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Nontrivial retardation effects in dispersion forces: From anomalous distance
dependence to novel traps
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In the study of dispersion forces, nonretarded, retarded, and thermal asymptotes with their distinct scaling
laws are regarded as cornerstone results governing interactions at different separations. Here, we show that
when particles interact in a medium, the influence of retardation is qualitatively different, making it necessary
to consider the nonmonotonous potential in full. We discuss different regimes for several cases and find an
anomalous behavior of the retarded asymptote. It can change sign and lead to a trapping potential.
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I. INTRODUCTION

Dispersion forces, which include the Casimir [1] and Lif-
shitz [2] force between two dielectric bodies, the Casimir–
Polder [3] force between a dielectric body and a polarisable
particle, and the London–van der Waals force [4,5] between
two polarizable particles, all arise from ground-state fluc-
tuations of the electromagnetic fields. These forces, which
typically lead to an attractive interaction between the con-
stituents, have been much studied both experimentally [6–9]
and theoretically in great detail [10–12]. Systems in which
dispersion forces act across a region of vacuum have received
the most attention and a number of asymptotic results have
been established for different geometries [13]. In most cases,
a simple r−n distance dependence for the nonretarded and
thermal limits (with integer n) and an r−n−1 distance law
connecting both asymptotes in the retarded regime is found.
Related to this result is the fact that the proportionality con-
stant of the nonretarded regime is larger than that from the
thermal regime. When immersed in a medium [14,15], the
interaction between particles is screened. For these cases, the
retarded asymptote is often not a useful approximation for
the full theory, at least not until it merges with the thermal
asymptote. To add to the complex picture, we show here
that the full interaction curves for London–van der Waals,
Casimir–Polder, and Casimir–Lifshitz potentials in a medium
are not always monotonically decaying, and they potentially
have more than one extreme point. They can, under certain
conditions, become repulsive [16,17]. Such repulsive forces
can be balanced with other forces, such as buoyancy [18,19],
to stabilize a particle’s position. Recently, a remarkable
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Lifshitz-force induced trapping was experimentally observed
exploiting a layered medium where short-range repulsion
was caused by a thin-film coating, while larger distances
were dominated by the underlying bulk material leading to
attraction [20]. This effect was theoretically predicted earlier,
e.g., by Dou et al. [21]. Here, we demonstrate that a dispersion
potential alone, even in the absence of a layered surface,
has the ability to trap particles without the presence of any
balancing forces. In contrast to previous works where, for
instance, retardation effects of the Casimir force have been
predicted [22] or measured [23], we demonstrate that the ther-
mal limit is more important for medium-assisted dispersion
forces. Furthermore, we demonstrate that the crossings of a
dielectric function may also yield a breakdown of the retarded
asymptote, leading to unexpected potential behaviors.

II. MEDIUM-ASSISTED DISPERSION FORCES

In the following, we analyze the different dispersion in-
teractions in the presence of an environmental medium with
respect to their asymptotic behaviors.

A. Medium-assisted London–van der Waals interactions

The van der Waals interaction is the interaction between
two neutral particles, A and B. By applying perturbation
theory to the atom-field Hamiltonian [24], the energy change
of the single systems can be obtained ([10], and references
within),

UvdW(rA, rB) = − h̄μ2
0

2π

∫ ∞

0
dξ ξ 4 Tr[αA(iξ ) · G(rA, rB, iξ )

·αB(iξ ) · G(rB, rA, iξ )], (1)

which can be interpreted (reading from right to left) as the
propagation of a virtual photon, which is created at particle
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A, of frequency iξ , that propagates to particle B [G(rB, rA)],
where it interacts with particle B (αB) and is sent back to
particle A, followed by the interaction with it. The sum
(integral) over all these exchange processes results in the van
der Waals potential.

