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Plasma wave oscillations in a nonequilibrium two-dimensional electron gas:
Electric field induced plasmon instability in the terahertz frequency range
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We have developed a theory of collective electron oscillations in two-dimensional semiconductor heterostruc-
tures subjected to a high electric field. The effect of the stationary electric field has been taken into account
on both steady-state and high-frequency electron transport. The analysis has been conducted by solving
Boltzmann-Vlasov equations in the collisionless approach for high-frequency electron transport. Two actual
types of heterostructures with ungated and gated two-dimensional (2D) electron gas have been considered.
We have found that the collective excitation spectra of 2D electron gas are of the multibranch character with
high-quality plasmonic modes and a set of thermal modes. Applied electric field induces the following effects:
strong nonreciprocal behavior of both oscillation frequency and damping; interaction of plasmonic and thermal
modes; instability of excitations propagating along the electron drift (effect of negative Landau damping). The
mechanism of this plasma wave instability is different from early discussed Cherenkov, Dyakonov-Shur, and
Ryzhii-Satou-Shur mechanisms of instabilities in plasmonic systems. It has been shown that the electrically
induced plasmon instability provides amplification of terahertz (THz) radiation in grating-based plasmonic
structures. We suggest that presented results can be important for deeper understanding of THz plasma physics
and developing of electrically pumping devices for THz optoelectronics.
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I. INTRODUCTION

Collective plasma oscillations of electron gas in two-
dimensional systems, i.e., 2D plasmons, are considerably
different from conventional bulk three-dimensional (3D) plas-
mons. The 2D plasmons are realized in filmlike samples when
scale of electron gas confinement w is much smaller than the
wavelength λ of the plasmons propagating along the filmlike
sample. The fundamental properties of 2D plasmons were
investigated for different 2D systems including semiconduc-
tor quantum wells (QWs) [1–3], doped graphene [4,5], and
other 2D crystals [6]. These studies revealed essential wave-
vector dispersion of 2D-plasmon oscillations and their strong
dependence on dielectric surrounding of two-dimensional
electron gas (2DEG). For example, free-standing 2DEG ex-
hibits a square-root wave-vector dependence of the plasmon
frequency ω ∼ √

q (ungated plasmons), which becomes a
linear dependence ω ∼ q when metallic mirror is placed at
the vicinity of 2DEG (gated plasmons).

Due to large mismatch of the wave vectors of electro-
magnetic waves and plasma waves of relevant frequency,
their direct interaction is forbidden. To provide an effective
coupling between the 2D plasmons and the electromagnetic
waves, the 2DEG channel should be supplemented by a lateral
structuring of the sample, for example, in the form of sub-
wavelength metallic grating. Currently, such hybrid plasmonic
structures are in the focus of interest of novel area of terahertz
(THz) technologies, which is often called as THz plasmon-
ics [7]. This research area is oriented to the development
of compact solid-state devices with electrical pumping and

performance tuning, which is capable to modulate, detect,
and emit/generate the electromagnetic waves of the THz
frequency range. Indeed, the hybrid plasmonic structures with
micron/nanoscale periods of the grating coupler possess the
resonant properties in the THz frequency range.

The 2D-plasmon resonances were experimentally observed
as a resonant absorption of the THz electromagnetic waves
in different hybrid plasmonic structures based on Si inver-
sion layer [8], GaAs/AlGaAs [9], AlGaN/GaN [10,11] high-
mobility heterostructures, doped graphene sheets [12,13], etc.
These studies open the possibility to control the characteristic
frequencies by the applied gate voltage [2,10,14] or lateral
electric fields [15]. In the former case, the hybrid plasmonic
structure with 2DEG can be configured as a grating-gate
field-effect transistor (FET), where the plasmon spectra can be
modified by an applied gate-to-channel voltage due to a spatial
modulation of the 2DEG concentration. In the latter case, the
applied lateral electric field renormalizes the plasmon spectra
due to plasmonic nonreciprocity induced by the electron drift.
This effect can be observed as a specific splitting of the
frequency band of the plasmon resonance [16–18] and was
measured by means of Raman spectroscopy [15] and the THz
time-domain transmission/reflection spectroscopy [19].

The electrical control of the resonant properties of the hy-
brid plasmonic structures, as well as field induced plasmonic
nonlinearity [16,20,21], were utilized for modulation [14,22]
and detection [23,24] of the THz radiation. Meanwhile, the
development of electrically driven plasmonic coherent THz
sources still remains the great challenge for the modern THz
technologies. The present achievements in this area are mainly
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associated with selective THz emission [11,25,26] originated
from the radiative decay of 2D plasmons of nonequilibrium
2DEG under the grating (see also Refs. [27,28]). Amplifying
and generation of the THz radiation require the use of the
effects of electrically induced plasmon instabilities.

In literature, different mechanisms of such instabilities
are discussed. These include (i) Dyakonov-Shur instabilities
in FETs [29,30] and diodes [31] with specific properties of
the source and drain of the devices; (ii) Ryzhii-Satou-Shur
transit-time instability which arises for the ballistic [32–34]
or quasiballistic [35] electron transport; (iii) Cherenkov-type
plasmon instability [18,36]. The latter can occur in grating-
based plasmonic structures at the electron drift and can lead
to appearance of a frequency band with negative absorption of
the incident THz radiation. Another mechanism of electrically
driven plasmon instability was proposed in Ref. [37] and is
related to a strong renormalization of the plasmon spectra
under the grating. This mechanism can be classified as an
internal type of plasmon instabilities for a specific range of the
wave vectors, for which the traveling plasmons are unstable.
It can be mentioned also high-frequency Cherenkov-type
instability in drifting plasmon-optical phonons system, that
may arise in the reststrahlen frequency band [38–42].

The most mentioned theories and models are based on
hydrodynamic treatment of the electron transport in the frame
of the Euler-Poisson equation approach. This approach, par-
ticularly, implies high-electron concentrations, when strong
electron-electron scattering controls both steady-state and
high-frequency electron kinetics. However, the electron drift-
induced instabilities critically require the use of high-mobility
and low-doped plasmonic structures with deeply submicron
grating periods to provide a decreasing of the plasmon damp-
ing and achieving the threshold velocity of the instability
effects.

In fact, to observe and exploit the plasmon oscillations
more favorable is the situation when the characteristic lateral
scales of the plasmon excitations are shorter than the mean-
free path of the electrons qlsc � 1, and the frequencies are
larger than the inverse scattering time ωτsc � 1. Then, the
proper description of the collective electron excitations should
be based on the more general kinetic approach, which uses
the Boltzmann-Vlasov system of equations. Such theory for
the collisionless bulk electron plasma under equilibrium has
been developed many years ago by Landau [43,44] and later
for 2D-electron plasma by Totsuji [45].

For nonequilibrium conditions, the impact of the electric
field is typically taken into account by using the so-called
shifted Maxwellian distribution, which ignores the effect of
the electric field on electron high-frequency dynamics. The
model of the nonequilibrium bulk plasma, which takes this
effect into account, has been proposed and analyzed in the
lowest order with respect to the electric field in the pioneer
paper [46]. Authors have shown that applied electric field can
decrease a damping of the plasmon mode propagating along
the electron drift and even make this mode unstable. Later, for
the same transport model, the high-frequency screening effect
[47] and the two-stream instability [48] have been discussed.

Advances of modern technologies of semiconductor
materials and devices, progress in instrumentations of
the THz measurements, and increasing demands in THz

optoelectronic systems inspire serious interest to deeper anal-
ysis and understanding of the plasmonic properties. Recently,
in the framework of the kinetic approach it was developed
the theory of dynamic conductivity of graphene strips [49]
and 2DEG in QWs [50]. These papers predicted the effect
of the negative absorptivity in grating-based structures. The
numerical simulation of the high-frequency electron transport
in low-doped sheets of graphene [51] also confirmed the pos-
sibility of the plasmon instability induced by applied electric
field.

In spite of number investigations, the detail analysis of
collective excitation spectra for 2DEG subjected to a high
electric field is absent in literature. In this paper, we present
such an analysis for the case of two-dimensional electrons
with the parabolic energy dispersion. The study of the high-
frequency excitations of the electrons in the applied steady-
state electric field E0 is performed in the framework of general
Landau approach, which is formulated as initial value problem
for the Boltzmann-Vlasov system of equations assuming the
collisionless approximation for the high-frequency electron
dynamics. The characteristic equation for determination of
the excitation spectra is formulated for arbitrary form of
the steady-state distribution function and explicitly includes
electric field effects on the high-frequency electron transport.
The detail analysis of the excitations is performed with the
use of the shifted Maxwellian steady-state distribution func-
tion. Two actual cases of the ungated and gated 2DEG are
considered.

