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Graphene fractals: Energy gap and spin polarization
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Graphene is a natural material platform for experimental realization of triangular fractals. Hence, forming
triangular holes in the hexagonal lattice following a self-similar recipe leads to fractal Sierpinski triangles. Two
subclasses characterized by armchair and zigzag edges are investigated using a mean-field Hubbard approach.
We find that zigzag-edged fractals support a significant spin polarization whereas the armchair subclass is spin
balanced. Despite this difference, the energy gap between like-spin states is large for both types. A self-similar
distribution of energy levels is found in late-generation fractals. In an external magnetic field, the energy gaps
tend to decrease, and an intricate dispersion of individual levels is found. This leads to optical Hall conductivities
with a seemingly chaotic field dependence in late-generation fractals.
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I. INTRODUCTION

Graphene is an exceptional material with a range of excel-
lent properties. The bulk sheets have several useful qualities,
such as high carrier mobility and thermal conductance [1].
It has become clear, however, that a key to additional func-
tionalization lies in carefully prepared edges. Thus, extended
zigzag edges support spin-polarized states whereas armchair
edges are spin balanced. This important difference has been
demonstrated in experiments on both graphene nanoribbons
and quantum dots [2,3] as well as theory [4,5]. Such spin-
polarized edge states could play a role in topologically pro-
tected transport and spintronics applications [6,7]. Recently,
we have suggested that bulk graphene can be dramatically
modified by suitably arranged holes in the sheet, leading to
the formation of graphene antidot lattices [8–12]. Hexago-
nal antidot lattices arranged such that superlattice vectors
are parallel to the atomic C-C bonds turn graphene into a
semiconductor whereas rotated hexagonal ones may produce
both metallic and semiconducting structures [9]. In addition,
the edge type of such holes may have dramatic consequences
for the magnitude and even existence of a band gap. Thus,
holes with extended zigzag edges support edge states within
the transport energy gap [10,11]. It has been shown, however,
that these states are unstable against spin polarization when
electron-electron interactions are accounted for using, e.g., a
mean-field Hubbard model [10]. Thus, a gap develops even
in this case. Also, antidot lattices with triangular holes and
triangular quantum dots are known to support a net spin if
edges are predominantly formed by atoms belonging to one
of the two graphene sublattices [13]. Hence, graphene-based
ferromagnets and spin filters have been envisioned.

Antidot lattices contain a regular pattern of holes forming a
periodic structure whose properties are determined by the unit
cell. In particular, if only a single hole is formed in each unit
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cell, this single feature will define all edge states found in the
entire sample. In contrast, fractal geometries contain features
on all scales. For example, Sierpinski triangles and carpets
contain triangular and rectangular holes with sizes doubling
for each self-similar generation of the fractal. Sierpinski
triangles can be seen as interconnected triangular quantum
dots, see Fig. 1. The basic one, shown as generation g = 1
in Fig. 1, is reproduced repeatedly in subsequent generations.
The maximum size of edges doubles for each generation,
however. Hence, structures containing a wide range of edge
fragments are formed in high generations. Sierpinski carpets
are closely related to triangles but start from a square domain
from which squares are removed. From graphene antidot
lattices [10], isolated antidots [14], and quantum dots [15],
it is known that the size of edge fragments is crucial for
the magnetic properties. Hence, it is interesting to see how
the scale-invariant distribution of edge segments in fractals
determine the magnetic properties of these structures.

In the present paper, triangular Sierpinski fractals based
on the graphene lattice are analyzed. In particular, we wish
to explore the difference between armchair (AC) and zigzag
(ZZ) fractals, designated in this manner after their edge types,
see Fig. 1. Graphene-based rectangular Sierpinski carpets [16]
and zigzag Sierpinski triangles [17] have previously been
analyzed theoretically. However, the geometry analyzed in
Ref. [17] is hardly realistic for graphene since basic rules of
conjugated molecules are ignored. Thus, hexagons connected
by a single carbon atom are included. Consequently, with full
hydrogen saturation, two adjacent single bonds breaking the
conjugation appear in the fractals analyzed in Ref. [17]. In
the present paper, more realistic and fully conjugated models
containing only intact hexagons for which edge atoms bind to
single hydrogens are considered. Also, in both of the previous
cases [16,17], only a simple nearest-neighbor tight-binding
model without electron-electron (e-e) interactions was ap-
plied. As we demonstrate below, e-e interactions are crucial
for a realistic model of ZZ-edged fractals. Thus, we find
that, although AC fractals are always gapped, ZZ fractals are
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FIG. 1. Armchair (top) and zigzag (bottom) graphene fractals
with their different generations g indicated by colored triangles.

metallic if e-e interactions are ignored. By adding a mean-field
Hubbard interaction, however, the picture changes dramati-
cally. Thus, a pronounced spin polarization emerges leading
us to conclude that ZZ fractals are, in fact, gapped ferromag-
nets. Moreover, if only spin-preserving gaps are considered,
these gaps are similar in magnitude to those of the AC type.