By inserting the bulk Green’s function [25],

G(r, r′, ω) = − 1

3k2
δ(�) − eik�

4πk2�3
{[1 − ik� − (k�)2]I

− [3 − 3ik� − (k�)2]e�e�}, (2)

with the relative coordinate � = �e�, into Eq. (1) and applying
the local-field corrections [26–28], the van der Waals potential
between two particles separated by a distance � embedded in
a medium with permittivity ε reads

UvdW(�) = − h̄

16ε2
0π

3�6

×
∫ ∞

0
dξ

α�
A(iξ )α�

B(iξ )

ε2(iξ )
g(ξ�

√
ε(iξ )/c), (3)

with

g(x) = (3 + 6x + 5x2 + 2x3 + x4)e−2x. (4)

In Eq. (3), α�
A,B are the environmentally screened polarizabil-

ities. The three standard asymptotic results for the van der
Waals potential [13] between two particles are as follows:

(i) The nonretarded regime, in which �n(0) (the optical
path with refractive index at zero frequency) is significantly
smaller than c/ωmax, with ωmax the largest relevant transition
frequency,

U non−ret
vdW (�) = − 3h̄

16ε2
0π

3�6

∫ ∞

0
dξ

α�
A(iξ )α�

B(iξ )

ε2(iξ )
; (5)

(ii) the retarded regime, in which n(0)� � c/ωmax,

U ret
vdW(�) = − 23h̄c

64ε2
0π

3�7

α�
A(0)α�

B(0)

ε5/2(0)
; (6)

(iii) the thermal limit for separations larger than the thermal
wavelength �n(0) � h̄c/(kBT ), which leads to

U th
vdW(�) = − 3kBT

16ε2
0π

2�6

α�
A(0)α�

B(0)

ε2(0)
. (7)

To illustrate how immersion in a medium (M) can affect
these power laws, we consider the interaction between two
spherical nanoparticles of radius aA and aB with response
functions given by single-oscillator model dielectric functions
εi(iξ ) = 1 + χ

(0)
i /[1 + (ξ/ωi )2] with i = A, B, M with am-

plitudes χ
(0)
A = 1, χ

(0)
B = 4, χ

(0)
M = 2 and resonance frequen-

cies ωA = 4 eV, ωB = (1/4) eV, and ωM = (1/2) eV. In this
model, damping effects are neglected because its impact does
not influence the potential qualitatively. The corresponding
polarizabilities are computed via the Clausius–Mossotti rela-
tion [29] for interactions through a void,

αvac(ω) = 4πa3ε0
ε(ω) − 1

ε(ω) + 2
, (8)
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FIG. 1. The van der Waals potential normalized to the medium-
assisted nonretarded limit and the corresponding asymptotes (dashed
lines are the nonretarded limit, dash-dotted lines are the retarded
limit, and dotted lines are the thermal limit) for a vacuum scenario
(blue lines) and the corresponding case embedded in a medium (red
lines).

and the hard-sphere model for interactions through a
medium [27],

αHS(ω) = 4πa3ε0εM(ω)
ε(ω) − εM(ω)

ε(ω) + 2εM(ω)
, (9)

with a being the particle radius.
Figure 1 shows the resulting van der Waals potentials for

both the vacuum and the medium-assisted cases compared
with the asymptotic expressions of Eqs. (5)–(7). For clarity,
the vertical axis is scaled by the sixth power of � (U non−ret

vdW,m =
−Cm

6 /�6). In the vacuum case (blue curves), we recover the
expected limits: the exact potential follows the nonretarded
asymptote for small separations (� < �v

ω = c/ωmax); there-
after, it follows the retarded asymptotic form, until it finally
matches the thermal limit whose amplitude is smaller than
that of the nonretarded limit due to the steeper decrease in the
retarded regime. This result is in agreement with the literature
[23]. Depending on the optical response functions, similar re-
sults can also be found in the medium-assisted case. However,
if there are crossings of the dielectric functions, the behav-
ior of the asymptotes dramatically changes. The results for
the medium-assisted case (red curves) differ drastically from
these vacuum findings. First of all, retardation effects kick in
at significantly shorter separations, which can be attributed
to the refractive index of the medium, �m

ω = c/[ωmaxn(0)].
However, it is in the intermediate regime that a truly surprising
behavior emerges. In this regime, the potential exhibits addi-
tionally distinct extreme points in the retarded regime. In fact,
for this example, the retarded asymptote does not become a
viable approximation for the full theory until it merges with
the thermal asymptote. There is, hence, in effect no regime at
all for which the retarded asymptote given by Eq. (6) gives
a good description. Finally, the prefactors of the nonretarded
and thermal asymptotes differ in sign. Such potential minima
have been found in earlier studies, for instance in connection
with surface wetting [30]; however, here we relate this to the
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FIG. 2. Dependence of the van der Waals potential by changing
the dielectric’s amplitude of one material with the normalization
factor N = 1013 h̄a3

Aa3
B/π . The resonances stay fixed.