We found that the spectra of the collective oscillations of
2DEG have a multibranched character with two distinguished
types of the excitations: plasmonic modes and thermal modes
[52]. The plasmonic modes are high-quality oscillations with
ω′ � ω′′, where ω′ and ω′′ are oscillation frequency and
damping, respectively. In collisionless plasma, the imaginary
part of the frequency ω′′ arises due to the Landau damping
mechanisms. The plasmonic modes are strongly influenced
by the dielectric surroundings of the 2DEG. We showed
that the Landau damping effect can be larger for the gated
2DEG in comparison to the ungated one. Under equilibrium,
the thermal modes are the overdamped oscillations, with al-
most linear dispersion proportional to the thermal velocity of
2DEG.

At the presence of the electric field E0, the critical parame-
ter responsible for renormalization of the mode damping is the
relative gain of electron energy from the field E0 on a distance
of the order of the spatial period of the excitation wave γq =
eE0/qkBTe, where Te is the electron temperature. We showed
that this parameter controls the range of the wave vectors q
where the negative Landau damping occurs, i.e., ω′′(q) > 0.
Both types of the electron excitations can be unstable. We
established that there are specific ranges of q and E0, where
the plasmonic and thermal modes strongly interact.

The paper is organized as follows. The transport model, the
basic system of equations, and the solution of the initial value
problem are given in Sec. II. The characteristic equations for
the electron excitations are analyzed in Sec. III. The derivation
of plasmon spectra under equilibrium and nonequilibrium
conditions for both the ungated and gated 2DEG are presented
in Secs. IV and V, respectively. The obtained results are used
for calculations of the absorption spectra of the particular
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plasmonic AlGaAs/GaAs structure, Sec. VI. Conclusions are
summarized in Sec. VII.

II. TRANSPORT MODEL AND BASIC EQUATIONS

The investigation of the high-frequency properties of the
2DEG is based on the system of equations which includes the
Boltzmann transport equation (BTE)

∂G

∂t
+ p

m∗
∂G

∂r
+ e

∂�

∂r

∣∣∣∣
z=0

∂G

∂p
= Î{G}, (1)

the Poisson equation

∂

∂r

(
ε(z)

∂�

∂r

)
+ ∂

∂z

(
ε(z)

∂�

∂z

)
=4πe[n(r, t ) − n0]δ[z], (2)

and the following relationship between the electron con-
centration n(r, t ) and the total electron distribution function
G(p, r, t ):

n(r, t ) =
∫ ∞

−∞
G(p, r, t )dp. (3)

The BTE is written for the parabolic and isotropic electron
dispersion with a scalar effective mass m∗. The distribu-
tion function G depends on the electron momentum p =
{px, py}, the electron coordinate vector r = {x, y} (both are
two-dimensional vectors) and the time t , Î{G} is a collision
integral. Then, �(r, z, t ) is the self-consistent electrostatic po-
tential, n0 is the equilibrium electron concentration of 2DEG,
ε(z) describes dielectric surrounding of 2DEG, and δ[z] stands
for the Dirac delta function.

Let a steady-state, uniform, and lateral electric field E0

be applied to 2DEG. This field induces a steady-state elec-
tron drift. The collective electron oscillations of the drift-
ing 2DEG can be treated as small perturbations which are
of a wavelike form. Under this assumption, the system of
Eqs. (1)–(3) can be linearized. We present the function G as
a sum of steady-state and high-frequency parts G(p, r, t ) =
g0(p) + g̃q(p, t ) exp(iqr), and the self-consistent potential as
�(r, z, t ) = �̃q(z, t ) exp(iqr), where q is the wave vector of
the wavelike perturbation. Now, Eqs. (1)–(3) can be written as
follows:

−eE0
∂g0

∂p
= Î{g0}, (4)

∂ g̃q

∂t
+ iqp

m∗ g̃q − eE0
∂ g̃q

∂p
= −ieq

∂g0

∂p
�̃q(0, t ), (5)

∂

∂z

(
ε(z)

∂�̃q

∂z

)
−ε(z)q2�̃q = 4πeδ[z]

∫ ∞

−∞
g̃q(p, t )dp. (6)

The function g0(p) is a solution of Eq. (4), in which all actual
collision processes should be taken into account. Examples of
calculations of such functions can be found elsewhere. The
BTE for high-frequency perturbation, Eq. (5), is written in
collisionless approximation. Applicability of this approxima-
tion will be estimated below for the particular cases. In what
follows, we assume that E0 = {−E0, 0} and q = {q, 0}, i.e.,
the electron gas drifts along the x axis in positive direction.
Positive (negative) values of q correspond to the perturbations
propagating along (opposite) the electron drift.

The Poisson equation (6) can be solved assuming appro-
priate boundary conditions. As a result, the high-frequency
potential in the plane of 2DEG, �̃q(0, t ), reads as

�̃q(0, t ) = − 2πe

|q|κ (|q|)
∫ ∞

−∞
g̃q(p, t )dp, (7)

where κ (|q|) has a meaning of an effective dielectric permit-
tivity. The explicit forms of κ (|q|) for the gated and ungated
heterostructures are given below [see Eq. (31)].

Following the Landau approach [43], we solve the initial
value problem by using the direct and inverse Laplace trans-
formations

[
g̃ω,q(p)

�̃ω,q(0)

]
=
∫ ∞

0

[
g̃q(p, t )

�̃q(0, t )

]
exp(iωt )dt, (8)[

g̃q(p, t )

�̃q(0, t )

]
= 1

2π

∫ ∞+is

−∞+is

[
g̃ω,q(p)

�̃ω,q(0)

]
exp(−iωt )dω. (9)

Here, it is assumed s > 0, i.e., the complex variable ω = ω′ +
iω′′ belongs to the upper half of the ω plane (ω′′ > 0). Using
Eqs. (5) and (7) we obtain for the Laplace components

g̃iq + i
(
ω − qpx

m∗
)

g̃ω,q − eE0
∂ g̃ω,q

∂ px
= ieq

∂g0

∂ px
�̃ω,q(0), (10)

�̃ω,q(0) = − 2πe

|q|κ (|q|)
∫ ∞

−∞
g̃ω,q(p)dp, (11)

with g̃iq(p) being a given initial perturbation of the electron
distribution function in the moment t = 0. This function
determines the initial perturbation of the electron concentra-
tion ñiq(0) = ∫

g̃iq(p)dp, as well as the electrostatic potential
�̃q(0, 0) ≡ �̃i(0) = −2πeñiq(0)/|q|κ (|q|). Solving Eq. (10),
we find the Laplace components of the high-frequency part of
distribution function:

g̃ω,q(p) = − iq�̃ω,q(0)

E0

∫ px

−∞
d p′

x

∂g0(p′
x, py )

∂ p′
x

Kω,q(px, p′
x )

+ 1

eE0

∫ px

−∞
d p′

xg̃iq(p′
x, py)Kω,q(px, p′

x ), (12)

where

Kω,q(px, p′
x ) = exp

[
i
{
ω(px − p′

x ) − q
(
p2

x − p′2
x

)
/2m∗}

eE0

]
.

It should be noted that for ω defined in the upper half-
plane, the Laplace component of the distribution function
(12) tends to zero at px → ±∞. Substituting Eq. (12) into
Eq. (11) and using inverse Laplace transform (9) we can
obtain temporal evolution of characteristics of 2DEG and the
potential, which have a wavelike form with a given wave
vector q. Particularly, for the self-consistent potential we have
that

�̃q(0, t ) = 1

2π

∫ ∞+is

−∞+is
dω

N (ω, q)

�(ω, q)
exp(−iωt ), (13)
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where the value of s should provide the way of integration
above all poles of the function �(ω, q). Functions N (ω, q)
and �(ω, q) are given as follows:

N (ω, q) = �̃i(0)

eE0

∫ ∞

−∞
g̃iq(p)dp

∫ ∞

−∞
dp
∫ px

−∞
d p′

xg̃iq(p′
x, py)

×Kω,q(px, p′
x ),

(14)

�(ω, q) = 1 − 2π iqe

E0|q|κ (|q|)
∫ ∞

−∞
dp
∫ px

−∞
d p′

x

∂g0(p′
x, py)

∂ p′
x

× Kω,q(px, p′
x ). (15)

These expressions can be simplified by reducing to single-
integral forms:

N (ω, q) = �̃i(0)

√
−iπm∗

2eE0q

∫ ∞

−∞
d px ¯̃gi(px )

× WF

[
i

√
iq

2m∗eE0

(
px − m∗ω

q

)]
, (16)

�(ω, q) = 1 − 2π iqen0

E0|q|κ (|q|)

{
1 −

√
iπq

2m∗eE0

∫ ∞

−∞
d pxḡ0(px )

×
(

px − m∗ω
q

)
WF

[
i

√
iq

2m∗eE0

(
px − m∗ω

q

)]}
.

