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Quantum spin fluctuations provide a unique way to study spin dynamics without system perturbation. Here
we put forward an optical resonance shift spin noise spectroscopy as a powerful tool to measure the spin noise of
various systems from magnetic impurities in solids to free atoms and molecules. The quantum spin fluctuations
in these systems can shift the optical resonances by more than the homogeneous linewidth and produce huge
Faraday rotation noise. We demonstrate that the resonance shift spin noise spectroscopy gives access to the high-
order spin correlators, which contain complete information about the spin dynamics in contrast with the second-
order correlator measured by conventional Pauli-blocking spin noise spectroscopy. The high-order quantum
spin correlators manifest themselves as a comb of peaks in the Faraday rotation noise spectra in a transverse
magnetic field. This effect is closely related to the multispin flip Raman scattering observed in the Mn-doped
nanostructures.

DOI: 10.1103/PhysRevB.101.235416

I. INTRODUCTION

The quantum spin fluctuations were first predicted by
Felix Bloch back in 1946 [1]. With the development of the
experimental techniques, the optical spin noise spectroscopy
appeared and eventually became a powerful tool for the
spin dynamics investigation in a broad class of paramagnetic
media, from atomic gases to semiconductors [2,3]. In typical
experiments, the spin fluctuations within the small volume of
a paramagnetic material produce a stochastic Faraday rotation
of the linearly polarized light, which probes the system, and
the spin noise spectra are obtained by the Fourier transforma-
tion of the time-dependent Faraday rotation.

In a magnetic field perpendicular to the probe beam, the
spin noise spectrum shows peaks at the Larmor frequencies
of the studied spins, similar to the optically detected magnetic
resonance. Quantum-mechanically the spin noise signal can
be considered as a result of the interference of the probe beam
with the light emission caused by spin-flip forward scattering
of the probe light [4,5].

In atomic gases, the dependence of the light scattering
amplitude on the spin state of an atom is provided by the Pauli
blocking of the optical transitions in certain polarizations,
defined by the probed spins orientation. This scenario is also
realized for electrons and holes in semiconductors with the
pronounced spin-orbit interaction, such as GaAs or CdTe [6].
In the charged quantum dots (QDs), for example, for the
electron spin-up or spin-down state, the optical transitions
to the singlet heavy hole trion state are possible for σ+ or
σ−-polarized light only, respectively. In thermal equilibrium,
the number of spin-up and spin-down electrons is the same
on average, but stochastic spin fluctuations produce a weak
Gaussian Faraday rotation noise, which is measured. This

*smirnov@mail.ioffe.ru

type of experiments can be called “Pauli-blocking spin noise
spectroscopy.”

The small Faraday rotation angles in Pauli-blocking spin
noise spectroscopy make it difficult to detect the spin cor-
relation functions of the orders higher than two [7,8]. In the
same time, the complete information about the spin dynamics
including its intrinsic quantum properties can be obtained
from the complete set of the spin correlators of all orders
only [9–11]. As a minimal extension of the standard theories
the weak measurements of the third- and fourth-order spin
correlators were described [12,13].

An alternative connection between the spin system and
the light polarization is realized, for example, in diluted
magnetic semiconductors [14]. In this case, the probed spins
belong to the d-shell electrons of Mn2+ ions, embedded into
the crystal lattice. Mn atoms do not create localized charge
carrier states, and their spins do not affect interband optical
transitions directly. However, their spins are coupled to the
spins of the conduction electrons and holes by the sp-d
exchange interaction. The corresponding coupling constant
is very large, of the order of 1 eV. Due to this interaction,
fluctuations of the magnetic-ion spins modulate the energies
of the interband optical transitions (most often involving
localized excitons), and this creates a polarization noise of
the probe light, so we call this type of experiments “reso-
nance shift spin noise spectroscopy.” The resonance shifts
for typical Mn2+ concentrations are of the order of a few
millielectronvolts. Atomic-like hyperfine structure of Mn2+

spin levels was resolved in such experiments with the very
diluted CdMnTe quantum wells in weak magnetic fields [15].
The same mechanism is responsible for the observation of the
nuclear spin noise in GaAs [16,17]. Moreover the resonance
shift spin noise spectroscopy can be applied to any impurities
in the semiconductors or to the spins of nuclei of free atoms
and molecules.
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The general arguments, which followed the first Pauli-
blocking spin noise measurement [4] establish the relation
between the spin noise spectrum and the spin flip Raman
spectrum. In the case of the resonance shift spectroscopy, this
relation apparently breaks down. Indeed, there exists a phe-
nomenon of the multi-spin-flip scattering, when the resonant
Raman spectrum of Mn doped nanostructures shows a comb
of up to 15 equally spaced peaks [18–20]. These spectra are
explained by the scattering via the virtual magnetic-polaron
states, and the observed phenomenon is therefore essentially
quantum [21,22]. On the other hand, the Larmor precession
of the spin fluctuation of one, several or many Mn2+ ions
induces the peak in the spin noise spectrum at the single
Larmor frequency only, and not at its multiplies.

In this work, we show that the multispin flip Raman
scattering in diluted-magnetic structures is a counterpart of the
high-order quantum spin noise spectra, which can be observed
by means of resonance shift spin spectroscopy. We develop
a general theory of the resonance shift quantum spin noise
spectroscopy and describe in a unified way the spin noise and
Raman spectra. We demonstrate that the shape of the spectra
is different for the thermal and quantum spin noise. Detection
of the high-order spin correlators allows one to completely de-
scribe the spin dynamics, and to distinguish between Gaussian
and nonnormal spin fluctuations. In particular, we show that
for deep impurities in semiconductors and in atomic systems
the spin noise spectra strongly differ from the Gaussian noise
spectra.

The paper is organized as follows. In Sec. II, we derive
the general expression for the Faraday rotation noise spectrum
in the framework of the resonance shift spin noise spec-
troscopy. In Sec. III, we present a model of the semimagnetic
quantum wells and QDs, where we anticipate experimental
measurement of the higher-order spin correlators. In Sec. IV,
we establish the relation between the Faraday rotation noise
and Raman spin-flip spectra in different polarizations for this
specific system. In Sec. V, we calculate and describe the
spectra for the Gaussian spin noise and in Sec. VI, we describe
the nonnormal spin noise. Finally, we discuss the applications
of our theory to the different spin systems from the solid state
to free atoms and summarize our findings in Sec. VII.