Earlier works have presented extensive theoretical stud-
ies of Sierpinski fractals based on triangular or quadratic
rather than hexagonal lattices. In addition to the pioneering
analytical energy spectrum [18], this includes the influence
of magnetic fields [19–23] as well as transport properties
[24,25], optical response [16], and energy-level statistics [26].
Apart from Sierpinski triangles, these studies also include
rectangular Sierpinski carpets [16,23,25]. In the present paper,
we examine the influence of external magnetic and optical
fields on graphene-based fractals. Using Peierls substitution,
magnetic fields are readily incorporated in the mean-field
Hubbard model. This leads to a Hofstadter-type energy spec-
trum, which itself displays fractal features in (energy and
flux) space. We then compute the optical response, which
directly probes the spin-preserving gap. In the presence of a
magnetic field, an off-diagonal optical Hall response emerges.

This response mirrors the fractal character of the energies
in magnetic fields. Although no experimental realizations
of true graphene fractals exist, we note that geometrically
similar structures have been fabricated using CO molecules
on surfaces [27], DNA self-assembly [28], and self-assembly
of phenyl-based molecules [29–31]. It seems likely that atom-
ically precise bottom-up techniques, such as those developed
for nanoribbons [32], could lead to future fabrication of
graphene fractals.

II. ELECTRONIC STRUCTURE

We use an orthogonal π -electron tight-binding model to
describe the electronic structure of both AC and ZZ fractals.
Our previous work on spin-polarized graphene antidot lattices
[10] has demonstrated excellent agreement with full density-
functional theory provided interactions up to third-nearest
neighbors are included. The hopping integrals ti j for first-,
second-, and third-nearest neighbors are taken as −2.7, −0.20,
and −0.18 eV, respectively. To include electron-electron inter-
actions at the mean-field level, we add an on-site Hubbard U
of U = 2.0 eV [5,10]. The Hamiltonian is

H =
∑
i, j,σ

ti jc
†
iσ c jσ + U

∑
i,σ

(
ni,σ̄ − 1

2

)
c†

iσ ciσ . (1)

Here, σ ∈ {↑,↓} denotes spin, and the first sum is over first-,
second-, and third-nearest neighbors whereas the second term
is the mean-field Hubbard with ↑̄ = ↓ and ↓̄ = ↑, i.e., σ̄

designating the opposite of σ . Also, ciσ is the annihilation
operator and ni,σ = 〈c†

iσ ciσ 〉 the spin density at atom i and
spin σ [the factor 1

2 subtracted in Eq. (1) amounts to mea-
suring interactions relative to the homogeneously filled case].
Self-consistent eigenstates of Eq. (1) are found by iteration
starting from an initial state with uniform spin imbalance.
The atomic geometries in Fig. 1 are generated recursively,
and the number of atoms is NAC (g) = 6 × 3g and NZZ (g) =
19 × 3g−1 + 3 for AC and ZZ, respectively. Thus, the number
of atoms is roughly the same for both types at any particular
generation g. By inspection, however, it is clear that the
geometric difference between AC and ZZ is that, in the latter
case, an imbalance between A and B sublattices given by
�N (g) = 2 × 3g−1 exists, whereas equal numbers of A and
B atoms appear in the AC case. Lieb’s theorem [33] states that
for a half-filled bipartite lattice with hopping only between
A and B atoms, a net spin equal to h̄

2 �N exists at zero
temperature. Thus, although our slightly more general model
includes hopping within one sublattice (via second-nearest
neighbors), significantly different spin properties are expected
for AC and ZZ structures as we confirm below.