(17)

Here, ḡ0(px ) = ∫
d pyg0(px, py)/

∫
d pxd pyg0(px, py) and

¯̃gi(px ) = ∫
d pyg̃iq(px, py)/

∫
d pxd pyg̃iq(px, py) are the

normalized electron distributions dependent on the only
momentum px. Equations (16) and (17) can be applied for
arbitrary forms of the functions g0 and g̃iq with a rapid (e.g.,
exponential) decrease at large momenta.

The integrals (16) and (17) contain the transcendental Fad-
deeva function WF [ξ ] [53], which is known for an arbitrary
complex argument ξ . This provides the analytical continua-
tion of N (ω, q) and �(ω, q) to the lower half of the complex
ω plane, and facilitates estimates of the inverse Laplace trans-
form (13). Indeed, the asymptotes of the integral in Eq. (13) at
large t are determined by zeros of the function �(ω, q), i.e.,
�q(0, t ) ∼ ∑

k Ak exp(−iωkt ), where ωk are solutions of the
characteristic equation

�(ωk, q) = 0. (18)

Thus, the temporal evolution of the high-frequency potential
�q(0, t ) is defined by a superposition of different excitation
modes oscillating with the frequencies ω′

k . The amplitudes
of these modes increase or decrease in time depending on
signs of ω′′

k . Note, �(ω, q) has the meaning of the dielectric
response function of 2D plasma (see Refs. [44,45]).

III. CHARACTERISTIC EQUATION

The detail analysis of the collective excitation spectra
ωk (q) (k numerates possible different modes/branches), we
perform for the so-called shifted Maxwellian distribution

function

g0 = n0

2πm∗kBTe
exp

[
− (px − m∗Vdr )2 + p2

y

2m∗kBTe

]
, (19)

where Vdr and Te are the drift velocity and electron temper-
ature, respectively, and kB is the Boltzmann constant. Two
parameters Vdr and Te are functions of the applied field E0.
They can be found from Eq. (4) using the momentum and
energy balance equations (see, for example, Refs. [54,55]).

For the distribution function (19), the main properties of
the excitation spectra, including the effect of the high elec-
tric field, can be studied analytically. Indeed, the expression
standing in the curly brackets of Eq. (17), denoted below
as I (ω, q, E0), can be presented in terms of function WF as
follows:

I (ω, q, E0) = iγq

1 + iγq
[1 + i

√
πξWF [ξ ]], (20)

ξ = ω − Vdrq

VT |q|√1 + iγq
, γq = eE0

qkBTe
, VT =

√
2kBTe

m∗ . (21)

Here, VT is the thermal velocity of the electrons, the dimen-
sionless complex variable ξ = ξ ′ + iξ ′′ includes the critical
parameter γq discussed in the Introduction. Then, the charac-
teristic equation (18) takes the form

1 + qD

|q|κ (|q|)
1

1 + iγq
[1 + i

√
πξWF [ξ ]] = 0, (22)

where qD = 2πe2n0/kBTe is the Debye wave number of non-
degenerate 2DEG. Finally, Eq. (22) can be rewritten in the
more compact form

Z (ξ ) + Q + iE = 0, Z (ξ ) = 1 + i
√

πξWF (ξ ) , (23)

Q = κ (|q|)|q|
qD

, E = γqQ = sgn(q)
κ (|q|)eE0

kBTeqD
.

Now, determination of the excitation spectra is reduced to
solutions of two transcendental equations{

Z ′(ξ ′, ξ ′′) + Q = 0,

Z ′′(ξ ′, ξ ′′) + E = 0,
(24)

where parameter Q is always positive and parameter E can
take both signs depending on the sign of q. The complex-
valued function Z (ξ ) = Z ′(ξ ′, ξ ′′) + iZ ′′(ξ ′, ξ ′′) is often men-
tioned as Jackson function [56]. This function has the follow-
ing useful symmetry properties:

Z ′(−ξ ′, ξ ′′) = Z ′(ξ ′, ξ ′′),

Z ′′(−ξ ′, ξ ′′) = −Z ′′(ξ ′, ξ ′′).
(25)

At the given Q and E , the roots of the system (24) corre-
spond to intersection points of two families of the curves in the
{ξ ′, ξ ′′} plane. These families are given by the first and second
equations of the system (24). One of the family depends on the
parameter Q, while the second one depends on the parameter
E . From the symmetry properties (25), it follows that roots
of the system (24), obtained at positive E (q > 0), including
those belonging to the right and left half-spaces of the {ξ ′, ξ ′′}
plane, completely describe spectra of the electron oscillation.
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Indeed, spectra of the modes propagating opposite electron
drift (q < 0) can be easily obtained by means the substitutions

ξ ′ → −ξ ′, ξ ′′ → ξ ′′, q → −q. (26)

The solutions of Eqs. (24) allow us to find all possible
roots ξ ′

k and ξ ′′
k , where k will numerate the corresponding

branches of the excitation spectra. Having these roots, we can
restore [see the relationship in Eqs. (21)] the complex-valued
frequency ωk:

ωk = Vdrq + VT |q|√1 + iγq ξk, ξk = ξ ′
k + iξ ′′

k , (27)

and obtain the oscillation frequency ω′
k (q) and

decrement/increment ω′′
k (q):

ω′
k = Vdrq + VT |q|√

2

[(√
1 + γ 2

q + 1
) 1

2 ξ ′
k

∓ (√
1 + γ 2

q − 1
) 1

2 ξ ′′
k

]
,

ω′′
k = VT |q|√

2

[(±
√

1 + γ 2
q − 1

) 1
2 ξ ′

k + (√
1 + γ 2

q + 1
) 1

2 ξ ′′
k

]
.

(28)

Here upper (lower) signs correspond to a positive (negative)
γq.

The relationships (28) allow us to make the following
important conclusions. (i) According to Eqs. (24) solutions
ξk do not depend on Vdr . Thus, the only contribution from
the drift velocity comes to the frequencies of the electron
oscillations ω′

k by the Doppler-shift factor Vdrq. (ii) The
decrements/increments of the excitations ω′′

k are independent
on Vdr . (iii) The electric field effect on the high-frequency
electron dynamics, that corresponds to γq �= 0, can lead to
positive values of ω′′

k , which means an instability of the
excitation modes.

It is convenient to map the solutions on the {ξ ′, ξ ′′} plane.
As follows from the second equation of (28), there is a critical
line in this plane defined as

ξ ′′ = −
(√

1 + γ 2
q − 1

) 1
2

(√
1 + γ 2

q + 1
) 1

2

ξ ′. (29)

The solutions of the system (24) calculated at γq > 0 and
situated above the critical line correspond to the unstable
modes (ω′′ > 0). Otherwise, the excitation modes are damped
(ω′′ < 0).

IV. ELECTRON EXCITATION SPECTRA OF 2DEG
UNDER EQUILIBRIUM (E = 0)

As follows from Eqs. (28), under equilibrium the excitation
spectra of 2DEG

ω′
k = VT |q|ξ ′

k, ω′′
k = VT |q|ξ ′′

k , (30)

are determined by the roots [ξ ′
k, ξ

′′
k ] of the system (24) ob-

tained at E = 0. These roots depend on single dimension-
less parameter Q, which has different physical meaning for
the cases of the ungated (a) and gated (b) electron gas. In
Figs. 1(a) and 1(b), the sketches of such systems are pre-
sented. There, the used below coordinate system, necessary

FIG. 1. Sketch of ungated (a) and gated by metallic mirror
(b) heterostructures with 2DEG.

geometrical parameters, and characteristics of the dielectric
environment are introduced.

Particularly, the effective dielectric permittivity κ (|q|) in-
troduced in Eq. (7) is expressed as follows (see for example
Ref. [2]):

κ (|q|) =

⎧⎪⎨
⎪⎩

1

2

[
ε2 + ε1

ε1 + ε0 coth(|q|d )

ε0 + ε1 coth(|q|d )

]
for (a),

1

2
[ε2 + ε1 coth(|q|d )] for (b).