II. GENERAL THEORY

Here we derive the most general expressions for the optical
signals in the resonance shift spin noise spectroscopy. We
denote the Hamiltonian of the spin system under study by
H0, which can include the interaction with external magnetic
fields and with the environment. The spin system interacts
with the excited states of the system described by the Hamilto-
nian Hexc, and we denote the interaction Hamiltonian by Hint.
Thus the total Hamiltonian has the form

H(t ) = H0 + Hexc + Hint + V (t ), (1)

where

V = −P†Ee−iωpt + H.c., (2)

describes the optical excitation of the excited states. Here, P
is the dipole moment operator (in the Schrödinger representa-
tion), ωp is the probe frequency, and E is the amplitude of the

incident electric field. The probe light induces a dipole polar-
ization, which is described by the Heisenberg time-dependent
operator P(t ). In Appendix A, we demonstrate that it has the
form P(t ) = Pψ (t ), where ψ (t ) is a dimensionless operator,
which satisfies the transparent equation

dψ (t )

dt
= i

h̄
P†Ee−iωpt − i

h̄
[Hexc + H̃int (t )]ψ (t ) − γψ (t ).

(3)
Here we introduced the interaction Hamiltonian in the inter-
action representation

H̃int (t ) = eiH0t/h̄Hinte
−iH0t/h̄ (4)

and an optical transition dephasing rate γ . Equation (3) can
be formally integrated, and the result for the time-dependent
exciton polarization reads1

P(t ) = i

h̄
P

∫ ∞

0
e−iωp(t−τ )−γ τ

× T exp

[
− i

h̄

∫ τ

0
H′

exc(t − τ ′)dτ ′
]

dτ (P†E ). (5)

Here, T exp denotes the normal time ordered exponential
(later times on the left) and H′

exc(t ) = Hexc + H̃int (t ) is an
effective time-dependent Hamiltonian of the excited states.
It is this part of the expression that contains information
about parameters of spin dynamics (H0). The obtained general
expression allows one to describe various physical systems
and experimental conditions. In the next section, we consider
a specific case, when this expression is greatly simplified.

The spin noise spectra are typically measured using the
linearly polarized light,

E = E0ex, (6)

where E0 is an amplitude of the probe light, and ex is a unit
vector along x axis. The optical Faraday and ellipticity signals,
F and E , respectively, are measured in the transmission or
reflection geometry. They are given by the real and imaginary
parts of the complex value [23]

F − iE = E ′∗
x E ′

y. (7)

Here, E ′ is the amplitude of the emitted (or scattered) light. It
consists of the contribution from the elastic scattering and the
secondary emission by the exciton dipole polarization:

E ′ = aE + bP(t ), (8)

where a and b are complex coefficients, which depend on the
geometry of the structure [17].

The Faraday rotation angle of the probe polarization plane
and the ellipticity angle are given by

θF − iθE = F − iE
I , (9)

where I = |E ′
x|2 is proportional to the intensity of the detected

light. Here we assume that the angles are small, θF,E � 1

1This polarization operator is projected on ground state of Hexc.
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or, equivalently, |E ′
y| � |E ′

x|. Usually the scattering is weak,
bPx � aE0, so by virtue of Eq. (8) we arrive to

θF + iθE = E ′
y

E ′
x

= b

aE0
Py. (10)

This expression shows that the spin signals are proportional to
the exciton polarization along y axis.

The optical signals noise spectra are defined as the Fourier
transform of the correlation functions:(

θ2
F,E

)
�

=
∫ ∞

−∞
〈θF,E (t )θF,E (t + τ )〉se

i�τ dτ. (11)

Here the angular brackets denote quantum mechanical averag-
ing and the subscript “s” denotes the symmetrized correlation
function

〈θ (0)θ (τ )〉s = 〈θ (0)θ (τ ) + θ (τ )θ (0)〉
2

. (12)

In the steady state, the averages do not depend on time t , so for
the rest of the paper, we set t = 0 in the correlation functions.
The symmetrization is related to the fact that the detected
light is almost classical and the optical spin signals are self-
homodyned [24–26]. From Eqs. (10) and (11), one can see
that the Faraday and ellipticity noise spectra are determined
by the Fourier transform of the correlation function of Py.
In Pauli-blocking spin noise spectroscopy, this correlator is
simply proportional to the spin noise spectrum. However, in
the case of the resonance shift spin noise spectroscopy, there
is no direct relation between them.

At the same time, the Raman spectrum of the scattered light
in polarization α is given by

Stot (ω) =
∫ ∞

−∞
〈E ′∗

α (t )E ′
α (t + τ )〉eiωτ dτ. (13)

In the general case the Raman spectrum consists of a δ-peak
at ω = ωp, which does not carry information about the spin
system, and the rest of the spectrum S(ω). It can be presented
as

S(� + ωp) = |b|2
∫ ∞

−∞
〈P∗

α (0)Pα (τ )〉ei�τ dτ. (14)

Thus we arrive again at the Fourier transform of the polariza-
tion correlation function.

The Faraday rotation noise spectra and Raman spin flip
spectra are generally expressed through the polarization cor-
relation functions [see Eqs. (10), (11), and (14)], while the
polarization is given by the general Eq. (5). In the next section
we formulate a specific model, where these spectra can be
easily measured.

III. MODEL

Let us specify the system, which we are going to study in
detail to obtain the specific expressions for the polarization,
which can be used to calculate Faraday rotation noise spectra
and Raman spin flip spectra.

As a model system for the resonance shift spin noise
spectroscopy we consider a II-VI semiconductor quantum
well doped with manganese. The spins of Mn2+ atoms can
be optically monitored via a localized exciton resonance. We

assume that the excitons are localized at defects, in QDs,
or at imperfections of the interfaces of a quantum well. In
this case in Eq. (1), H0 is the Hamiltonian of Mn2+ spin
system, Hexc is the exciton Hamiltonian, Hint describes the
interaction between exciton and Mn2+ spins. The Hamiltonian
Hexc describes the whole fine structure of the excitonic levels,
and includes the electron-hole exchange interaction. The spin-
dependent part of the interaction of magnetic atoms with
excitons stems from the exchange interaction with electron
and hole in the exciton. The general form of this interaction
is [27]

Hint = h̄
∑

i

[
ωe

ex,iS
eIi +

∑
α

ωh,α
ex,iS

h
αIi,α

]
, (15)

where i enumerates Mn2+ spins Ii, Se and Sh are the electron
and hole spins in the given exciton, respectively, ωe

ex,i and ωh,α
ex,i

are the corresponding exchange interaction constants with the
Cartesian index α = x, y, z. Due to the different symmetry of
the electron and hole Bloch wave functions in the � valley,
the electron exchange interaction is isotropic, while for the
heavy hole it is not. This anisotropy plays an important role
for this system and has the same origin as the anisotropy of
the effective g factor.

