy + |∇h|2

2

)
+ μ∂y[2∂yuy + (∂yh)2] + μ∂x(∂yux + ∂xuy + ∂xh∂yh) = g∂yδρ(x, y), (10b)

λ∇ ·
[(

∂xux + ∂yuy + |∇h|2
2

)
∇h

]
+ μ∂x[2∂xux∂xh + (∂yux + ∂xuy)∂yh + |∇h|2∂xh]

+ ∂y[2∂yuy∂yh + (∂yux + ∂xuy)∂xh + |∇h|2∂yh] − κ (∇2)2h = g∇ · (δρ∇h). (10c)

We show here equations (10) in the continuous limit for
convenience, but we will use their discrete counterpart for
the numerical calculations, see Appendix A for more details.
In (10), δρ(r) = 〈n̂(r)〉 − n0 is the charge distribution corre-
sponding to the ground state of the electronic Hamiltonian:
Ĥe, which also depends on the displacements u. Recapitulat-
ing, to find the minimum of (6), we have to solve equations
(10) for u while simultaneously diagonalizing the electronic
Hamiltonian (which also depends on u). This is done by an
iterative process, as explained in the next section.

The physical role played by each term in Eqs. (10) can be
made more clear if we rewrite the equations in terms of an
Airy potential χ , which is defined as: ∂2

x χ = λuii + 2μuyy −
gδρ, ∂2

y χ = λuii + 2μuxx − gδρ, ∂x∂yχ = −2μuxy. As shown
in Appendix B, Eqs. (10) are equivalent to the Föppl-von
Kármán equations [48,49]:

κ∇2h − 2[χ, h] = 0 (11a)

1

Y
∇2χ + [h, h] = − g

2B
∇2δρ, (11b)

where Y = 4μ(λ+μ)
λ+2μ

and B = λ + μ are the Young
and compression moduli, respectively. Also, [χ, h] ≡
1
2 [∂2

x χ∂2
y h + ∂2

y χ∂2
x h − 2(∂x∂yχ )(∂x∂yh)], so that [h, h] is

the curvature of the membrane, as defined in Ref. [42]. Thus,
the spatially varying electronic density, which depends on the
eigenvectors of Ĥe, acts as the source of curvature according
to Eq. (11b). In turn, the curved membrane modifies the
potential term in the Hamiltonian that is being diagonalized
(Ĥe).

II. SELF-CONSISTENT NUMERICAL APPROACH
TO SOLVE THE COUPLED PROBLEM

To solve the system of equations (10) coupled to the
eigenvalue problem for the electrons we use all the expres-
sions discretized on the hexagonal lattice with coordinates
R. For more details see Appendix A. The contribution of the
electrons to the total energy is given by the Hamiltonian (3),
which we can rewrite as,

Ĥe = Ĥ0
e + Ĥ1

e , (12)

where

Ĥ0
e = −t

∑
〈R,R′〉σ

(â†
Rσ b̂R′σ + H.c.) − g

∑
R

n̂(R)uii(R), (13)

and,

Ĥ1
e = gn0

∑
R

uii(R). (14)

Ĥ1
e only depends on the strain and can be treated as a

contribution to the elastic energy. Ĥ0
e is the contribution to

the energy that depends on the charge distribution. In fact, for
a system of N atoms, this term is numerically computed using
a tight-binding matrix with N × N elements. Element i j will
be −t if atoms i and j are neighbors and 0 otherwise. Finally,
the diagonal elements of this matrix take on values −guii(R)
(where R stands for the position in the lattice corresponding
to that element of the matrix).