Focusing first on the AC case, we find a rather robust
gapped spectrum. An example of this is shown in Fig. 2(a).
As demonstrated in the inset, the gap saturates near a value
of ∼1.85 eV for large fractals. The reason for the asym-
metry between occupied and empty energy eigenvalues is
that second-nearest neighbor interactions are included in the
model, which would otherwise be electron-hole symmetric.
Also, the subgaps near −8 and + 6 eV are robust features that
survive in higher generations. For AC fractals, all levels are
twofold spin degenerate and, so, no spin polarization is found

235427-2



GRAPHENE FRACTALS: ENERGY GAP AND SPIN … PHYSICAL REVIEW B 101, 235427 (2020)

FIG. 2. (a) Energies of all eigenstates for a g = 5 AC fractal with
Hubbard interaction with occupied and empty states shown in blue
and red, respectively. (b) Electron density for g = 4. The inset in (a)
shows the energy gap versus generation.

(ni,↑ = ni,↓). Moreover, the electron density as illustrated in
Fig. 2(b) is practically constant having variations only at the
2% level. Hence, to a good approximation ni,↑ = ni,↓ ≈ 1/2
leading to an approximately vanishing effect of the Hubbard
U term for all levels. In fact, for the case in Fig. 2, the root-
mean-square deviation between energies with and without U
is only 4 meV.

The ZZ case is significantly more intricate. For these
structures, a large fraction of the atoms belong to the same
sublattice, cf. Fig. 1. This implies that a large degree of spin
polarization is expected. In Fig. 3, we plot the energies of a
g = 5 ZZ fractal without (top panel) and with (bottom panel)
Hubbard interaction. With U = 0, there is no penalty for
double occupancy of a site and, as a consequence, no spin
polarization. In fact, the number of doubly degenerate levels
around zero is precisely equal to the number of edge atoms,
i.e., 162 for g = 5. These states form a close quasicontinuum
and, hence, the structure is metallic. This conclusion, how-
ever, is drastically altered if electron-electron interactions are
included. According to Lieb’s theorem [33], the spin imbal-
ance N↑ − N↓ equals the sublattice imbalance �N . Hence, for

FIG. 3. Energies of a ZZ fractal with g = 5. Top and bottom pan-
els show results without and with Hubbard interactions, respectively.
Occupied states are shown in blue/red, empty states are shown in
cyan/magenta, and the orientation of triangles in the bottom panel
designates spin direction.

ZZ fractals, the net spin polarization ζ becomes

ζ = N↑ − N↓
N↑ + N↓

= 2 × 3g−1

19 × 3g−1 + 3
≈ 2

19
, (2)

where the last approximation is valid for 3g 	 1.
To discuss the behavior of energy gaps versus frac-

tal generation, we consider the highest occupied (HOMO)
and lowest unoccupied (LUMO) molecular orbitals for each
spin. Three energy gaps exist: a spin-up gap E↑

g = E↑
LUMO −

E↑
HOMO, a spin-down gap E↓

g = E↓
LUMO − E↓

HOMO, and the

true gap, which involves flipped spins Eg = E↓
LUMO − E↑

HOMO.
Although the latter is the actual energy gap in the system,
the spin-preserving gaps E↑

g and E↓
g determine the optical

response as optical stimulation to a very good approximation
does not induce spin flips in light elements, such as carbon.
The dependence of these gaps on generation is shown in
Fig. 4(a). Similar to the AC case, the gaps approach their
asymptotic values rather closely when g > 4 is reached. More-
over, both up and down gaps are about 1.5 eV, which is
only slightly less that the AC value of about 1.85 eV. The
spin-flipped gap, on the other hand, is much smaller, i.e.,
Eg ≈ 0.25 eV. The local spin polarization on the edges is seen
to be about n↑ − n↓ ∼ 0.3 in the inset in Fig. 4(b), and one
might naively expect a gap of U (n↑ − n↓) ∼ 0.6 eV. How-
ever, second-nearest-neighbor coupling leads to a significant
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FIG. 4. (a) Spin-preserving and spin-flipped energy gaps for ZZ
fractals of different generation g. The inset shows the net spin
polarization versus g. (b) Energy gaps versus U for a g = 4 ZZ
fractal. The inset: local spin-polarization n↑ − n↓ at U = 2.0 eV.

dispersion among the edge states as seen in the central part
of Fig. 3 (bottom). Thus, the energy difference between the
highest occupied spin-up state (No. 852 for g = 5, cf. Fig. 3)
and lowest empty spin-down state (No. 691 for g = 5) is about
half of the naive estimate.