We focus on the Voigt geometry, when external magnetic
field is applied along x direction, perpendicular to the optical
axis z. The Mn2+ spin Hamiltonian takes a form

H0 = h̄�LIx, (16)

where

I =
N∑

i=1

Ii (17)

is the total spin of N Mn atoms in the exciton localization vol-
ume and �L = gμBB/h̄ is the Larmor precession frequency
in the magnetic field B with g being the g factor and μB

being the Bohr magneton. We assume the Mn concentration
to be small enough to neglect their exchange interaction. This
corresponds to the Mn concentration of a few percent or less.

We stress that we consider here the optical transitions to the
localized exciton state, while other types of transitions, e.g., to
the trion or to the biexciton state can be described in a similar
way. Let us make some other simplifying assumptions, which
make the theory transparent and the results very illustrating.
First, we neglect the transverse hole g factor, which is usually
very small [28]. Second, we assume that the x projection of the
electron spin does not change. This means that the magnetic
field is not weak, and the electron Zeeman energy exceeds the
interaction strength with the random spin components Ii,y and
Ii,z. In fact, Mn2+ spins can be partially polarized along the
magnetic field at low temperatures, and can create the effec-
tive exchange magnetic field along the same direction, which
can greatly exceed the external magnetic field for electrons.
Below for simplicity we consider only one electron spin state
(say, Sx = +1/2). This implicitly assumes that the splitting
of the electron spin sublevels exceeds the homogeneous and
inhomogeneous widths of the optical resonance. Under these
assumptions we arrive to the optical V-scheme, which is
shown in Fig 1. Here the exciton vacuum state |g〉 can be

235416-3



D. S. SMIRNOV AND K. V. KAVOKIN PHYSICAL REVIEW B 101, 235416 (2020)

FIG. 1. Quantum fluctuations of the Mn2+ spins (magenta ar-
rows) in the exciton localization volume (green) randomly shift the
exciton transitions energies. The states are characterized by the heavy
hole spin (red arrow) Jz = ±3/2, while the projection of the electron
spin (blue arrow) on the magnetic field does not change.

excited by σ+ or σ− polarized light to the exciton state with
the heavy hole spin Jz = ±3/2, respectively.

Without the exchange interaction with the magnetic im-
purities the two excitonic states are degenerate, so that the
exciton Hamiltonian reads

Hexc = h̄ω0nexc, (18)

where ω0 is the resonance frequency and nexc is the occupancy
of both exciton states. The exchange interaction leads to the
splitting of the two resonances, which we describe by

Hint = h̄ωex
2
3 Sh

z Iz. (19)

Here we neglect the total shift of the two resonances due to the
exchange interaction with electron (ωe

ex,i = 0) and consider
the hole exchange interaction along the z axis only [27].
Also for the simplicity we use the “box” model, setting equal
exchange interaction constants for all Mn2+ spins within the
localization radius of the exciton: ωh,α

ex,i = (2/3)ωexδα,z.
Under these assumptions, the two excitonic states are not

mixed. As a results, the circularly polarized σ± probe light
induces the exciton dipole polarization with the same helicity
P±(t ) = [∓Px(t ) − iPy(t )]/

√
2. From Eq. (3) we find that

dP±(t )

dt
= −i[ω0 ± ωexIz(t ) − iγ ]P±(t ) + i

h̄
|d|2E±e−iωpt ,

(20)
where d is the optical transition dipole moment (see
Appendix A). This equation clearly shows that the spin polar-
ization Iz(t ) shifts the exciton resonance energy ω0, which al-
lows one to optically monitor Mn2+ spin fluctuations. In fact,
it follows from Eqs. (4) and (16) that Iz(t ) = cos(�Lt )Iz +
sin(�Lt )Iy, but we prefer to keep the general notation Iz(t ),
which is valid for arbitrary spin Hamiltonian H0.

It is useful to solve Eq. (20) in the adiabatic approximation.
Provided �L � γ the Mn spin dynamics is slow as compared
with the exciton polarization relaxation. In this case one can

consider Iz(t ) as a parameter, which yields

P±(t ) = |d|2E±
h̄

e−iωpt

ω0 ± ωexIz(t ) − ωp − iγ
. (21)

This expression shows that (i) Mn spin polarization shifts the
exciton resonance frequency, and (ii) the relation between
Mn spin polarization and the exciton dipole polarization is
nonlinear. The latter makes it possible to detect high-order
spin correlators using the resonance shift spin spectroscopy.
Indeed the correlation functions of the polarization have the
form

〈P†
+(0)P±(τ )〉 = E∗

+E±e−iωpτ

∞∑
n,n′=0

(±1)n′
Cnn′

〈
In
z (0)In′

z (τ )
〉
,

(22)
where

Cnn′ = |d|4
h̄2

(−ωex )n+n′

(ω0 − ωp + iγ )n+1(ω0 − ωp − iγ )n′+1
. (23)

One can see that the second-order correlation function con-
tains the contributions from the spin correlation functions of
the high orders. So do the Faraday rotation correlation func-
tion and Raman spin flip spectra. This gives the experimental
access to the high-order spin noise spectra.

Generally, Iz(t ) in Eq. (21) should be considered as the
Heisenberg operator. Only when I is a large classical vector,
the corresponding operator can be replaced with its expecta-
tion value.

The adiabatic approximation can be often violated (see
Sec. V C), making one to use the general expression (5) for
the polarization. For Mn2+ spin system it reduces to

P±(t ) = i
|d|2

h̄
E±e−iωpt

∫ ∞

0
ei(ωp−ω0 )τ−γ τ

× T exp

[
∓iωex

∫ τ

0
Iz(t − τ ′)dτ ′

]
dτ. (24)

Here the inner integral can be solved as described in
Appendix A, but for the calculation of the spectra of the
secondary emitted light this expression is more convenient.