To solve the nonlinear eigenvalue problem with the dis-
cretized version of equations (10), we use an iterative pro-
cedure. Given an initial condition u0, we first compute the
local strain uii(R) and consequently diagonalize the electronic
Hamiltonian (13). We consider the problem without doping,
where the electronic distribution corresponds to the half-filled
energy band, taking into account the spin degeneracy. Let
E1 � E2 � · · · � EN be the eigenvalues of (13) and Uα (R)
their corresponding eigenvectors. At T = 0, the local occupa-
tion number n(R) = 〈n̂(R)〉 is given by:

n(R) = 2
∑

α�N/2

|Uα (R)|2, (15)

where the factor of two accounts for the spin degeneracy and
the sum over the lowest half of the spectrum sets the Fermi
level at EF = EN/2 if EN/2 is a simple eigenvalue (otherwise
the rule needs to be modified in an obvious way to ensure
that Pauli’s principle holds). The resulting occupation number
n(R) is then used as a new input for the elasticity equations
(10) (see Appendix A for discretized version). The procedure
is iterated until the displacement fields u converge.

Once a solution is found, the total energy of the membrane
is computed as the sum of the elastic and electronic contribu-
tions: Etot = Eel + Ee, where Eel is given by the discretized
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FIG. 1. Solution of the iterative scheme for three different values
of g. Panels (a)–(c) correspond to g = 8t, 10.5t , and 12t , respectively.
For this system size the flat solution is stable for g = 8t ; when we
increase g a rippled phase appears [panels (b) and (c)].

version of Eqs. (1) and Ee is equal to 2
∑

α�N/2 Eα plus
the discretized version of (14). Note that a completely flat
configuration with a homogeneous distribution of charge is
always a solution of the Eqs. (10), although it may not be
stable.

Figure 1 shows three solutions of equations (10), obtained
within the iterative method described above. We use a hexag-
onal lattice with 1536 atoms and periodic boundary condi-
tions. The coupling parameter for these cases takes the value
g = 8t0, 10.5t0, 12t0. We start the iterative procedure with a
Gaussian profile for the height field h, peaked in the center
of the membrane. The stationary solutions shown in the figure
display a flat configuration for g = 8t0 and a nonhomogeneous
distribution of the height for g = 10t0 and 12t0. This shows

that the coupling introduced in the equations is enough to
bring the system out of the flat configuration and to stabilize
rippled configurations. This suggests that there is a rippling
phase transition controlled by g.

Finally, it would not have been practical to use the Föppl-
von Kármán equations (11) instead of the elasticity Eqs. (10).
To recover the stress and strain tensors from the potential χ ,
we need to differentiate it twice; see Appendix B. Since we
solve spatially discretized equations, the additional differenti-
ations would involve extra approximations when we discretize
them.

III. SCALING ANALYSIS

The main limitation of a numerical approach is extrapolat-
ing its results to membranes of realistic sizes. Even though
small samples of the order of 103 carbon atoms already
give interesting results, our goal is to understand the rip-
pling transition in much bigger membranes that may credibly
approximate infinite ones. We aim to study the behavior of
the rippling transition at a critical value gc of the coupling
constant for large scales. To circumvent the limitations of
simulating a large, but not infinite, amount of atoms, we solve
Eqs. (9) varying the scaling parameter k = a/a0 (introduced
above), which controls the effective size of the sample. Vary-
ing k is equivalent to defining a new honeycomb lattice that
is a renormalized version of the original graphene membrane.
In the scaled membrane, each point does not correspond to a
single carbon atom but to a coarse grained set of unit cells.
We scale the terms of our equations so that the elastic energy
is independent of the scaling. Then the Lamé coefficients must
scale as: λ = λ0/k2 and μ = μ0/k2, while the bending energy
κ remains constant. Moreover, requiring the Fermi velocity
not to vary upon scaling implies that the hopping parameter
scales as: t = t0/k.