Clearly, the Hubbard U interaction is crucial for a correct
model of ZZ fractals. The magnitude of U, however, is not
known precisely and should, in principle, also depend on the
substrate, on which the sample is placed, due to screening.
In the present paper, the value U = 2.0 eV is selected from
previous comparison with density-functional theory for simi-
lar graphene-based structures [5,10]. To study the robustness
of our conclusions with respect to the precise value of U,
we present the energy gaps versus U for g = 4 in Fig. 4(b).
Note that g = 4 is sufficient to produce energy gaps that are
converged with respect to fractal generation. It is seen that
a threshold value of Uc ∼ 1.1 eV is required to produce a
finite spin polarization and associated energy gaps. This is
a consequence of second-nearest-neighbor hopping coupling
atoms within the same sublattice. In the absence of such terms,
finite gaps appear at arbitrarily small U as has been verified
numerically. Around the applied value of U = 2.0 eV, there
is little variation of the spin-up and spin-down gaps. The

FIG. 5. Repeated zooms of the density of states (normalized
by the maximal value) of a g = 6 AC fractal. In the four lower
panels, energy range and broadening are reduced by factors of 5 in
subsequent zooms.

spin-flipped gap, however, varies nearly linearly with U − Uc,
and at U = 3.0 eV, the value is more than doubled. Therefore,
this quantity is quite sensitive to the value of U whereas the
spin-preserving gaps are more robust.

Next, we turn to a more precise analysis of the energy-
level distribution. It is known [18–20] that levels in simple
Sierpinski fractals have a self-similar distribution. We now
demonstrate that a similar behavior can be observed in physi-
cally realistic graphene fractals. As an example, we focus on
a g = 6 AC fractal. Self-similarity is revealed by repeatedly
zooming into an increasingly narrow energy range [19], such
as illustrated in Fig. 5. We add Gaussian broadening to the
density of states defined as Dη(E ) = ∑

i exp[−(E − Ei )2/η2].
The first panel in Fig. 5 shows the full spectrum, whereas
the second is a zoom into a range E ∈ [E0, E0 + �E ] with
E0 = −8.5 and �E = 2.5 eV taking η = 3 meV. In subse-
quent zooms, this range is reduced by a fixed factor α,
whereas, at the same time, the broadening η is reduced by
the same factor. For a Sierpinski triangle, the factor required
for self-similarity is α = 5 [19]. Thus, in the third panel,
�E = 0.5 eV whereas η = 0.6 meV, and so on. The self-
similarity is clearly observed, in particular, in the three central
panels. For an infinite fractal, self-similarity is sustained
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FIG. 6. Real (solid lines) and imaginary (dashed lines) parts of
the diagonal optical conductivity for generation g = 5 AC (blue) and
ZZ (red) fractals.

indefinitely, whereas for finite fractals, self-similarity only
survives for a limited number of successive zooms. Neverthe-
less, the plot demonstrates that physically realistic graphene
fractals are expected to host fractally distributed energy lev-
els. This, in turn, will have consequences for, e.g., optical
properties of such structures as we show in the following
section.

III. OPTICAL AND MAGNETO-OPTICAL PROPERTIES

We now turn to the optical and magneto-optical responses
of graphene fractals as examples of the effect of edge type
on experimentally accessible quantities. The optical properties
are encoded in the frequency- (ω) dependent conductivity,

σi j (ω) = −ie2ω
∑

n,m,σ

f (Enσ ) − f (Emσ )

Emσ − Enσ − h̄ω

×〈nσ |ri|mσ 〉〈mσ |r j |nσ 〉, (3)

where |nσ 〉 is an eigenstate with energy Enσ , f is the
Fermi-Dirac distribution, and ri ∈ {x, y} are the spatial co-
ordinates. This form utilizes the connection between current
density 
j = −e 
p/me and dipole −e
r matrix elements given
by 〈nσ | 
p|mσ 〉 = ime(Emσ − Enσ )〈nσ |
r|mσ 〉/h̄ with me as the
electron mass and 
p as the momentum operator. The gauge
invariance and equivalence between various conductivity for-
mulations are discussed in Ref. [34]. To add line broadening,
an imaginary part iη with η = 50 meV is added to the photon
energy h̄ω. Also, a convenient unit of conductivity is σ0 =
e2A/h̄ with A = 31/2a2N/4 the approximate area of a fractal
containing N atoms with a the graphene lattice constant. The
fractals are isotropic, and the real part of σxx(ω) = σyy(ω) is
essentially the optical absorption. In Fig. 6, we show the spec-
tral dependence of the conductivity for both edge orientations
taking g = 5, which is representative of higher generations
also. A large absorption sets in at the spin-preserving energy
gap for both AC and ZZ fractals. Moreover, the overall
magnitude of the absorption is similar for the two edge types.