In this section, we expressed the exciton polarization as a
function of the Mn2+ spins [see Eq. (24)]. In the next section,
this expression will be used to derive the Faraday rotation
noise spectra and the Raman spin flip spectra.

IV. SPIN CORRELATION FUNCTIONS AND RESONANCE
SHIFT OPTICAL RESPONSE

The exciton polarization is given by Eq. (24), which
implicitly depends on Mn2+ spin fluctuations. Now let us
express the polarization correlation functions through the spin
correlation functions.

It is convenient to introduce the dimensionless exciton
polarization

p(t ) = − h̄γ

|d|2E0
P(t )eiωpt , (25)
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where E0 is the amplitude of the incident light. Then we
rewrite Eq. (24) as

p±(t ) = E±
E0

∫ ∞

0
e−iδk−kT exp [∓iJ (t )]dk, (26)

where

δ = (ω0 − ωp)/γ (27)

is a dimensionless detuning and

J (t ) =
∫ k

0
m(t − k′/γ )dk′ (28)

with

m(t ) = ωex

γ
Iz(t ) (29)

being a dimensionless splitting of the resonance. Further,
we note that for the localized excitons, the inhomogeneous
broadening usually exceeds by far the homogeneous one (see,
e.g., Ref. [18]). Therefore the spin noise and Raman spin flip
spectra should be averaged over the detuning as

〈p∗
α (0)pα (τ )〉 = 1

2π

∫ ∞

−∞
〈p∗

α (0)pα (τ )〉dδ. (30)

Here we introduced the factor 1/(2π ) to shorten the following
expressions.

A. Spectrum in circular polarization

In this section, we consider an auxiliary problem of σ+
incident light, so the scattered light has the same polarization,
α = +. In this case the noise spectrum of p+(t ) is proportional
to the Raman spin flip spectrum in σ+ polarization, see
Eq. (14). The spectrum in σ− polarization is the same.

We substitute in Eq. (30) the exciton polarization from
Eq. (26) and obtain the averaged correlation function

〈p∗+(0)p+(τ )〉 =
∫ ∞

0
e−2k〈[T eiJ (0)][T e−iJ (τ )]〉dk, (31)

where T denotes the reversed time ordering. The correlator in
this expression can be calculated using the cumulant expan-
sion.

Generally, the quantum noise statistics is completely de-
scribed by the series of cumulants of the random variable
[29–31]. In Appendix B, we obtain the general expressions
for the polarization correlation function and simplify it for
the Gaussian spin noise. To obtain a simple expression for
the polarization correlator let us consider again the adiabatic
approximation, �L � γ . In this case one can replace m(t −
k′/γ ) in Eq. (28) with m(t ). Then from Eq. (31) we obtain

〈p∗+(0)p+(τ )〉 =
∞∑

n=0

2n∑
l=0

(−1)n+l

22n+1

(
2n

l

)
〈ml (0)m2n−l (τ )〉,

(32)
where

(2n
l

)
is the binomial coefficient. This expression shows

again that the polarization correlator and Faraday rotation
noise spectra are determined by the spin correlation functions
of all orders because of the nonlinear relation between the
exciton polarization and the total Mn2+ spin in the limit
Iz 
 1 [see, e.g., Eq. (21)].

For Gaussian spin noise, using Eq. (B7), we obtain

〈p∗+(0)p+(τ )〉 =
∫ ∞

0
e−k2m2(τ )e−2kdk, (33)

where we introduced

m2(τ ) = 〈m2〉 − 〈m(0)m(τ )〉. (34)

This integral can be solved as

〈p∗+(0)p+(τ )〉 = 1

2

√
π

m2(τ )
e1/m2(τ ) erfc

(
1√

m2(τ )

)
,

(35)
where

erfc(x) = 2√
π

∫ ∞

x
e−y2

dy

is the complimentary error function.
If exchange interaction is weak, m(t ) � 1 one can use the

asymptotic expansion

〈p∗+(0)p+(τ )〉 = 1

2

∞∑
n=0

[
−m2(τ )

2

]n

(2n − 1)!! . (36)

This expression directly relates the spin correlation function
m2(τ ) with the polarization correlator.

B. Faraday rotation noise spectra and Raman
spectra in linear polarizations

Let us return to the linearly polarized probe light, Eq. (6).
Similarly to Eq. (26), the dimensionless exciton polarization
in this case reads

px(t ) =
∫ ∞

0
e−iδk−kT cos[J (t )]dk, (37a)

py(t ) = −
∫ ∞

0
e−iδk−kT sin[J (t )]dk, (37b)

where we introduced the notations

T cos(x) = T eix + T e−ix

2
, T sin(x) = T eix − T e−ix

2i
.

(38)
Then one can perform the calculations following the lines of
the previous subsection. For simplicity, we give the final result
for the adiabatic limit [cf. Eq. (33)]:[

〈p∗
x (0)px(τ )〉

〈p∗
y (0)py(τ )〉

]
=

∫ ∞

0
dke−2k−k2〈m2〉

[
cosh(k2〈m(0)m(τ )〉)
sinh(k2〈m(0)m(τ )〉)

]
.

(39)
These expressions along with Eq. (14) allow one to directly
calculate the Raman spectrum for the given Mn spin correla-
tion function. Here the integrals can be expressed through the
error function, and its asymptotic expansions can be found.
However, these expressions are cumbersome, and will not be
further needed.

As a first step towards the relation between Raman and spin
noise spectrum, we consider the Raman spectrum in crossed
(y) polarization in the limit 〈m(t )m(t + τ )〉 � 1. In this case,
the relation between the exciton dipole polarization and Mn
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spin polarization it linear, so from Eq. (39), we obtain the
spectrum

S(ω) =
∣∣∣∣b |d|2E0ωex

h̄γ 2

∣∣∣∣
2(

I2
z

)
ω−ωp

, (40)

where the spin noise spectrum of Mn2+ ions is given by

(
I2
z

)
�

=
∫ ∞

−∞
〈Iz(0)Iz(τ )〉ei�τ dτ. (41)

An analogous relation between the Raman spin flip and the
spin noise spectra was derived by Gorbovitskii and Perel
for Pauli-blocking spin noise spectroscopy [4]. Below we
demonstrate that generally a similar relation holds between
the multispin flip spectrum and the Faraday rotation noise
spectrum instead of the spin noise spectrum.