breakdown of the retarded regime. In Fig. 2, we explore how
adjusting the amplitude of the dielectric function of particle
B affects the shape of the potential with all other parame-
ters kept fixed, as it influences the number of intersections
with the dielectric functions of the medium and particles
(χ (0)

B = 0, 1, . . . , 10, 15, 20, 25, 30, 35). It can be observed
that as χ

(0)
B increase, the potential changes from attraction to

repulsion at short distances. For amplitudes χ
(0)
B < 2 lower

than that of the medium, only one minimum can be found
according to the crossing of the dielectric function of the
medium and particle. For higher values, a second extreme
point at at larger separation occurs due to the crossing of
the dielectric functions and the lower resonant frequency of
particle (ωB) compared to that of the medium (ωM). For
very large amplitudes χ

(0)
B > 20, the effect of the crossings

vanishes and the potential becomes smoother.

B. Medium-assisted Casimir–Polder interaction

The anomalous asymptotic behavior is not restricted to
particle-particle interactions. For similar crossings of dielec-
tric functions, it can also be present for a particle with polar-
izability α in front of a solid plate with permittivity εM(iξ ) at
temperature T , immersed in a liquid medium with permittivity
εL(iξ ).

The Casimir-Polder interaction, in general, describes the
force between a neutral particle with polarizability α in the
presence of dielectric objects with permittivity ε(r, ω). In
analogy to the van der Waals potential, the Casimir-Polder
energy can be derived via the application of perturbation
theory to the atom-field Hamiltonian with a single particle
[31]. The result can be written as [25]

UCP(r) = h̄μ0

2π

∫ ∞

0
dξ ξ 2 Tr [α(iξ ) · G(r, r, iξ )]. (10)

By using the Green’s function for planarly layered media [32],

G(r, r′, ω) = i

8π2

∫
d2k‖

k⊥
1

eik‖·(r−r′ )+ik⊥
1 (z+z′ )

×
∑

σ=s,p

r12
σ e1

σ+e1
σ−, (11)

with the reflection coefficients

r12
s = k⊥

1 − k⊥
2

k⊥
1 + k⊥

2

, r12
p = ε2k⊥

1 − ε1k⊥
2

ε2k⊥
1 + ε1k⊥

2

, (12)

again applying the local-field corrections for the excess po-
larizability, and introducing the temperature dependence ac-
cording to the standard substitution for the integral to the
Matsubara sum,

2π h̄
∫

dξ f (ξ ) �→ kBT
∞∑

n=0

′ f (ξn)

= kBT

[
1

2
f (ξ0) +

∞∑
n=1

f (ξn)

]
, (13)

with respect to the nonresonant part of the Casimir-
Polder potential [33], with the primed sum denoting a sum
over Matsubara frequencies ξn = 2πnkBT/h̄, with the first
term weighed by 1/2 [10], the Casimir-Polder potential is
given by [10]

UCP(zA) = kBT μ0

4π

∞∑
n=0

′α�(iξn)ξ 2
n

×
∫ ∞

0
dk

k

κ⊥
L

e−2κ⊥
L zA

[
κ⊥

L − κ⊥
M

κ⊥
L + κ⊥

M

−
(

1 + 2
κ⊥

L
2
c2

ξ 2
n εL(iξ )

)
εMκ⊥

L − εLκ⊥
M

εMκ⊥
L + εLκ⊥

M

]
, (14)

with the imaginary part of the perpendicular wave vectors
given by κ⊥

i =
√

εi(iξ )ξ 2/c2 + k2. It takes the following
forms in the nonretarded asymptote:

U non−ret
CP (z) = −C3

z3
, (15)

with

C3 = kBT

8πε0

∞∑
n=0

′ α
�(iξn)

εL(iξn)

εM(iξn) − εL(iξn)

εM(iξn) + εL(iξn)
, (16)

and the retarded asymptote

U ret
CP (z) = −C4

z4
, (17)

with

C4 = 3h̄cα�(0)

64π2ε0ε
3/2
L (0)

∫ ∞

1
dv

×
[(

2

v2
− 1

v4

)
εM

√
εLv − εL

√
εL(v2 − 1) + εM

εM
√

εLv + εL

√
εL(v2 − 1) + εM

− 1

v4

√
εLv −

√
εL(v2 − 1) + εM√

εLv +
√

εL(v2 − 1) + εM

]
, (18)
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FIG. 3. The Casimir-Polder potential for dissolved CH4

molecule (black), H2S (red), NO2 (blue), N2O (green), and O3

(cyan) near the water surface shown together with the two limiting
asymptotes: nonretarded (dashed line) and retarded (dotted line).

and, finally, in the thermal limit, it is given by

U th
CP(z) = −C3T

z3
, (19)

with

C3T = − kBT

16πε0

α�(0)

εL(0)

εM(0) − εL(0)

εM(0) + εL(0)
. (20)

The behavior of the three asymptotes in vacuum is similar
to the previously discussed van der Waals case depicted in
Fig. 1, with modified power laws (r−3 for nonretarded, r−4 for
retarded, and r−3 for the thermal asymptote). Further details
can be found in Ref. [34].