(31)

In the limit of thin dielectric layer separating 2DEG from
vacuum (a) or metal (b), i.e., |q|d � 1, we have κ (|q|) =
(ε0 + ε2)/2 [for the structure (a)] and κ (|q|) = ε1/2|q|d [for
the structure (b)]. In this limit, we find the following expres-
sions for Q:

Q =

⎧⎪⎪⎨
⎪⎪⎩

κ|q|
qD

≡ Qng (a),

ε1

2qDd
= V 2

T

2V 2
p

≡ Qg = const (b).
(32)

Here,

Vp =
√

4πe2n0d

ε1m∗ (33)

is the characteristic phase velocity of the gated 2D plasmons.
In the case (a), Q is the module of the wave vector in units
of the effective Debye wave number qD/κ , where κ = (ε0 +
ε2)/2 = const. In the case (b), Q does not depend on the wave
vector.

A. Graphical analysis of the system (24) at E = 0

The important peculiarities of the excitation spectra can
be understood from mapping of solutions of the system (24)
in the {ξ ′, ξ ′′} plane, as presented in Fig. 2. At a given Q,
the sought-for solutions are given by the intersection points
of zero-level isolines of the functions Z ′(ξ ′, ξ ′′) + Q and
Z ′′(ξ ′, ξ ′′), respectively. As seen the presented isolines are of
a multibranch character, which results in multiple solutions.
In Fig. 2, these solutions are shown for two values of Q. As
Q is varied, the solutions follow the trajectories indicated
in Fig. 2. These trajectories coincide with segments of the
zero-level isolines of the function Z ′′(ξ ′, ξ ′′). The symmetrical
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FIG. 2. Zero-level isolines of functions Z ′′(ξ ′, ξ ′′) (red lines)
and Z ′(ξ ′, ξ ′′) + Q (black lines). The latter calculated at Q = 0.05
(thick lines) and Q = 0.5 (thin lines). Colored curves with origins
(marked by circles) and termini (marked by triangles) represent the
trajectories of roots of Eqs. (24). Dashed lines represent the ratio
|ξ ′′| = 1/|ξ ′| and demarcate regions, where parameter σ in Eq. (34)
takes the values of 0, 1, and 2.

pairs of the trajectories at ξ ′ > 0 and ξ ′ < 0 correspond to
two modes with the same oscillation frequency and damping,
but propagating in the opposite directions. The location of the
trajectories in the III and IV quadrants, where ξ ′′ < 0, points
out the realization of only damped modes.

The two longest trajectories, which at small Q asymptoti-
cally are close to the ξ ′′ = 0 axis, correspond to the plasmonic
modes (k = 0). These modes have highest quality factors
|ω′/ω′′|. Other modes with k = 1, 2 . . . are described by much
shorter trajectories and represent the overdamped oscillations.
For them, |ξ ′′| ∼ |ξ ′| and subsequently |ω′| ∼ |ω′′|. As shown
below, these modes have practically linear dispersion and
propagate with a velocity of the order of the thermal velocity
VT . We call them as the thermal modes. In general, increasing
in Q leads to the progressive increasing of the |ξ ′′| for all
trajectories. The latter means that the Landau damping of all
modes is increased with an increasing of Q.

B. Approximate formulas for excitation spectra
and comparison with numerical results

The above analysis demonstrates that behavior of the roots
of Eqs. (24) and, thus, oscillation frequencies, and dampings
are very complicated. In order to understand better the excita-
tion spectra, we can obtain asymptotic expressions for ξ ′

k, ξ ′′
k

and ω′
k, ω′′

k . For that, we will use the following asymptotic
expansions of the Jackson function Z (ξ ) [57]:

Z (ξ ) = −1/2ξ 2 − 3/4ξ 4 − 15/8ξ 6 . . . + iσ
√

πξ exp(−ξ 2),
(34)

where σ = 0 if ξ ′′ > |ξ ′|−1, σ = 1 if |ξ ′′| < |ξ ′|−1 and σ =
2 if ξ ′′ < −|ξ ′|−1. That is, the asymptotes are different in
different regions of the {ξ ′, ξ ′′} plane. Five of such regions
are marked in Fig. 2.

For the goal of this section we can omit the term ∝1/ξ 6 in
(34), then the characteristic equation (23) takes the form

− 1

2ξ 2
− 3

4ξ 4
− iσ

√
πξ exp(−ξ 2) + Q = 0. (35)

At Q � 1, the plasmonic modes (k = 0) correspond to the
roots with |ξ ′′| < |ξ ′|−1 � 1, i.e., σ = 1. Then, approximate
solutions of Eq. (35) are

ξ ≈ ξ (0)

[
1 + 3

4ξ (0)2
− i

√
πξ (0)3 exp(−ξ (0)2)

]
, (36)

with ξ (0) = ±1/
√

2Q. Here, ± correspond to the solutions sit-
uated in the left/right parts of the {ξ ′, ξ ′′} plane, respectively.
From Eq. (36), it follows that ξ ′′ has well-defined negative
sign. As a result, both plasmonic modes have the same ex-
ponentially small damping at Q � 1. Using the relationships
(30), we can recover the spectra of the plasmonic modes in the
dimensional form

ω′
0 ≈ VT |q|√

2Q

[
1 + 3Q

2

]
,

ω′′
0 ≈ −√

π
VT |q|√

2Q

(
1

2Q

)3/2

exp

(
− 1

2Q

)
. (37)

Now, for the ungated 2DEG when Q = Qng [see Eqs. (32)
(a)], we find

ω′
0 ≈ ωp

[
1 + 3κ|q|

2qD

]
,

ω′′
0 ≈ −

√
π

8
ωp

(
qD

κ|q|
)3/2

exp

(
− qD

2κ|q|
)

,

(38)

where

ωp =
√

2πe2n0|q|
κ m∗

is the standard frequency of the ungated 2D plasmons [1].
For the gated 2DEG with Q = Qg [see definition in

Eqs. (32)], we obtain

ω′
0 ≈ Vp|q|

[
1 + 3V 2

T

4V 2
p

]
,

ω′′
0 ≈ −√

πVp|q|V
3
p

V 3
T

exp

(
− V 2

p

V 2
T

)
,

(39)

where Vp is defined by Eq. (33).
Comparison of Eqs. (38) and (39) shows that the Landau

damping of the collisionless 2D plasma strongly depends
on dielectric surrounding of 2DEG. For the ungated 2DEG,
the damping of the plasmonic mode has the essential wave-
vector dependence and is exponentially small at κ|q|/qD � 1,
similarly to the well-known case of 3D plasma. For the gated
2DEG, in the limit of |q|d � 1, the damping of the plasmonic
mode has a linear dispersion and can be much larger than
for the ungated one. However, Landau damping of the gated
2DEG can be also small if Vp � VT .

Figure 2 shows us that another family of the solutions of
Eqs. (24) with k = 1, 2, . . ., the thermal modes, is realized
at ξ ′′ < −|ξ ′|−1 (σ = 2). By using the asymptotic series of

235420-6



PLASMA WAVE OSCILLATIONS IN A NONEQUILIBRIUM … PHYSICAL REVIEW B 101, 235420 (2020)

Eq. (34) we can obtain approximate expressions for these
modes. At small Q, such that Q � 1/4πk, we find

ω′
k ≈ VT |q|x(0)

k

[
1 + ln

[√
2π
(
2x(0)

k

)3]
4x(0)2

k

+ Q . . .

]
,

ω′′
k ≈ −VT |q|x(0)

k

[
1 − ln

[√
2π
(
2x(0)

k

)3]
4x(0)2

k

+ Q · · ·
]
,

(40)

where x(0)
k = √

π (k + 1/8) and k = 1, 2, 3, . . . . In these
equations we omit terms ∝1/x(0)4

k . At the relatively larger Q,
such that Q � 1/4πk, we obtain

ω′
k ≈ VT |q|x(0)

k

{
1 − 1

4x(0)2
k

ln

[
Q√

2π2x(0)
k

]
+ · · ·

}
,

ω′′
k ≈ −VT |q|x(0)

k

{
1 + 1

4x(0)2
k

ln

[
Q√

2π2x(0)
k

]
+ · · ·

}
,

(41)

where x(0)
k = √

π (k + 3/8) and k = 0, 1, 2, 3, . . . . It should
be noted that expressions (41) are also suitable for the asymp-
totic descriptions of the plasmonic modes (k = 0) at relatively
large Q.

The obtained approximate formulas (40) and (41) indicate
that the thermal modes have almost linear (for the ungated
2DEG) and strictly linear (for the gated 2DEG) dispersions of
both ω′(q) and ω′′(q) with the slopes, which are determined
by the thermal velocity VT . These modes are overdamped
oscillations with ω′ ∼ |ω′′| and exhibit a weak dependence
on the electron concentration and dielectric surrounding of
2DEG [see Eqs. (32)]. The high-order thermal modes have
higher frequencies of oscillations and higher damping due to
the prefactor x(0)

k ∼ √
k. Moreover, they become less sensitive

to the value of Q with increasing of k.