Figure 2 shows a solution of the iterative scheme for a
membrane with N = 2646 lattice nodes, periodic boundary
conditions, lattice constant a = 50a0, and g = 2t0. The scaling
parameter is k = 50. Figures 2(a) and 2(b) depict the space
distribution of the deformation fields, Fig. 2(c) shows the
charge distribution, and the insets in the panels show their cor-
responding Fourier transforms. Note that the flat configuration
is already unstable for g = 2 if k = 50, whereas it is stable if
k = 1 as in Fig. 1. The values of the strain, shown in Fig. 2(d),
range approximatively from −5% to 8%, in agreement with
the experimental observations and well below the threshold
for fracture [18,30]. Note the correlation of the strain and
the charge distribution due to the coupling between the two.
To visualize the effect of the electron-strain coupling on the
electronic spectrum, in Fig. 3 we show the electronic density
of states for g/t0 = 2 and 3, normalized to 1. The continuum
black line represents the Dirac limit corresponding to the flat
membrane. As g increases, the spectral weight is pushed to
higher energies, up to ∼20t , while the band edge for free
electrons in graphene is 3t . Furthermore, the data suggests
that increasing g may open a gap in the electronic spectrum in
the rippled phase. We note that it has been previously shown
in Ref. [47] that the electronic spectrum is not gapped, even
under very large strains. However, Ref. [47] considers the case
of a uniform strain, while our results account for a finite strain
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FIG. 2. Numerical solution of the elasticity equations coupled
to the quantum electronic problem for g = 2t0. Here we simulate a
system of N = 2646 lattice nodes with periodic boundary conditions
and lattice constant a = 50a0. Panels (a),(b): heights distribution
shown as a contour plot and 3D plot, respectively. Panel (c): elec-
tronic occupation number counted from half-filling. Panel (d): local
strain. The insets show the corresponding Fourier amplitudes in the
first Brillouin zone of pristine graphene.

gradient. Although we do not rigorously prove the existence
of a gap, the opening of a gap in the Dirac spectrum is an
effective way of lowering the electronic energy and, in the
present context, may be linked to the Anderson localization
induced by disorder [50].

FIG. 3. Normalized electronic density of the states obtained for
different values of the electron-strain coupling g. As the coupling
increases the rippling is more pronounced, pushing the spectral
weight towards higher energies and opening a gap at the Fermi
level. The black line, corresponding to the undeformed membrane,
represents the typical spectrum of free electrons in graphene in the
tight-binding approximation. These results correspond to a system
of N = 2646 sites with periodic boundary conditions and lattice
constant a = 50a0, as in Fig. 2.

FIG. 4. Panel (a): geometric average of the local strain as a
function of g for different values of the scaling parameter k. Panel
(b): total energy (5) for the same simulations displayed in (a). As k
increases the transition occurs for a smaller critical value of g. Panel
(c): size of the jump in the average strain of panel (a) versus k. The
line is a fit ∼k−1/2.

Figures 4 and 5 show the rippling transition for systems of
different effective sizes, controlled by the scaling parameter k.
For any value of k, as g increases from zero there is a critical
value gc at which the flat solution loses its stability and the
membrane displays rippling. This is shown in Fig. 4(a) by
the average local strain

√
〈s2〉 that acts as an order parameter:

It is zero in the flat phase and positive in the rippled phase.
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FIG. 5. Critical electron-phonon coupling gc as a function of the
scale k (gray dots). The continuum blue line has been obtained by
fitting the data with the power law of Eq. (16). The inset panel repre-
sents the data in log-log scale. This result shows how as we consider
effectively larger systems the transition happens at smaller critical
values of g. Moreover, the dependence on system size displays a
power law behavior with a critical exponent of 0.5.