From Eq. (10), we obtain the correlation functions of the
Faraday rotation and ellipticity angles

〈θF (0)θF (τ )〉 =
∣∣∣∣ |d|2b

h̄γ a

∣∣∣∣
2

〈p′′
y (0)p′′

y (τ )〉s, (42a)

〈θE (0)θE (τ )〉 =
∣∣∣∣ |d|2b

h̄γ a

∣∣∣∣
2

〈p′
y(0)p′

y(τ )〉s, (42b)

where one and two primes denote the real and imaginary parts
of the polarization, respectively. Similarly to Eq. (31), we
average the correlation functions of p′

y(τ ) and p′′
y (τ ) over the

detuning making use of Eq. (37b), and obtain

〈p′′
y (0)p′′

y (τ )〉
s
= 〈p′

y(0)p′
y(τ )〉

s
= 1

2 〈p∗
y (0)py(τ )〉

s
. (43)

This expression differs from the second line of Eq. (39) by a
factor and symmetrization.

Thus, the noise spectra of the Faraday rotation and el-
lipticity angles can be calculated as a symmetrized Raman
spectrum in crossed linear polarizations. In the next section,
we calculate and describe these spectra.

V. FARADAY ROTATION NOISE SPECTRUM
IN VOIGT GEOMETRY

In order to calculate the Faraday rotation noise and Raman
spin flip spectra one has to (i) find the spin correlation func-
tions and (ii) use them to calculate the spectra using Eq. (39).

A. Spin correlation functions

Here we calculate the correlation functions for the case of
Zeeman interaction given by Eq. (16).

The average Mn spin is oriented along B and equals to

〈Ix〉 = NsBs

(
gμBBs

kBT

)
, (44)

where s = 5/2 is a single Mn2+ spin, Bs(x) is the Bril-
louin function, kB is the Boltzmann constant, and T is the
temperature. Using the commutation relations for the spin
components, we find also the correlators

〈IyIz〉 = −〈IzIy〉 = i

2
〈Ix〉, (45a)

〈I2
z 〉 = 〈

I2
y

〉 = N

2

[
s(s + 1) − 〈

s2
x

〉]
. (45b)

Notably the first of these two equations is responsible for
the quantum part of the spin correlation functions. Indeed,
for classical noise the correlation functions do not depend on
the order, in which the fluctuating quantities are multiplied.
Moreover, Eq. (45b) shows that even at zero temperature,
when 〈s2

x〉 = s2, zero-point spin fluctuations 〈I2
z 〉 = Ns/2 are

present.
The time correlation functions for τ > 0 obey the equa-

tions

d

dτ
〈Iz(0)Iz(τ )〉 = �L〈Iz(0)Iy(τ )〉 − 〈Iz(0)Iz(τ )〉

τs
, (46a)

d

dτ
〈Iz(0)Iy(τ )〉 = −�L〈Iz(0)Iz(τ )〉 − 〈Iz(0)Iy(τ )〉

τs
, (46b)

where τs is a transverse spin relaxation time (we assume that
h̄/τs � kBT ). The solution of these equations with the initial
conditions (45) reads

〈Iz(0)Iz(τ )〉 = 1

2

[(〈
I2
z

〉 + 〈Ix〉
2

)
ei�Lτ

+
(〈

I2
z

〉 − 〈Ix〉
2

)
e−i�Lτ

]
e−|τ |/τs . (47)

Then using the definition (29) we find the dimensionless
correlation function

〈m(0)m(t )〉 = (μ+e−i�Lτ + μ−ei�Lτ )e−|τ |/τs , (48)

where we introduced

μ± = ω2
ex

2γ 2

(〈
I2
z

〉 ∓ 〈Ix〉
2

)
. (49)

The correlator 〈m(0)m(t )〉 ultimately defines the noise spectra
of Faraday rotation and ellipticity, which we analyze in the
next subsection.

B. Faraday rotation noise and Raman spectra

Similarly to Sec. IV, it is convenient to start from the anal-
ysis of the exciton dipole polarization correlation function in
circular polarizations, which define the corresponding Raman
spectra.

To shorten the notation we introduce the scaled spectrum
[cf. Eq. (14)]

S++(�) =
∫ ∞

−∞
〈p∗+(0)p+(τ )〉ei�τ dτ. (50)

From Eqs. (36) and (48), one can see that the spectrum
consists of the peaks at frequencies n�L, where n is an integer.
The general form of the spectrum of circularly polarized
exciton dipole polarization is

S++(�) =
∞∑

n=1

∑
±

P±
n (� ∓ n�L ), (51)

where P±
n (�) are even functions peaked at zero and we

neglect the peak at zero frequency. The explicit expressions
for them are given in Appendix C. An example of the Raman
spectrum is shown in Fig. 2 by the green line.
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FIG. 2. The noise spectrum of Faraday rotation, SFR(�), (black
line), and multispin flip Raman spectra Sxx (�) (blue line with
filling), Sxy(�) (red line with filling), and S++(�) (green line),
calculated after Eqs. (51), (60), and (61). The yellow stripe covers the
zero frequency peak, which does not carry information about the spin
dynamics. The parameters of the calculation are T = 0,

√
Nωex/γ 


1, and τs�L = 20. The peaks correspond to the multiple flips of
Mn2+ spins (magenta arrows in the sketch) mediated by the exchange
interaction with the heavy hole spin (red arrow) in the exciton
localization area (green).

In the illustrative case of m(t ) � 1 one can substitute
Eq. (48) in the asymptotic Eq. (36), which yields

S++(�) =
∞∑

n=1

∑
±

(2n − 1)!!

2n
μn

±
τs/n

1 + [(�/n ∓ �L )τs]2 .

(52)
One can see that the spectrum consists of Lorentzian peaks at
the frequencies ∓n�L with the areas (divided by 2π )

A±
n = (2n − 1)!!

2n+1
μn

± (53)

and the widths n/τs. We stress that the second-order spin
correlation function (47) contains the spin precession frequen-
cies ±�L only. Therefore the appearance of the overtones
is a fingerprint of the contributions of the higher-order spin
correlators.