FIG. 3. Dependencies of ω′
k (q) (a) and ω′′

k (q) (b) for the ungated
2DEG. The first four branches, k = 0, 1, 2, 3, are presented. Solid
curves represent results of numerical calculations. Other curves are
approximate expressions (38), (40) (dashed lines) and (41) (dashed-
dotted lines).

FIG. 4. Dependencies of ω′
k (q) (a) and ω′′

k (q) (b). Solid and
dashed lines are calculations for the ungated and gated 2DEG,
respectively. Used parameters are listed in the text. Black and red
lines correspond to the plasmonic and the first thermal modes,
respectively.

Figure 3 illustrates the comparison between obtained ap-
proximate results and numerical calculations of the spectra
of the ungated 2DEG. As seen, in the long-wavelength limit
(Qng � 0.1), Eqs. (38) and (40) give the proper approxi-
mations for the plasmonic and thermal modes, respectively.
At the Qng � 0.1 the plasmonic mode has negligibly small
damping and square-root q dependence of the oscillation
frequency. With increasing of q, the damping of the plasmonic
modes increases. The square-root dependence of the oscilla-
tion frequency changes to a linear one according to (41). In
the short-wavelength limit (Qng � 0.1), the spectra of both
plasmonic and thermal modes are well described by Eqs. (41).
The thermal modes in the considered range of q remain
almost linear and overdamped. It should be noted that there
are intersection points of dependencies ω′

0(q) and ω′
1,2,...(q).

However, the plasmonic mode and the thermal modes do
not interact because of a large difference of their damping.
The latter can be also understood from Fig. 2, where, as
seen, the trajectories of the roots for different modes are well
separated.

C. Comparison of excitation spectra of the ungated
and gated 2DEG

Comparison of the spectra of collective oscillations of
the ungated and gated 2DEG is performed for the particu-
lar case of the AlGaAs/GaAs heterostructure with the fol-
lowing parameters: n0 = 1 × 1011 cm−2, m∗ = 0.063 × me

(me is the free-electron mass), and Te = 100 K. Dielectric
permittivities of the barrier and buffer layers are assumed
to be equal: ε1 = ε2 = 9. For the barrier layer of d =
10 nm, the parameter describing the gated 2DEG is Qg =
0.42. For the ungated 2DEG we find the effective dielectric
permittivity κ = 5 and characteristic wave vector qD/κ =
2 × 106 cm−1.

For these parameters, the calculated spectra of the plas-
monic and first thermal modes are shown in Fig. 4 for both
ungated and gated 2DEG.
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As seen, in the range of small wave vectors Qng � 0.1 the
plasmonic mode for the ungated 2DEG exhibits square-root
dependence of ω′(q) with negligibly small value of ω′′(q).
The same type of the mode for the gated 2DEG has lower
frequencies and much grater damping. With increasing of
wave vector, when Qng becomes ∼0.3, the plasmonic modes
for both cases have comparable damping and oscillation fre-
quencies. The thermal modes’ spectra are less sensitive to the
electrostatic surrounding of 2DEG. For example, the spectra
of the first thermal modes for the both gated and ungated
2DEG practically coincide.

V. ELECTRON EXCITATION SPECTRA OF
NONEQUILIBRIUM 2DEG (E �= 0)

A steady-state electric field E0 applied to the 2DEG
changes considerably the excitation spectra. The basic equa-
tions determining these spectra (24) and (28) are modified due
to two factors dependent on the field. The first is the Doppler-
shift term Vdr q in Eqs. (28). As a result, the oscillation fre-
quency ω′(q) acquires a nonreciprocal behavior along the field
direction. The second factor is the gain/loss parameter γq �=
0, which explicitly enters to Eqs. (28) that couples ω′, ω′′ and
the variables ξ ′, ξ ′′. In turn, ξ ′, ξ ′′ are solutions of Eqs. (24)
dependent on γq via the parameter E . The latter parameter
can be specified for the ungated (a) and gated (b) 2DEG
as follows:

E =

⎧⎪⎪⎨
⎪⎪⎩

Qngγq = sign(q)κeE0

kBTeqD
= sign(q)κE0

2πen0
≡ Eng (a),

Qgγq = eE0

m∗V 2
p q

≡ Eg (b).

(42)

A. Graphical analysis of Eqs. (24) at E �= 0

We begin with the graphical analysis of Eqs. (24). We
assume that Q > 0 and E > 0, considering the entire {ξ ′, ξ ′′}
plane.

Figures 5 and 6 illustrate the mappings of the system (24)
obtained at nonzero values of E . The first equation of (24) does
not contain the electric field, thus the corresponding zero-
level isolines remain the same as in Fig. 2 for equilibrium.
However, even a small value of E , for example E = 0.015,
strongly deforms zero-level isolines of the function in the
second equation in comparison to the equilibrium case. Now,
the roots of the system (24) can belong to the quadrants II,
III, and IV of the {ξ ′, ξ ′′} plane. As seen, the trajectories of
solutions corresponding to the plasmonic modes are located
in the quadrants IV and II, predominantly. In the quadrant IV,
it can occur a situation when the trajectories corresponding
to the plasmonic mode and the thermal modes become very
close. At this, a mode interaction effect is expected. Moreover,
at least, the first four roots in quadrant IV obtained at small Q
(Q = 0.005 corresponding to γq = 3) are situated above the
critical line (line 1) defined by Eq. (29). It means that these
modes have a negative damping, i.e., they are unstable. The
other roots which belong to the quadrants II and III are located
below the critical lines and they correspond to the damped
oscillations.

FIG. 5. Zero-level isolines of the functions Z ′(ξ ′, ξ ′′) + Q (black
lines) and Z ′′(ξ ′, ξ ′′) + E (red lines) at E = 0.015. Thick and thin
black lines are for Q = 0.005 and 0.5, respectively. Colored curves
with origins (marked by circles) and termini (marked by triangles)
are the trajectories of solutions obtained at variation of Q from 0.005
to 0.5. Dashed-dotted lines 1 and 2 are the critical lines given by
Eq. (29) for two values of γq: 3 and 0.03.

At relatively large Q = 0.5 (γq = 0.03), all roots, including
the quadrant IV, are situated below critical line (line 2). They
correspond to the damped modes. We conclude that the modes
corresponding to the roots from the quadrant IV, including the
thermal modes, have a finite range of the wave vectors where
they are unstable even at a small parameter E .

With increase in E the zero-level isolines of the function
Z ′′(ξ ′, ξ ′′) + E are deformed in such way that trajectories
of different solutions become well separated (see Fig. 6
for E = 0.15). It means that the mode interaction effect is
suppressed at higher electric fields. At this, the trajectory
of the plasmonic solution becomes much shorter than those
at smaller E . A larger number of the thermal modes are
unstable.

Below, we present asymptotic expressions of ω′
k (q) and

ω′′
k (q) for both structures presented in Fig. 1 subjected to the

electric field.

FIG. 6. The same as in Fig. 5 calculated at E = 0.15.

235420-8



PLASMA WAVE OSCILLATIONS IN A NONEQUILIBRIUM … PHYSICAL REVIEW B 101, 235420 (2020)

B. Approximate formulas for excitation spectra at finite E
Similarly to the procedure of calculations of approximate

expressions for ω′
k (q) and ω′′

k (q) presented in Sec. IV B, we
will use the asymptotic series (34) keeping three terms in
the power expansion. As seen from Fig. 5, the two longest
trajectories for the plasmonic modes are mainly located in
the region of the {ξ ′, ξ ′′} plane where |ξ ′| > |ξ ′′| > 1. The
analytical solutions for corresponding roots of the system (24)
can be found if ξ ′2 − ξ ′′2 � 1. Thus, in the series (34) for the
roots, which belong to the quadrants II and IV, we should set
σ = 0 and 2, respectively.