Note that the phase transition is discontinuous. However,
Figs. 4(a) and 4(c) illustrate that the jump in the average
local strain decreases as the scaling parameter increases. As k
increases, the critical value gc decreases. When plotted against
k, as shown in Fig. 5, gc follows a power law with a critical
exponent ∼0.5. A simple fit using the model function,

gc(k) = gc,∞ + C k−α (16)

gives: gc,∞ = 0.06t0, C = 11.8t0, and α = 0.49. For large
system sizes (large k), the small ratio gc,∞/t0 makes the
rippling configuration of freestanding graphene stable even
for very small couplings, which is consistent with the experi-
mental observations [18] of unavoidable rippling in suspended
graphene monolayers. Moreover, we can rewrite equation (16)
as

1

k
∼ (gc − gc,∞)2; (17)

this result suggests that there is a continuous line of bifurca-
tions in the plane ( 1

k , g) [continuous line in Fig. 6(a)]. Since
this line cannot cross the axis 1/k = 0, its Taylor expansion
around gc,∞ cannot have a linear term in (gc − gc,∞). Then,
the transitions for different k displayed in Fig. 4 are capturing
the second order term of the Taylor expansion, equation (17).
This explains the observed exponent −1/2 in equation (16).

For each value of k, the average strain of Fig. 4(a) acts as an
order parameter to characterize the amplitude of the ripples,
analogous to A in Figs. 6(b) and 6(c). Even though the order
parameter undergoes a jump at the transition, see Fig. 4(a), the
jump size decreases as k increases. Although a detailed nu-
merical characterization of the order of the transition at every
k is left for future work, we propose the following plausible
scenario: The bifurcation from the flat to rippled configuration
is supercritical (second order transition) at infinite size 1

k = 0,
and is subcritical (first order) for 1

k > 0, with a bistability
region that increases its width as 1

k increases, see Fig. 6. In
Appendix C, we use the equation of a two-parameter pitchfork
bifurcation with coefficients that are smooth in 1/k and g.
We propose that there is an exceedingly sharp discontinuous

transition with critical value given by Eq. (16) for large scaling
parameter k. In this scenario, at 1

k = 0, the transition becomes
continuous with a critical exponent 1/4, such that A ∼ (g −
gc,∞)1/4. For 1

k > 0, there is a narrow bistability range of
width ∝k−2 [gN (k) < g < gc(k)]. Since k−2 � k−1/2 as k →
∞, this bistability range is too narrow to be appreciable by
our numerical iterations. Finally, this scenario also predicts
that the size of the jumps should decrease as k− 1

2 , in good
agreement with Fig. 4(c).

IV. DISCUSSION

We have studied an elastic graphene membrane coupled to
its density of electrons. We iteratively solved the equations
of elasticity, discretized on the honeycomb lattice, where the
electronic density acts as source field. At the same time,
the ground state for the electron density (which also de-
pends on the membrane strain) is self-consistently determined
within the tight-binding approximation. We find a critical
value gc of the parameter controlling the coupling between
deformations and electronic charge, above which a stable
rippled phase appears. Upon scaling our equations to account
for larger system sizes, gc decreases as a power law with
critical exponent ∼1/2, until it reaches a fixed value. We
propose that the rippling transition of freestanding graphene
is of second order in the limit of large system sizes (k →
∞) whereas for finite system sizes the transition is of first
order, with a bistability region and jump size that increase
as k decreases. A more detailed analysis of the bifurcation
is left for future work. Moreover, we find a density of states
(DOS) for the electronic eigenvalues that strongly depends
on the coupling with the membrane deformations. The DOS
suggests that a band gap opens up in the band structure as g
increases.

Although we have not systematically studied the size and
structure of the ripples, we have checked that the typical ripple
size decreases as g increases deep inside the region of stable
ripple configurations. Our numerical simulations suggest that
the typical ripple size remains constant when the number of
lattice points increases (for constant values of all the other
parameters). Thus, the typical size of ripples seems to be
independent of system size, although a more systematic study
of this effect is left for future work. One effect we have
not included in our numerical simulations is the long range
Coulomb interaction. The Coulomb interaction suppresses
charge accumulation at large length scales, and it is a marginal
interaction when compared to the electronic kinetic energy.
Thus, we do not expect its inclusion to change qualitatively
our results.