For high-order contributions, n 
 1, Eq. (52) diverges, and
the above analysis is inapplicable. Generally, one has to start
from Eq. (33), where

m2(τ ) =
∑
±

μ±(1 − e∓i�Lτ e−|τ |/τs ) (54)

according to Eq. (48). Thus we obtain

〈p∗+(0)p+(τ )〉 =
∫ ∞

0
e−2ke−k2(μ++μ− )

× exp[k2(μ+e−i�Lτ + μ−ei�Lτ )e−|τ |/τs ]dk.

(55)

The exponential in the second line can be expanded in the
Taylor series as

〈p∗+(0)p+(τ )〉 =
∫ ∞

0
e−2ke−k2(μ++μ− )

×
∞∑

n=0

k2n

n!
(μ+e−i�Lτ +μ−ei�Lτ )ne−n|τ |/τs dk.

(56)

Again the correlation function contains harmonics ∝ e∓in�Lτ ,
so the spectrum consists of the peaks at the frequencies ±n�L.
Similarly, we expect that the high harmonics can be observed
in the pump-probe experiments.

One general property follows from the ratio of prefactors
in Eq. (48). From the definition (41) (without symmetrization)
one can see that (

I2
z

)
�L(

I2
z

)
−�L

= e−h̄�L/(kBT ). (57)

Generally, this relation is inherited by the polarization spectra
[Eq. (50)] in the form

S++(�)

S++(−�)
= e−h̄�/(kBT ), (58)

which is well known for the Raman spectra.
The Raman spin flip spectra in σ+ and in σ− polarizations

coincide and are given by Eq. (51):

S−−(�) = S++(�). (59)

We recall that the two circular polarizations are independent
in the lowest order in the incident electric field, so the
cross-polarized spectra in circular polarizations vanish:
S±∓(�) = 0.

The Raman spin flip spectra in linear polarizations and
Faraday rotation and ellipticity noise spectra can be calculated
using Eqs. (39) and (43) for the adiabatic regime. Similarly to
Eq. (51) the Raman spectra take the form

Sxx(�) = Syy(�) =
∞∑

k=1

∑
±

P±
2k (� ∓ 2k�L ), (60a)

Sxy(�) = Syx(�) =
∞∑

k=0

∑
±

P±
2k+1(� ∓ (2k + 1)�L ). (60b)

The Faraday rotation (and ellipticity) noise spectra are
given by

SFR(�) = Sxy(�) + Sxy(−�)

2
(61)

[see Eq. (43)], which differs from (θ2
F )

�
(and (θ2

E )
�

) by a
factor.

In Fig. 2, we compare the different spectra in the limit
of zero temperature T = 0 and strong exchange interaction√

Nωex 
 γ . All the spectra show the comb of peaks at fre-
quencies, which are multiples of the Larmor spin precession
frequency. The peaks in the Raman spectra correspond to
the multiple spin flips mediated by the excitonic state, as
shown in the top of the figure. Importantly, multiple spin flips
take place in one process due to the RKKY-type exchange
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interaction between Mn2+ spins mediated by the heavy hole
spin. The same mechanism can also lead to the double spin
flips of donor bound electrons [32] and of electrons confined
in the nanoplatelets [33]. In the Faraday rotation noise spectra,
the peaks at frequencies ±n�L reflect the contributions of
quantum spin noise correlation functions of the order 2n. We
recall that the average spin polarization along z axis is absent,
so the correlators of the odd orders vanish.

In the limit of zero temperature the spectrum contains the
Stokes components only. In this limit μ+ = 0 and A−

n decay
very slowly obeying the power law:

A−
n ∝ 1/

√
n. (62)

The Raman spin flip spectra in Fig. 2 are asymmetric (contain
only the peaks at negative frequencies) because the energy
can not be absorbed from the zero-point spin fluctuations.
Alternatively one can say that the Mn2+ spins are all oriented
along x axis and can be flipped only in the opposite direction.
The Raman spectra in linear polarizations are similar, but co-
polarized (blue curve) and cross-polarized (red curve) spectra
consist of the peaks at even and odd frequencies only, respec-
tively, see Eqs. (60). In the same time, the Faraday rotation
noise spectrum (black curve) is symmetric and contains the
odd peaks only, as it follows from Eq. (61).

In the limit of zero temperature, the expressions for the
spectra are particularly simple even beyond the adiabatic
approximation. From the spin correlation function (48) and
Eqs. (B8) we find the areas of the peaks in the form [18,21,22]

A−
n = 1

2τ0

∫ ∞

0
e−t/τ0

In
x (t )

n!
e−Ix (t )dt . (63)

Here we introduced the notations t = k/γ , τ0 = 1/(2γ ) and 2

Ix(t ) = I
ω2

ex

�2
tot

[1 − cos(�tott )] (64)

with I = Ns and �tot =
√

ω2
ex + �2

L. Physically, Ix(t ) is
the change of Ix during the spin precession in the sum
of the exchange and external magnetic fields for the time
t . The integrand in Eq. (63) has a form of the probability
of the change of Ix by n in the Poisson distribution with the
average Ix(t ). The integration describes the average of this
probability during the exponential exciton decay described by
e−t/τ0 . Thus, in this particular case, we have arrived to the
expression obtained in Refs. [21,22] in the model of scattering
via virtual magnetic polaron states.

Figure 3 shows the spectra for different temperatures, or
equivalently for different magnetic fields. For better visibility,
we focus on the Raman spectrum S++(�), while the Faraday
rotation noise spectrum can be obtained by selecting the odd
numbered peaks and symmetrizing them in frequency, see
Eq. (61). At high temperature (red curve), the spectrum is
symmetric, which corresponds to purely thermal spin fluc-
tuations. In the limit ωex

√
N 
 γ , the peaks are very broad

2The integral in Eq. (63) converges at Ix (t ) � 1. Since N 
 1
one has either ωex � �L or �Lt � 1, so one can replace �tot with
�L and find Ix (t ) = 〈J 2(0)〉s.

FIG. 3. Circular dipole polarization noise spectra, S++(�), cal-
culated after Eq. (51) in the limit of strong exchange interaction
(
√

Nωex/γ 
 1) for τs�L = 20 and for different temperatures, as
indicated in the plot.

and strongly overlap. At high frequencies, the spectrum is
described by

S++(�) = πγ

ωex

√
3τs

2Ns(s + 1)|�| . (65)

The fact that S++(�) decreases with increase of ωex is caused
by the large splitting of the two excitonic resonances in this
limit and a small range of values of δIz, which produce sizable
Faraday rotation, see Eq. (21). With decrease of the tempera-
ture the spectrum becomes asymmetric, which evidences the
increasing role of noncommutativity of spin components.