As a result, we obtain the following approximate frequency
and damping dependencies for the ungated 2DEG:

ω′
0 = Vdrq + ωp

[
1 + 3κ|q|

2qD
+ 15

8

(
κ|q|
qD

)2(
1 − γ 2

q

)+ · · ·
]

,

ω′′
0 = ±3

2

eE0

m∗VT

√
2κ|q|

qD

[
1 + 5κ|q|

2qD
+ · · ·

∓σ
√

πm∗V 2
T qD

3κ|q|eE0
exp

(
− qD

2κ|q|(1 + γ 2
q

)
)]

,

(43)

and for the gated 2DEG

ω′
0 = Vdrq + Vp|q|

[
1 + 3V 2

T

4V 2
p

+ 15

32

V 4
T

V 4
p

(
1 − γ 2

q

)+ · · ·
]
,

ω′′
0 = ±3

2

eE0

m∗Vp

[
1 + 5V 2

T

4V 2
p

+ · · ·

∓2σ
√

πm∗V 2
p q

3eE0
exp

(
− V 2

p

V 2
T

(
1 + γ 2

q

)
)]

. (44)

Here, “+” and σ = 2 correspond to the plasmon mode prop-
agating along the electric field (q > 0 at E0 > 0), while “−”
and σ = 0 stand for the mode propagating in opposite direc-
tion (q < 0). Equations (43) and (44) are valid if

2Q
(
1 + γ 2

q

) = 2(Q + E2/Q) � 1. (45)

Note, at a given small E the inequality (45) restricts the
validity of Eqs. (43) and (44) by the interval 2E < Q < 1

2 .
For example, for the plasmonic roots presented in Fig. 5 (E =
0.015) the trajectories start at Q = 0.005, when the left-hand
side of Eq. (45) is ≈0.1, thus Eqs. (43) and (44) are applicable.
The ends of these trajectories are at Q = 0.5 and the left-hand
side of Eq. (45) is ≈1, so the mentioned equations can not be
used.

While the criterion (45) is fulfilled, Eqs. (43) and (44)
indicate that the effect of the electric field is weak for ω′

0(q)
in both ungated and gated 2DEG (except of the Doppler-
shift term). However, the field strongly influences on ω′′

0 (q).
Indeed, ω′′

0 (q) consists of two contributions. The first is a term
linearly proportional to the field, the second is an exponen-
tially small Landau-type damping, which is weakly dependent
on the field. For the modes propagating along electron drift,
the first term is positive. These modes can be unstable (ω′′

0 >

0), when the first term dominates over exponentially small

Landau-type damping. The field-dependent “increment” has
square-root wave-vector dependence for the ungated 2DEG
and almost independent on the wave vector for the gated
2DEG. The modes propagating in the direction opposite to
the drift are always damped. In other words, the account of the
electric field effect on high-frequency electron dynamics leads
to nonreciprocal behavior of the plasmon damping. These
effects are different from standard models of the instabilities
in the drifting plasma [56,58].

The roots of Eqs. (24) for the thermal modes correspond
to short trajectories in the {ξ ′, ξ ′′} plane, as seen in Fig. 5.
They are located in the quadrants IV and III. For them |ξ ′| ∼
|ξ ′′| > 1 and the exponential term in the expansion (34) can
be of the same order with other power terms. We found
approximate formulas for ω′

k, ω′′
k with k � 1 for two limiting

cases: |E | � |Q| ∼ 1 and |Q| � |E | ∼ 1. For |E | � |Q| ∼
1 (γq � 1) the results practically coincide with Eqs. (41) with
a small correction ∼γq.

In the case of |Q| � |E | � 1 (γq � 1) we find the follow-
ing asymptotic expressions:

ω′
k|q>0 ≈ Vdrq + 2

√
eE0|q|

m∗ x(0)
k

[
1 + x(1)

k

2γqx(0)
k

+ · · ·
]
,

ω′
k|q<0 ≈ Vdrq + 2

√
eE0|q|

m∗

[
x(1)

k + x(0)
k

2γq
+ · · ·

]
,

ω′′
k |q>0 ≈ 2

√
eE0|q|

m∗

[
x(1)

k − x(0)
k

2γq
+ · · ·

]
,

ω′′
k |q<0 ≈ −2

√
eE0|q|

m∗ x(0)
k

(46)

with x(0)
k = √

π (k + 1/8) and x(1)
k = 1/4x(0)

k ×
ln[

√
2π (2x(0)

k )3/|1 ∓ 4x(0)2
k E |] where ∓ corresponds to

q > 0 and q < 0, respectively. Application of these results is
restricted by the condition E < 1/4πk.

In the contrast to the plasmonic modes, the oscillation
frequencies of the thermal modes are strongly renormalized
even by a small electric field. From the results of Eqs. (46)
it follows that the thermal modes propagating along electron
drift q > 0 can be unstable, while the modes with q < 0 are
damped.

When parameter E is not small (E > 1/4π ), the trajectory
of the roots of Eqs. (24) corresponding to the plasmonic
mode in the quadrant IV acquires the form similar to the
thermal modes, as seen from Fig. 6. This trajectory is located
in the region where ξ ′ ∼ |ξ ′′|. For this case and γq � 1 we
found the asymptotic expressions for ω′

k and ω′′
k in the form

which coincides with Eqs. (46) for both the plasmonic and
thermal modes. Now, in these equations one should set x(0)

k =√
π (k + 5/8) for q > 0 and x(0)

k = √
π (k + 1/8) for q < 0,

and x(1)
k = −1/4x(0)

k × ln[|E |/√2π2x(0)
k ] for any sign of q;

k = 0, 1, 2, . . . .

C. Results of numerical calculations

In this section we present numerical results for ω′
k (q) and

ω′′
k (q) at finite values of E , as well as their comparison with

the above-obtained asymptotic expressions.
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FIG. 7. Dependencies of ω′
k (q) (a) and ω′′

k (q) (b) for ungated 2DEG at Eng = 0.015. Solid lines present the numerical calculations. Dashed-
dotted lines are the asymptotes obtained in the limit of large Qng given by Eqs. (41). Panels (c) and (d) magnify the region of small Qng where
dashed lines are the asymptotes given by Eqs. (43) for the k = 0 and Eqs. (46) for k �= 0. Dimensionless drift velocity is Vdr/VT = 0.5.

1. Ungated 2DEG

Figures 7 and 8 provide numerical results for four lowest
modes at two values of Eng used in Figs. 5 and 6. The
asymptotic expressions are also shown for comparison. At
small Eng = 0.015, the plasmonic modes manifest themselves
as high-quality oscillations with clear nonreciprocal behavior
and small, but not exponentially small, value of ω′′

0 (q). At
q > 0, a wide instability range of the wave vectors occurs,
while the excitations with q < 0 are always damped. The
asymptotic expressions for ω′

0(q), ω′′
0 (q) for the plasmonic

modes of Eqs. (43) almost coincide with numerical results
within the range of the dimensionless wave vectors Qng =
0.01 . . . 0.05, where the criterion (45) is well fulfilled.

At very small Qng < 0.005, the asymptotic expressions
(43) are not valid, the numerical results for small q are
presented in Figs. 7(c) and 7(d). One can see that for the
analyzed modes the dampings ω′′

k (q) are nonmonotonic func-
tions. Apparently, there is an effect of interaction between the

FIG. 8. The same as in Fig. 7 at Eng = 0.15. Dashed-dotted and
dashed lines are the asymptotes calculated according to Eqs. (41)
and (46) in the limit of E > 1/4π , and γq � 1, respectively. The
asymptote of the plasmonic mode for negative q < 0 (green dashed
lines) is calculated according to Eqs. (43).

plasmonic modes and the higher-order thermal modes. This
effect will be analyzed in detail in the Sec. V D.

The numerical calculations of the spectra of the thermal
modes well reproduce the square-root dependence of ω′

k (q)
and nonmonotonic behavior of the ω′′

k (q) predicted by asymp-
totic expressions (46) at q > 0. For q > 0, the instability
range also exists for the thermal modes, but it is more narrow
than for the plasmonic mode. The instability range is farther
narrowing for higher-order thermal modes. At q < 0, the
thermal modes are overdamped oscillations with monotonic
square-root wave-vector dependencies of ω′ and ω′′ at small
Qng.

In the range of larger q (Qng > 0.2), the Landau damping
effect prevails over the field effect. At this, the plasmonic
mode, as well the thermal modes, has ω′′ < 0. For thermal
modes, asymptotic expressions (46) are almost coincide with
the numerical results. For plasmonic modes, these expressions
also give satisfactory approximation.

At larger electric field Eng = 0.15, the effect of the electric
field leads to essential increasing of both the instability range
and the value of ω′′. As seen from Fig. 8, the plasmonic
modes at q > 0 have lowest oscillation frequency among all
modes and it is unstable in the wide range of Qng = 0 . . . 0.25.
The instability range also essentially increases for the thermal
modes. For example, the first thermal mode is unstable in the
range of Qng = 0 . . . 0.1. The numerically obtained spectral
characteristics of ω′

k (q) and ω′′
k (q) are well described by

Eqs. (46) in range of Qng = 0 . . . 0.1 where γq > 1. For nega-
tive q, the plasmonic mode is less sensitive to increase of the
electric field and is described by the asymptotic expressions
(43).