We have provided numerical support to previous analytical
works [31–34]. But more importantly, we have shown how
the problem of coupling membrane elasticity and electron
density can be tackled numerically. In contrast with previous
analytical work, we do not need to resort to any assumption
for the electronic band structure: This is automatically taken
care of by the tight-binding approach. Indeed, when the de-
formations are small, we recover the well-known Dirac cones
in the density of states, whereas for larger ripples (as the
coupling g increases) the band structure departs from the ideal
case.
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(a)

(b) (c)

FIG. 6. Suggested bifurcation scheme for the flat and rippled
configurations in the ( 1

k , g) plane. Panel (a) presents a continu-
ous black line where the flat configuration becomes unstable. For
g > gc(k) the flat configuration is unstable, gN (k) < g < gc(k) is
a region of bistability, whereas, in the g < gN (k) region, the flat
configuration is the only solution. In panels (b) and (c), A is the
amplitude of the bifurcating rippled phase (order parameter), for
example the averaged strain displayed in Fig. 4(a); A = 0 is the
flat configuration. Continuous and dashed lines correspond to stable
and unstable solutions, respectively. For 1/k > 0 [panel (b)], there
is a subcritical bifurcation (first order transition), with a region of
bistability gN (k) < g < gc(k). Green and black points correspond to
the crossing of the lines gN (k) and gc(k) in panel (a) for a specific
value of 1/k. The dotted line in panel (b) is a guide to the eye. In
panel (c), for 1

k = 0 the bifurcation has become supercritical (second
order) and the bistability region has shrunk to zero.

Our work paves the path to include the coupling to electron
density on large scale molecular dynamics (MD) simulations
of membrane mechanics. MD simulations have successfully
predicted the mechanical behavior of graphene and other
elastic membranes under thermal effects [15,51], whereas
this work presents a numerical scheme to address the cou-
pling between membrane elasticity and electronic density at
zero temperature. Now, the interplay between temperature
and phonon-electron coupling remains to be uncovered. The
method presented in this work could be included as an inter-
mediate step in MD simulations. This opens the possibility of
studying the mechanics of 2D materials in the most realistic
framework, which includes thermal fluctuations and electron-
phonon interactions.
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APPENDIX A: DISCRETIZING THE ELASTICITY
EQUATIONS AND THE COUPLING TO THE ELECTRONS

ON THE HONEYCOMB LATTICE

In the following we describe the procedure used to dis-
cretize the continuum elasticity equations (10) of the main text
on the honeycomb lattice, which basically recalls the approach
of Refs. [52,53]. We also explain the general method that we
used to solve the problem of the elastic membrane coupled to
the electrons.

As usual, we describe the honeycomb lattice as consisting
of two sublattices that here we call type A and B. This is
depicted in Fig. 7, where the atoms of type A are represented
in red and those of type B in cyan, although in the case
of graphene the two species correspond to identical carbon
atoms. Each atom of type A has three first nearest neighbors
of type B, that we labeled with the indices 1,2,3, and six
second nearest neighbors of type A, labeled by the indices
4, . . . 9. If the atom A has coordinates (x, y) then, according
to the scheme of the Fig. 7, the coordinates of its nine nearest
neighbors are:

n1 =
(

x − a

2
, y − a

2
√

3

)
, n2 =

(
x + a

2
, y − a

2
√

3

)
,

n3 =
(

x, y + a√
3

)
(A1)

n4 =
(

x − a

2
, y − a

√
3

2

)
, n5 =

(
x + a

2
, y − a

√
3

2

)
,

n6 = (x − a, y), n7 = (x + a, y),

n8 =
(

x − a

2
, y + a

√
3

2

)
, n9 =

(
x + a

2
, y + a

√
3

2

)
,

where a stands for the lattice constant.
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An analogous scheme, of course, holds for each atom of type B, with a similar definition of the nearest neighbors. The
first and second order partial derivatives that appear in the continuum equations (10) of the main text can be replaced by their
corresponding finite differences on the lattice by introducing the following operators [52,53]:

T f (A) = f (n1) − f (A) + f (n2) − f (A) + f (n3) − f (A) ∼ a2

4
∇2 f (A2a)

H f (A) = f (n6) − f (A) + f (n7) − f (A) ∼ a2∂2
x f (A2b)

D f (A) = f (n4) − f (n5) + f (n9) − f (n8) ∼ a2
√

3∂x∂y f . (A2c)


x f (A) = f (n2) − f (n1) ∼ a∂x f (A2d)


y f (A) = f (n3) − f (A) − [ f (n1) − f (A) + f (n2) − f (A)]

2
∼ a√

3
∂y f , (A2e)

B f (A) = T f (n1) − T f (A) + T f (n2) − T f (A) + T f (n3) − T f (A), (A2f)

where f is a generic function of the lattice positions.
The continuum electronic density ρ and its deviation δρ appearing in the rhs of Eqs. (10) of the main text can be replaced

by the occupation number per site n(R) and by δn(R) = n(R) − n0, n0 being the filling (we use n0 = 1). Thus, the elasticity
equations on the honeycomb lattice can be written as:

4μTux + (λ + μ)Hux + λ + μ√
3

Duy + λ + μ

a
[
xhHh + 
yhDh] + 4μ

a

xhT h = g


xδn

a
, (A3a)

4(λ + 2μ)Tuy − (λ + μ)Huy + λ + μ√
3

Dux + 4
√

3

a
(λ + 2μ)
yhT h + λ + μ

a
√

3
[
xhDh − 3
yhHh] = g

√
3
yδn

a
, (A3b)

(λ + 2μ)

a
{
xh(Hux + 2
yhDh/a + 
xhHh/a) + 
yh[

√
3(4T − H )uy + 3
yh(4T − H )h/a]}

+ (λ + μ)

a
[Dux
yh + 
xhDuy/

√
3] + 4λT h

a
[
xux +

√
3
yuy] + 2(λ + 2μ)

a2
T h[(
xh)2 + 3(
yh)2]

+μ

a
[
√

3Huy
yh + (4T − H )ux
xh + 2
xuxHh + 2
√

3
yuy(4T − H )h + 2Dh(
yux + 
xuy/
√

3)]

−16κ

a2
Bh = g

a2
[4T hδn + 
xh
xδn + 3
yh
yδn]. (A3c)

APPENDIX B: DERIVATION OF THE FÖPPL-VON
KÁRMÁN EQUATIONS

Here we show how to use the Airy potential to rewrite
elasticity equations (10) of the main text in the form of Föppl-
von Kármán equations. First of all, it is useful to introduce the
stress tensor

σi j = λukkδi j + 2μui j, (B1)

which allows us to write Eqs. (10) as:

∂i[σi j − g(δρ)δi j] = 0 i, j = x, y (B2a)

∂i{[σi j − g(δρ)δi j]∂ jh} − κ (∇2)2h = 0. (B2b)

Equation (B2a) is identically satisfied if we define the Airy
potential χ as:

σxx − gδρ = ∂2
y χ, (B3)

σyy − gδρ = ∂2
x χ, (B4)

σxy = −∂x∂yχ, (B5)

whereas Eq. (B2b) becomes:

κ∇2h − 2[χ, h] = 0, (B6)

where

[χ, h] ≡ 1
2

[
∂2

x χ∂2
y h + ∂2

y χ∂2
x h − 2(∂x∂yχ )(∂x∂yh)

]
. (B7)

To get an equation for χ , we first check that

2∂x∂yuxy − ∂2
x uyy − ∂2

y uxx = [h, h]. (B8)

Then we use Eqs. (B1) and (B3) to rewrite the left hand side
of Eq. (B8) in terms of the Airy potential,

1

Y
∇2χ + [h, h] = − g

2B
∇2δρ, (B9)

where Y = 4μ(λ+μ)
λ+2μ

and B = λ + μ are the Young and com-
pression moduli, respectively. This equation, along with
Eq. (B6), represents the Föppl-von Kármán equations for the
membrane.
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APPENDIX C: CROSSOVER ARGUMENT FROM
BIFURCATION THEORY

Our numerical simulations suggest that the rippling transi-
tion becomes continuous as the size scaling k → ∞. How can
we understand this from bifurcation theory?