Observation of high-order spin correlators is possible due
to the nonlinear relation between dipole polarization and the
total Mn2+ spin. Similarly, noise of the linear birefringence
was recently shown to produce the peak at the double Larmor
frequency for cesium atoms [34]. Additional satellite lines in
the spin noise spectra can also appear under the ac driving of
the system [35–38]. Here by contrast we consider the static
magnetic field only.

C. Favorable conditions for the measurement
of the high-order correlators

To successfully apply the resonance shift spin noise spec-
troscopy the exchange interaction should be quite strong.
Indeed, in the opposite limit of weak interaction, μ± � 1, the
area of the n-th peak is given by Eq. (53) and is proportional
to ω2n

ex . Therefore the exchange interaction should be strong,
which is easily realized in semimagnetic semiconductors and
many other systems, see Sec. VII.

Experimentally, it is easier to measure the Faraday rota-
tion noise spectra in the sub-GHz frequency range, which
corresponds to the weak magnetic fields B � 40 mT. In this
case, the average spin polarization is small, and we find from
Eq. (48) the dimensionless spin correlation function

〈m(0)m(τ )〉 = 35Nω2
ex

12γ 2
cos(�Lτ )e−|τ |/τs . (66)
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FIG. 4. Faraday rotation noise spectra calculated after Eq. (C3)
for the typical experimental parameters: T = 2 K, N = 50,
Bexch = h̄ωex/(μBg) = 1.5 T with g = 2, h̄γ = 0.33 meV, and
�Lτs = 20. The black and red curves correspond to the strong
(B = 6 T, �L/(2π ) = 168 GHz) and moderate (B = 40 mT,
�L/(2π ) = 1.1 GHz) external magnetic field, respectively. The inset
compares Gaussian noise spectrum (black curve) with the Faraday
rotation noise for a single spin I = 1/2 (blue curve) and I = 5/2
(magenta curve) in the limit T → 0 and ωex → ∞ for �Lτs = 30 .

The areas of the peaks decay quickly in this limit even despite
the strong exchange interaction. The Faraday rotation noise
spectrum for the typical experimental conditions for B =
40 mT is shown in Fig. 4 by red curve. One can see that the
peak at the frequency 3�L is much smaller, than the peak at
�L, and the peak at 5�L is hardly visible in this limit.

More favorable conditions for the measurement of the
high-order spin correlations are realized in strong magnetic
fields, when the spin polarization is large, but the adiabatic
approximation can be violated in this case. The spin noise
spectrum for B = 6 T is shown by the blue curve in Fig. 4,
where one can distinctly see many peaks at the odd multiples
of �L. In this case, we obtain from Eq. (48)

〈m(0)m(τ )〉 = 5Nω2
ex

4γ 2
ei�Lτ e−|τ |/τs . (67)

The areas of the peaks decay slowly in this case as described
by Eq. (62). This limit corresponds to the dominance of the
quantum spin fluctuations over the classical ones, and was
not reached nor approached yet. To measure the Faraday
rotation noise in the high frequency range one has to use
special techniques, such as pulse trains [39] or heterodyne
detection [40]. Nevertheless, we believe that this experimental
challenge will be dealt with in the nearest future.

VI. NON-GAUSSIAN SPIN NOISE

In the previous sections, we described the Faraday rotation
noise spectra, and demonstrated that they give access to
the high-order quantum spin correlation functions. However,
under the assumption of many independent Mn2+ spins in the
exciton localization volume, the high-order spin correlation
functions all can be reduced to the second-order correlator. So

it is interesting to go beyond this approximation and to study
the non-Gaussian spin noise.

Generally, the noise spectrum is defined by Eq. (11), where
the Faraday rotation and the ellipticity angles are related
to the exciton polarization by Eq. (10). Using the averaged
polarization correlation function (43) we find the Faraday
rotation noise spectrum in the form

SFR(�) =
∫ ∞

−∞
〈p∗

y (0)py(τ )〉
s
ei�τ dτ, (68)

where the dimensionless polarization is given by Eq. (37b).
In the adiabatic approximation, �L � γ , using the
definition (28), we obtain

py(t ) = −
∫ ∞

0
e−iδk−kM(t )dk, (69)

where we introduced the operator

M(t ) = sin[km(t )]. (70)

Then we perform averaging over the detuning, as defined in
Eq. (30) and obtain the spectrum

SFR(�) =
∫ ∞

−∞
dτei�τ

∫ ∞

0
dke−2k〈M(0)M(τ )〉s. (71)

For non-Gaussian spin noise, the cumulants of m(0) and m(t )
allow one to calculate this correlation function similarly to
Appendix B.

For example, in the presence of the resident charge carriers,
Mn2+ spins are coupled with the carrier-mediated exchange
RKKY interaction, which may eventually lead to the transi-
tion into the ferromagnetic phase [41]. For the Mn2+ concen-
tration approaching the paramagnetic-ferromagnetic transi-
tion, their spins are no longer independent, and the spin noise
in non-Gaussian. The spin fluctuations in this case can be
described theoretically using the Landau theory [42,43], effec-
tive polaron Hamiltonian [44,45], dynamical mean field the-
ory [46,47], or using more sophisticated approaches [48,49].
In the vicinity of the phase transition the effective Larmor
frequency decreases [50] and role of higher-order cumulants
increases [51].

However, in view of the application of the resonance shift
spin noise spectroscopy to other systems we consider another
situation. Namely, let us study the Faraday rotation noise
induced by a single spin I (N = 1) coupled to the optical
resonance. In this case, all the cumulants are equally important
[see Eq. (B5)], so that the spin noise is strongly non-Gaussian.
This limit can be realized, e.g., for deep impurities or atomic
systems, see the next section.