2. Gated 2DEG

As opposed to the case of the ungated 2DEG, for gated
2DEG the dimensionless parameter in Eqs. (24), which deter-
mines the roots ξk (q) in the nonequilibrium case, is E = Eg =
Qgγq. It depends on the wave vector ∼1/q and becomes large
at small q. To make the comparison easy, it is convenient to
express Eg through the independent on q parameter Eng char-
acteristic for the ungated 2DEG: Eg = QgEng/Qng. Figure 9
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FIG. 9. The same as in Fig. 8 for the gated 2DEG at Eng = 0.15
and Qg = 0.05. Dashed lines are the asymptotes calculated according
to Eqs. (46) in the limit of E > 1/4π , and γq � 1. The asymptotes
of the plasmonic mode at larger values of |Qng| (green dashed-dotted
lines) are calculated according to Eqs. (44). The asymptotes of the
thermal modes (colored dashed-dotted lines) are given by Eqs. (41).

demonstrates the plasmon spectra at a given Eng and relatively
small parameter Qg = 0.05 (the phase velocity of the gated
plasmons Vp is much larger than the thermal velocity VT ).

We see that at small positive wave vectors Qng < 0.1
(γq > 1), the large effect of the electric field leads to the
renormalization of ω′(q) and ω′′(q) for both plasmonic and
thermal modes. They acquired the square-root wave-vector
dependencies of ω′(q) in the agreement with the asymptotic
expressions (46). The behavior of the thermal modes is similar
for the case of the ungated 2DEG. They possess a finite
range of instability that decreases for the higher modes. The
plasmonic modes are unstable in a wide range of Qng with
almost constant increment and the linear dispersion of ω′(q).
At negative q, the plasmonic mode is damped also with almost
constant decrement. Such behavior of the plasmonic mode
agrees with Eqs. (44).

D. Comparison of the excitation spectra of ungated
and gated 2DEG at E �= 0

After general analysis of the collective excitations pre-
sented above, we consider the results obtained for a particular
2DEG. In Fig. 10 the numerical calculations of ω′

0(q) and
ω′′

0 (q) are shown for the ungated and gated GaAs quantum
wells. Two values of the electron concentration are assumed:
n0 = 1011 cm−2 and 3 × 1011 cm−2. The applied electric field
is set E0 = 2 kV/cm. Other parameters are the same as in
Sec. IV C. For these two concentrations we estimate the
parameters as follows: qD/κ = 2 × 106 and 6 × 106 cm−1;
Eng = 0.11 and 0.036; Qg = 0.43 and 0.14 [see Eqs. (32)].
As seen in Fig. 10, both ungated and gated plasmonic modes
demonstrate considerable nonreciprocal behavior.

For the positive wave vectors all the modes exhibit the
instability. However, the instability range of the wave vec-
tors and the increment ω′′ strongly depend on parameters of
2DEG. The instability range for the ungated plasmonic mode
at lower electron concentration is restricted by the condition
qd ∼ 0.5 (d = 10 nm), while the increment can reach a value

FIG. 10. Dependencies of ω′
0(q) (a) and ω′′

0 (q) (b) for the ungated
(black lines) and gated (red lines) 2DEG in GaAs QW at two electron
concentrations: n0 = 1011 cm−2 (solid lines) and 3 × 1011 cm−2

(dashed-dotted lines). Other parameters are E0 = 2 kV/cm, Te =
100 K, Vdr = 107 cm/s (Vdr/VT = 0.5), and d = 10 nm.

≈2.5 THz. At the same concentration, the gated plasmonic
mode demonstrates the narrow instability range qd < 0.2, and
smaller increment ω′′

0 ≈ 0.6 THz. The latter can be explained
by larger Landau damping for the gated 2DEG.

At higher concentrations, the instability range for the
ungated plasmonic mode is larger due to larger charac-
teristic parameter qD when the Landau damping decreases
[see Eq. (43)]. The increment ω′′(q) shows well-pronounced
nonmonotonic behavior as a result of the interaction of the
plasmonic and thermal modes. This effect will be illustrated
in next subsection in details. An increase of the instability
range at the larger electron concentration also occurs for the
gated plasmonic mode, which is associated with decrease of
the parameter Qg [see Eqs. (32) and (45)]. At negative q
decreasing of the electron concentrations always leads to an
increase of the plasmonic mode damping.

E. Effect of the mode interaction

Now, we consider briefly interaction of the plasmonic and
thermal modes. The effect of the interaction occurs at q > 0
in moderate electric fields (Eng � 1/4π ). Figure 11 illustrates
this effect for the ungated 2DEG. There, calculations of ω′

0(q)
and ω′′

0 (q) are presented for Eng = 0.03 . . . 0.07. As seen, the
well-pronounced interaction between plasmonic and thermal
modes is observed for the fields Eng = 0.03, 0.04. The inter-
action modifies strongly the increment ω′′(q) of the plasmonic
mode [Fig. 11(b)], while the oscillation frequency ω′

0(q) is
experiencing only small changes (see the inset in Fig. 11).
With increasing of Eng the interaction effect becomes sup-
pressed. At negative wave vectors (q < 0), the mode interac-
tion effect is almost absent.

VI. INTERACTION OF ELECTROMAGNETIC WAVES
WITH COLLECTIVE ELECTRON EXCITATIONS

The analyzed above spectra of the collective electron exci-
tations determine interaction of 2DEG with electromagnetic
waves of the relevant frequency range. In this section, we
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FIG. 11. Solid lines are dependencies of ω′(q) (a) and ω′′(q)
(b) numerically calculated for the plasmonic mode (k = 0) and at five
values of Eng = 0.03, 0.04, 0.05, 0.06, 0.07. Black and red dashed-
dotted lines correspond to the thermal mode with k = 1 at Eng = 0.03
and 0.04, respectively. Inset magnifies the region of ω′ with the mode
interaction. The drift velocity Vdr/VT = 0.5 is assumed to be same
for all curves.

consider examples of such interaction. As indicated in the
Introduction, a coupling of electromagnetic radiation and
2DEG can be provided by submicron or nanoscale lateral
structurization of the sample. Below we consider grating-
based plasmonic structure illustrated in Fig. 12(a). It consists
of the AlGaAs/GaAs QW heterostructure with 2DEG and the
periodic metallic grating. The grating is characterized by the
period ag and the width of metallic strips bg.

The optical properties of the plasmonic structure, partic-
ularly absorption spectra, were determined by solving the
Maxwell equations [16,59] with the high-frequency electron
current calculated in the transport model of Sec. II. In this
model, the high-frequency conductivity of the drifting elec-
trons is frequency and wave-vector dependent [50]. For the
calculations, we specified dependencies Vdr (E0) and Te(E0)
as shown in Fig. 12(b) (the case of the subthreshold Gunn
electric fields). These dependencies were obtained by solving
steady state the BTE within the electron temperature approach
[55]. They are well correlated with early reported data [60,61]

FIG. 13. (a) Absorption spectra of the plasmonic structure.
(b) ω′

0(q) (solid lines) and ω′′
0 (q) (dashed lines), calculated numer-

ically for κ (|q|) given by Eq. (31) (b). The results presented for
n0 = 3 × 1011 cm−2 and three values of the electric field. Horizontal
lines denote the characteristic frequencies ω′

0(q±1) and wave vectors
q±1 = ±2π/ag = ±0.31 × 106 cm−1.

for 2DEG in high-quality GaAs QW with moderate electron
concentrations of 1 − 5 × 1011 cm−2.

The absorption spectra were calculated for the plasmonic
structure with narrow-slits grating with ag = 200 nm, bg =
160 nm, d = 20 nm, and Ds = 2000 nm. The results presented
in Fig. 13(a) are obtained for different electric fields at a given
electron concentration, while Fig. 14(a) shows the results for
different electron concentrations and a given electric field. For
easy interpretation of the results, the absorption spectra are
compared with the dispersion of the plasmons of the gated
2DEG [see Figs. 13(b) and 14(b)]. Indeed, under narrow-slits
grating the gated plasmon modes are predominantly excited.

As seen from Figs. 13 and 14, the absorption spectra
demonstrate the resonant behavior. The frequencies of the
resonances and signs corresponding to positive and negative
absorption are well agreed with the parameters ω′

0(q±1) and
ω′′

0 (q±1) of the plasmonic modes calculated at the wave vec-
tors relevant to the grating period q±1 = ±2π/ag. Thus, ex-
citations of different collective oscillations of 2DEG explain
basic behavior of the absorption. The large drift velocities
Vdr (E0) cause strongly nonreciprocal character of the plasmon

FIG. 12. (a) Sketch of grating-based plasmonic structure. (b) Dependencies of Vdr (E0) and Te(E0) at T = 77 K calculated for 2DEG with
low-field mobility of 8 × 104 cm2/Vs. The dots correspond to the electric fields for which the absorption spectra are shown in Fig. 13.
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FIG. 14. The same as in Fig. 13 for three electron concentrations
and E0 = 1 kV/cm.

spectra and large splitting of the absorption spectra. Moreover,
excitation of the plasmon waves with q > 0 causes the change
of absorption of the incident radiation up to their amplifica-
tion. The thermal modes are not observed in the absorption
spectra because of their large damping at the wave vectors
q = q±1.