Applying this model to a specific example, we consider
greenhouse gases with polarizabilities, and particle and cavity
radii taken from Ref. [27]. The gases immersed in water
interact with the water-air interface. Further, we use the finite-
size model of Refs. [26,27] to describe the excess polariz-
ability that arises when taking into account the finite-size
effects of the particles and a vacuum layer surrounding the
particle to avoid the contact between particle and solvent [35].
The calculated potentials and the corresponding asymptotes
are depicted in Fig. 3. The corresponding parameters for the
asymptotes, trapping distances, and frequencies are given in
Table I. It can be observed that hydrogen sulfide (ztrap =
132 nm), methane (26 nm), nitrogen dioxide (21 nm), ozone
(7 nm), and nitrous oxide (1 nm) are trapped near the surface.
For these systems, a potential minimum occurs between the
nonretarded and thermal limits and the retarded limit does
not appear as an r−4 power law. Some correlation between
the trapping distance ztrap and the position corresponding to
the change in sign of the dielectric function z0 = c/[ω0n(0)]
with α(iω0) = 0 can be found, as well as between the trapping
distance and the transition distance between the retarded and
nonretarded limit zω. However, a simple correlation between
one of them alone and the trapping distances cannot be
expected because the potential depends on all three quantities:
the dielectric functions of the medium and the polarizabilities
of the particles, whereas each of these parameters only de-
pends on one of them. The gas molecule H2S deviates from

TABLE I. Data of C3 coefficients [μeV(nm)3] [Eq. (16)], C4

coefficients [μeV(nm)4] [Eq. (18)], C3T coefficients [μeV(nm)3]
[Eq. (20)], trapping distances [ztrap (nm)], and the corresponding
trapping frequency [ωtrap (MHz)] for different molecules dissolved
in water at T = 273.16 K near a water-air surface. Positive C3, C4,
and C3T values correspond to attraction. Further, the distances for
the impact of retardation [zω (nm)] are given for each case. The
thermal effects occur on distances larger than zT = 893 nm. As an
approximation of the trapping distance, the table shows the values
for z0 that correspond to the roots of the polarizabilities.

Mol. C3 C4 C3T ztrap z0 zω ωtrap

CH4 −45.9 11638 31.3 26.0 59.2 1.0 6.5
CO 109.9 12755 34.3 0.8 0.2
CO2 31.3 15464 41.6 2.4 0.3
H2S −189.9 12958 34.8 132.1 142.1 2.2 0.1
N2 66.4 11181 30.1 1.5 0.3
NO2 −1.3 14466 38.9 1.0 3.6 0.3 3930
N2O −66.8 14574 39.2 21.0 41.4 0.5 7.8
O2 96.4 10903 29.3 1.1 0.2
O3 −24.9 14562 39.2 7.2 26.0 0.3 90.8

most other gas molecules in the nonretarded limit in having
a very large negative C3 in Table I. One would have expected
H2S to be hydrophobic, as was recently discussed in Ref. [36].
This result will require further investigation.

By comparing the depth of the potential minimum with the
thermal energy, one finds that the stability of the trap is given
at temperatures far below the freezing temperature of water.
This means that for these examples, the interactions are not
strong enough to trap particles. In terms of particles dissolved
in a medium, one might be able to discern a slightly higher
concentration of particles at these specific trapping distances.
We note that the thermal stability of the trap increases with
decreasing trap distance. Further, the energetic minimum of
the potential becomes steeper with decreasing trap distance,
resulting in a narrowed trapping potential the closer it gets
to the interface. For different materials, these trends will be
similar.