Let us assume that the rippling transition is a pitchfork
bifurcation that goes from subcritical (discontinuous) to su-
percritical (continuous) as k → ∞. Suppose that A, given by
some average of h, characterizes the amplitude of the ripple
state that bifurcates from the flat configuration. For fixed 1/k,
the bifurcation equation for A is

A

[
τ + 2η

(
1

k

)
A2 − A4

]
= 0, τ = g − gc(k), (C1)

with η(1/k) > 0. The bifurcation equation is written here
as an expansion in powers of A that is invariant under the
transformation A → −A. Terms of order A7 and higher can
be ignored near the bifurcation point and the sharpness of
the numerically observed transition suggests that η(0) = 0.
We have redefined A so that the coefficient of A5 is −1. The
nonzero solutions of this equation satisfy

A2
± = η(1/k) ±

√
η(1/k)2 + τ . (C2)

Equation (16) with exponent 1/2 can be reinterpreted as
1/k = (gc − gc,∞)2/C2, which suggests that the line of crit-
ical values is close to a parabola in the plane (gc, 1/k) with
minimum at 1/k = 0. Assuming that the function η(1/k) is
smooth in 1/k, η(1/k) = η0/k up to terms of order 1/k2.

A positive amplitude A bifurcates subcritically from the
flat configuration A = 0 at τ = 0; it continues as A− for
τ < 0 until τ = −η(1/k)2 = −η2

0/k2, which is a turning point
corresponding to gN (k) = gc(k) − η2

0/k2, and then it increases
with τ as the branch A+. Changing A → −A, we find the
corresponding solution with negative amplitude. Typically
and as indicated in Fig. 6(b), A = 0 is linearly stable for τ <

0, i.e., g < gc(k). The subcritical branch A−, which exists for
gN (k) � g � gc(k), is unstable, whereas the higher amplitude
branch A+ exists for g � gN (k) and is stable. For fixed k, the
discontinuous transition occurs at some −η2

0/k2 < τ1(k) =
−rη2

0/k2 < 0 (0 < r < 1), i.e., gN (k) < g1(k) < gc(k), for
which the basins of attraction of A+ and A = 0 have the
same size. As k → ∞, both the turning point gN (k) and
g1(k) collapse to the bifurcation point gc(∞) = gc,∞, and
the discontinuous transition becomes a rather flat continu-
ous transition with A = τ 1/4 = (g − gc,∞)1/4 for g > gc,∞,
cf. Fig. 6(c). From Eqs. (16) and (C1), the discontinuous
transition occurs at g1(k) = gc,∞ + Ck−1/2 − rη2

0/k2. Since
k−2 � k−1/2 as k → ∞, the last term is negligible compared
to the others, and we also have g1(k) ∼ gc(k). At the turn-
ing point, Eq. (C2) implies that the jump in amplitude is
[A] = √

η0/k.
In conclusion, together with our numerical simulations,

bifurcation theory suggests that (i) the critical exponent is 1/4
at k = ∞, A ∼ (g − gc,∞)1/4, and (ii) the crossover from A =
0 (flat membrane) to A = A+ (rippling) occurs at a slightly
smaller value than that given by Eq. (16), g1(k) = gc(k) −
rη2

0/k2 ∼ gc(k) = gc,∞ + Ck−1/2 as k → ∞. The jump in
amplitude at the turning point, which is also indicative of the
discontinuous jump at g = g1(k), shrinks to zero as k−1/2 as
k → ∞.
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