Particularly, at n0 = 3 × 1011 cm−2, Fig. 13 shows “the
frequency window” of the negative absorption (i.e., inci-
dent wave amplification) which is realized in the frequency
range 3.5–5 THz at the electric field 0.5–1.5 kV/cm. The
appearance of such a window corresponds to excitation of
the unstable plasmon modes with ω′′

0 (q) > 0, which prop-
agate along the electron drift. In the low-frequency range
(�2 THz), the positive absorption corresponds to excitation of
the damped plasmon modes propagating opposite to electron
drift. Increase of the electric field leads to the blueshift (red-
shift) of the amplification (absorption) of the resonant lines
with progressive increase of their broadening. This behavior
relates to essential contribution of the Doppler-shift term and
nontrivial impact of the electric field on the ballistic electron
dynamics. The latter leads to a strong modification of ω′′

0 (q)
for larger E0.

Figure 14(a) demonstrates considerable dependence of the
absorption and amplification spectra on the electron con-
centrations: at n0 = 1011 cm−2 the negative absorption ef-
fect is almost suppressed, while the effect is large for n0 =
(3 . . . 5) × 1011 cm−2, which correlates with the plasmon
parameters ω′(q) and ω′′(q) presented in Fig. 14(b).

Finally, we estimate the criteria of the collisionless ap-
proach ω′τsc � 1 and lsc q � 1, with τsc and lsc ≈ VT τsc being
the scattering time of and the mean-free path of the electrons,
respectively. For the plasmonic structure with GaAs QW, we
can use an effective scattering time of the hot electrons τsc that
is found from the hot-electron mobility μhe = dVdr (E )/dE =
eτsc/m∗. For the data presented in Fig. 10(b), we obtain μhe ≈
104 cm2/Vs and τsc ≈ 0.4 ps at E0 = 1 kV/cm. At this field,
the resonance and negative absorption occur at the frequency
ω′/2π = 3.8 THz, which corresponds to the excitation of
the unstable plasmon mode with the wave vector q = 0.3 ×
106 cm−1. Setting VT ≈ 2 × 107 cm/s (T = 100 K), we find

lsc ≈ 100 nm. Then, we find ω′τsc ≈ 10 and qlsc ≈ 3. Thus,
the necessary criteria are reasonably satisfied.

VII. SUMMARY

We have developed theory of the collective electron os-
cillations of the 2DEG with attention to the case when a
high electric field is applied. The effect of the stationary
electric field has been taken into account on both the sta-
tionary and high-frequency electron transports. Two actual
types of the structures with ungated and gated 2DEG have
been considered (see illustration in Fig. 1). The analysis
has been conducted basing on solutions of the Boltzmann-
Vlasov equations in the collisionless approach, when the high-
frequency electron transport is treated as ballistic. The system
of equations, which determines the excitation spectra, has
been presented in the form of Eqs. (24) applicable to both
types of the structures: equilibrium and nonequilibrium con-
ditions. Mapping the roots of these equations in Figs. 2, 5, and
6 facilitated understanding of the complexity of the excitation
spectra. The numerical calculations of the excitation spectra
have been supplemented by the asymptotic formulas.

We have found that the collective excitation spectra of
2DEG are of the multibranch character with the high-quality
plasmonic modes and a set of the thermal modes. Under equi-
librium, for the ungated 2DEG in the long-wavelength limit
Qng = κ|q|/qD � 1, the plasmonic modes have square-root
wave-vector dependence of the oscillation frequency ω′ and
exponentially small damping ω′′. For the short wavelengths
Qng ∼ 1, the plasmonic modes acquire an essential damping,
both ω′(q) and ω′′(q) exhibit almost linear q dependencies.
Oscillation frequency ω′ and damping ω′′ of the plasmonic
modes are strongly influenced by the dielectric surroundings
of the 2DEG.

For the gated 2DEG, in the limit of the thin barrier layer
qd � 1 [see Fig. 1(b)], both ω′(q) and ω′′(q) are the linear
functions of q and their slopes are determined by the relation-
ships between the phase velocity Vp [defined by Eq. (33)] and
the thermal velocity VT [see Eq. (21)]. At typical case Vp �
VT , the oscillation frequency almost coincides with the result
of the hydrodynamic approximation: ω′ = Vp|q|. At this, the
mode damping is exponentially small, ω′′ ∝ exp(−V 2

p /V 2
T ).

The latter formula essentially differs from the usual Landau
damping [43,44].

The thermal modes are the overdamped oscillations in the
entire range of the wave vectors. Their appearance relates
to the statistical treatment of the 2DEG. These modes are
absent in the frameworks of the conventional hydrodynamic
treatment of the 2DEG. The phase velocity and damping of
these modes are determined by thermal velocity of the 2DEG,
VT . They are less sensitive to the dielectric surroundings.

Under nonequilibrium conditions, the high electric field
can essentially modify the plasmon spectra of the 2DEG.
The wave-vector dependencies of the oscillation frequency
and damping/increment of the plasmonic and thermal modes
manifest strong nonreciprocal behavior with respect to the
direction of the applied field. The modes propagating opposite
electron drift are always damped oscillations with ω′′ < 0.
The increasing of the amplitudes of the applied electric
field increases their damping. The modes propagating along
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electron drift have the finite range of the wave vectors q, where
they are unstable with ω′′ > 0. The instability range of q and
amplitudes of the increment strongly depend on the type of the
modes, dielectric surroundings, and amplitude of the applied
electric field.

In the case of the ungated 2DEG, the spectral characteris-
tics of the plasmonic modes depend on the following param-
eters: the dimensionless electric field Eng = eE0κ/kBTeqD and
the dimensionless wave vector Qng = κq/qD. For Qng, Eng �
1 and 2(Qng + E2

ng/Qng) � 1, the oscillation frequencies ω′
are weakly renormalized. However, instead of exponentially
small damping, the plasmonic modes acquire ω′′(q) > 0 with
the square-root wave-vector dependence and linear propor-
tionality to E0, i.e., the plasmonic modes become unstable.

For a set of the thermal modes, the electric field also in-
duces instability intervals at small positive q. However, these
intervals are much narrower than for the plasmonic mode. In
the range of the moderate applied electric field Eng < 1/4π ,
we found the effect of strong interaction of the plasmonic and
thermal modes.

In the case of the gated 2DEG, in the limit of |q|d � 1, the
spectral characteristics of the plasmonic mode are determined
by the ratio of the thermal and phase velocities Qg = V 2

T /2V 2
p

and dimensional electric field Eg = Qgγq. For Qg, Eg � 1 and
combination 2(Qg + E2

g /Qg) � 1, the oscillation frequency
ω′ is weakly renormalized, however, the plasmonic modes
possess a wide instability range with almost constant incre-
ment. The increment is proportional to E0. When Qg ∼ 1, the
Landau damping mechanism suppresses the development of
the plasmon instability.

It should be stressed that the studied electrically induced
plasmon instability differs from the well-known Cherenkov
mechanisms, which can be actual for systems with two mobile
charged components (electrons + ions, electrons+polar
optical phonons, two-stream plasma) or in the case of
single-component plasma drifting under the grating, etc.
Indeed, it is accepted that in uniform plasma with a single

mobile charged component (the electrons in the case of
consideration) and with Maxwellian or shifted-Maxwellian
distributions there are no instabilities [58,62]. The studied
here instability is due to the impact of the electric field on
high-frequency electron dynamics.

The effect of the plasmon instability can lead to the
frequency windows of the negative absorption of THz
radiation in the plasmonic structures with deeply submicron
grating, as illustrated above for the example of the 2DEG
in AlGaAs/GaAs. We estimated that the effect can realized
in the frequency range of 3–5 THz for moderate electron
concentrations (3–5) × 1011 cm−2 under the applied electric
fields of 0.5–1.5 kV/cm. Although for these parameters the
criteria necessary for application of the collisionless approxi-
mation are met, we suggest that more correct determination
of characteristics of the negative absorption effect requires
numerical solutions of the Boltzmann-Vlasov equations with
electron relaxation processes included.

We suggest that presented results can be important
for deeper understanding of the plasma physics of low-
dimensional structures and useful for development of electri-
cally pumping THz optoelectronic devices.
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