Single gas molecules reveal anomalous interactions near
a water surface, but the typical energy minimum is not suf-
ficiently deep to act as an effective trap. Inspired by the ob-
served Casimir–Polder repulsion for air bubbles in water near
solid surfaces [16,37] we consider a system where we expect
trapping could occur. Specifically, we consider an air bubble
dissolved in liquid bromobenzene [17] in front of a horizontal
or vertical amorphous silica surface. For modeling, we used
parameters corresponding to amorphous silica (volume of the
SiO2 unit: Vv = 41.14 Å3 [38]) at room temperature (T =
298 K). Due to a crossing of dielectric functions for amor-
phous silica and bromobenzene at a specific frequency, the
air bubble can be trapped via short-range repulsive and long-
range attractive Casimir–Lifshitz forces [10]. Here, we apply
a simple version of the Derjaguin approximation to estimate
the force on the sphere of radius R, fsphere(x) = 2πRUplane(x)
with Uplane(x) being the energy for the planar system. We then
integrate the force from infinity up to the specific distance x to
obtain the interaction free energy acting on a sphere at a dis-
tance x from the planar interface. The minimum sphere radius
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FIG. 4. Trap parameters depending on the volume fraction p.

Rmin will be estimated from the size that provides a trapping
energy larger than or equal to kBT . Here, we find an estimate
for a thermally stable position of approximately 7 nm in front
of the surface for bubbles with a radius much larger than
Rmin = 200 nm. Hence, we are in a range for relative sizes and
distances where the Derjaguin approximation is appropriate to
use, but where surface roughness and various other nanoscale
effects are important. The short-range repulsion experienced
by the typical air bubble is expected to lead to low surface
friction. We note that for bubbles below or above a surface,
there will also be some influence on trapping distance from
buoyancy, b = V g(ρl − ρa ), which depends on volume (V ),
gravitational constant g, and the difference in mass density for
bubble ρa and the liquid ρl. However, in front of a vertical
surface, buoyancy only acts to move the air bubble upwards,
while the proposed mechanism keeps it moving with low
friction at a fixed trapping distance from the surface.

III. APPLICATION: TUNEABLE TRAP

Ideally, a larger trapping distance than found above would
be more realistic for experimental realization. Thus, to intro-
duce a scalable parameter for tuning the trap, we consider
in our final example a two-component fluid surrounding the
particle. For the dielectric functions of mixtures between
fluid 1 (ε1) and fluid 2 (ε2), we use a Lorentz-Lorenz model
[19,39,40], where we introduce the volume fraction p of fluid
1 in fluid 2. We chose the liquids bromobenzene and methanol
in front of a polystyrene surface [17] as the dielectric function
of the latter lies between both fluids. An illustration of the

resulting dielectric functions can be found in Ref. [41]. In this
case, the crossings of the dielectric functions depend on the
volume fraction. We used the example of an anatase-TiO2

spherical nanoparticle whose dielectric function was taken
from Ref. [42]. As we consider larger particles compared to
few-atomic molecules from the example above, we describe
the excess polarizability via the hard-sphere model as in the
introductory van der Waals example. The resulting parameters
for the trap are given in Fig. 4. We predict that the trapping
can be tuned over a wide range of distances (100–500 nm) by
changing the liquid mixture.

IV. RESULTS AND CONCLUSION

To conclude, we have shown that the impact of retardation
dramatically changes the asymptotic behavior of dispersion
interactions in media. In contrast to the ordinary theory in
vacuum, the retarded power laws are not applicable and a con-
sideration of the full interaction potential is required instead.
Further, the transition distance between nonretarded and re-
tarded regimes strongly decreases by immersing the interact-
ing particles in a liquid due to its refractive index. This extends
previous work on Casimir–Lifshitz forces in fluids (see, e.g.,
Refs. [2,17,19,20,23,30,43]) to a more general case where
retarded dispersion forces can reveal a very complex behav-
ior in media. For this reason, considerations of retardation
effects are important for medium-assisted dispersion force
experiments, for example, Casimir experiments [16,23,43],
medium-assisted optical tweezers [44], colloidal systems [45],
and in future measurements of the Casimir torque in a medium
[46,47]. Beyond these impacts, we have shown that the near-
field effect of dispersion forces in colloidal system yields an
inhomogeneous particle density distribution near interfaces
due to trapping potentials. The introduced mechanism can,
for instance, be used to trap nanoparticles at low temperature,
specifically nanodiamonds [48], by choosing liquid nitrogen,
liquid fluorine, or atomic clouds as an environmental medium.
The presented theory is more general and can be applied
to several systems beyond Casimir experiments, especially
medium-assisted spectroscopy in nanodroplets [49–51].
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