In the presence of a magnetic-field B perpendicular to
the plane containing the molecules, the hopping integrals

acquire a Peierls phase ti j → ti j exp(i	i j/	0), where 	0 =
h̄/e is the flux quantum and 	i j = ∫ 
r j


ri

A(
r) · d
r the mag-

netic flux between atomic sites 
ri, j with 
A(
r) the vector
potential. In the symmetric gauge, 	i j = 1

2 B(xiy j − yix j ).
Introducing normalized coordinates xi, j = ax̃i, j and similarly
for yi, j , one finds 	i j/	0 = (B/B0)(x̃iỹ j − ỹix̃ j ) with B0 =
2	0/a2 ≈ 21.6 kT. Naturally, the magnetic field also couples
directly to the spins. This, however, only leads to a rigid shift
for all states of the same spin and, as only spin-preserving
transitions are probed in the optical response, has no effect
as long as fields small enough to preserve the zero-field
occupation of states are considered as is the case here. In fact,
if only spins are considered, a field of (E↑

g + E↓
g − Eg)/2μB

is required to switch population between |HOMO,↓〉 and
|LUMO,↑〉 corresponding to ∼15 kT for AC fractals and even
more for the ZZ case using the zero-field gaps.

In Fig. 7, we present the evolution of energy levels and Hall
conductivities σxy (taking η = 10 meV to better distinguish
transitions) with magnetic field and fractal generation. For
clarity, the spin-Zeeman shift is omitted in the energy plots.
Concerning the fundamental AC energy gap, a clear shrinkage
with field is observed similarly to the antidot lattice case [35].
The same is observed for the gap between dispersive states
in ZZ fractals. In contrast, the ZZ edge states remain only
weakly perturbed by the magnetic field. The energy levels
have a rather intricate dependence on field for the higher
generations and, in fact, closer inspection reveals a fractal
(in energy-field space) structure, in agreement with the self-
similar level distribution found above. Hence, the investigated
structures are fractal with respect to both geometry and en-
ergy dispersion. A similar fractal dispersion with magnetic
field was found for fractals based on triangular lattices in
Ref. [20]. The intricate energy-level structure for high g leads
to extremely complicated Hall conductivity spectra. Thus,
for g = 2, the evolution of the spectra with B is smooth but
for g = 4 appears “chaotic,” in particular, for the AC case.
This is a consequence of the fact that only relatively large
fractals support a highly self-similar energy-level distribution
as found in Sec. II. It must be borne in mind, however, that
the behavior in Fig. 7 requires extremely large fields and,
realistically, the maximal field strength available experimen-
tally is around ∼0.01B0. It would be highly interesting to see
this prediction tested in future experimental studies applying,
e.g., Faraday rotation to probe graphene fractals. We also
note that exceedingly large (∼800-T) pseudomagnetic fields
in graphene have been obtained by strain engineering [36].
This may open an alternative route to verification of the resent
results.

IV. SUMMARY

We studied the electronic, optical, and magneto-optical
properties of graphene-based Sierpinski triangle fractals us-
ing a mean-field Hubbard model. Both ZZ- and AC-edged
structures were investigated, and significant differences were
observed similar to nanoribbons, quantum dots, and antidots.
Thus, ZZ Sierpinski triangles feature a large fraction of
edge states and asymptotically 2/19 of all atoms are edge
sites belonging to a single sublattice for late-generation ZZ
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FIG. 7. Effect of a magnetic field on (a) and (c) energy eigenvalues and (b) and (d) Hall conductivity |σxy(ω)|. Panels (a) and (b) are for
AC and (c) and (d) for ZZ fractals. In (a), all states are spin degenerate and in (c), red and blue designate spin up and down, respectively. In (b)
and (d), lighter colors indicate higher |σxy| values.

fractals. This leads to an instability against spin polarization if
electron-electron interaction is taken into account. In contrast,
AC-edged fractals remain spin balanced. In both cases, a
large spin-preserving energy gap is predicted. This leads to
pronounced optical absorption in the visible energy range. The
distribution of energy levels is shown to be self-similar for
late-generation fractals. As a consequence, an intricate pattern

emerges leading to a seemingly chaotic behavior of the optical
Hall conductivity.
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