For a single spin, it is easier to calculate the Faraday
rotation noise spectrum directly using the spin density matrix
formalism, than using the cumulant expansion. We find the
operator M(t ) from the equation of motion

dM(τ )

dτ
= i

h̄
[H0, M(τ )] + L{M(τ )}, (72)

where H0 is defined in Eq. (16) and L is the Lindblad operator,
describing the spin relaxation. Provided the transverse spin
relaxation time τs is much shorter than the longitudinal one

235416-9



D. S. SMIRNOV AND K. V. KAVOKIN PHYSICAL REVIEW B 101, 235416 (2020)

(T1), we write the Lindblad operator in the form

L{M(τ )} = 1

τs

[
2IxM(τ )Ix − I2

x M(τ ) − M(τ )I2
x

]
. (73)

For the strong probe light (in higher orders in E0), the quantum
back action should be taken into account by the additional
term λ/2[Iz, [Iz, M(τ )]], where λ describes the strength of
the measurements [52,53]. This allows one to describe the
quantum Zeno effect [54,55] and to trace the transition to the
telegraph spin noise with increase of the intensity of the probe
light.

The kinetic equation has a trivial initial condition M(0) =
sin(km), where m is the Schrodinger operator defined in
Eq. (29). Finally, the correlation function in Eq. (71) should
be calculated using the steady-state density matrix

ρ = e−H0/(kBT )
/

Tr
(
e−H0/(kBT )

)
. (74)

As an example, let us consider I = 1/2. In this case,

sin(km) = 2 sin

(
kωex

2γ

)
Iz. (75)

Then the solution of Eq. (72) simply reads

M(τ ) = 2 sin

(
kωex

2γ

)
[Iz cos(�Lτ ) + Iy sin(�Lτ )]e−τ/τs .

(76)
For any temperature, the correlation function is the same:

〈M(0)M(τ )〉s = sin2

(
kωex

2γ

)
cos(�Lτ )e−|τ |/τs . (77)

Substituting this function in Eq. (71), we find the non-
Gaussian Faraday rotation noise spectrum for I = 1/2:

SFR(�) = 1

8

ω2
ex

ω2
ex + 4γ 2

[P1(�) + P1(−�)]. (78)

This spectrum is shown by the blue curve in the Fig. 4.
Here the main difference with the normal spin noise is the
appearance of the peaks at the frequencies ±�L only instead
of the comb of the peaks. Note that the shape of the spectrum
in this case formally coincides with the spectrum of spin
fluctuations [Eq. (41)], which is usually measured by the
Pauli-blocking spin noise spectroscopy.

For larger I , sin(km) can be presented as a linear combina-
tion of the operators In

z with odd n � 2I . As a result, the high-
order spin correlators can be reduced to a few lower orders,
and the spectrum consists of a finite number of peaks. The
maximum number is nmax = 2[I − 1/2] + 1, where square
brackets denote the integer part. Similarly, in the multispin flip
Raman spectra in circular polarization the maximum number
of peaks is 2I , which corresponds to the fact that a single spin
can not be flipped more than 2I times in one direction.

The Faraday rotation noise spectrum for a single spin
I = 5/2 (in the limit T = 0) is shown in the inset in Fig. 4
by a magenta curve. One can see that the frequency of the
last peak is 5�L, and the peaks are much broader, than for
the Gaussian spin noise. This indicates that the higher-order
spin correlators generally contain more information than the
second-order one.

VII. DISCUSSION AND CONCLUSION

In the heterostructures with the resident charge carriers, the
Faraday rotation noise spectra can contain the two contribu-
tions provided by the Pauli-blocking and optical resonance
shift mechanisms, which originate from charge carrier spins
and spins of magnetic impurities (or nuclei), respectively.
Typically, the corresponding effective g factors are differ-
ent, and therefore these contributions are separated in the
frequency domain. In the same way, the contributions of
these two mechanisms to the Raman spin flip spectra can be
separated [19]. Moreover, if the inhomogeneous broadening
is smaller, than the homogeneous one, the Pauli-blocking and
resonance shift contributions can be distinguished by their
dependence on the optical frequency of the probe light, ω0.
This approach is known as the optical spectroscopy of spin
noise [56] and was used to separate the spin and charge
related contributions to the Faraday rotation noise spectra for a
single QD [57,58]. For example, in the case of Pauli-blocking
mechanism, the power of Faraday rotation noise reaches its
minimum exactly at the optical resonance [56], while in case
of the resonance-shift mechanism it should have a maximum
(the ellipticity noise demonstrates the opposite behavior).

To detect the higher-order spin correlators, the ratio be-
tween the exchange broadening of the exciton resonance√

Nωex should be comparable to or larger than the homoge-
neous linewidth γ , as discussed in Sec. V C. This condition is
easily satisfied in Mn-doped QWs [18] and QDs [20], where
up to 15 peaks in the Raman spin flip spectra are visible. For
these structures

√
Nh̄ωex ∼ 2 meV and h̄γ ∼ 1 meV.

For Mn-doped nanosystems, the number of the probed
spins is typically very large N � 100, and the total spin
noise is almost Gaussian. However with increase of the Mn2+

concentration a limited number of closely located pairs of
magnetic atoms appears. The strength of the exchange in-
teraction in a pair can be of the order of 0.5 meV [59–61],
and the ground state of the pair is the singlet spin state. The
difference between the interaction constants with the heavy
hole in the localized exciton for the two spins in a pair leads
to the mixing between singlet and triplet states. We expect
that it will manifest itself as another comb of peaks with the
frequencies a bit larger than n�L in Faraday rotation noise
spectrum. Due to the small number of pairs their contribution
is non-Gaussian, and therefore contains detailed information
about the spin dynamics of the pair of strongly coupled spins.

Importantly, the resonance shift quantum spin noise spec-
troscopy can be applied to a very broad class of spin systems.
For example, it can be applied to measure the nuclear spin
fluctuations in QDs. In this case the main requirement for
the detection of high-order spin correlators is the sizable
hyperfine interaction strength as compared with the inverse
lifetime of the excited state. For example, in GaAs-based
QDs the hyperfine interaction constant for electrons is A ≈
100 μeV [17,62,63], so for small QDs with N ∼ 104 one
has

√
Nh̄ωex ∼ A/

√
N ∼ 1 μeV, which is the typical exciton

homogeneous linewidth [64]. Thus we expect that the higher-
order nuclear spin correlators can be measured for small QDs
as well as for the small colloidal nanocrystals.

Resonance shift spin noise spectroscopy is particularly use-
ful, when the number of probed spins is small, because in this
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case the high-order spin correlators can not be reduced to the
lower orders. To measure these correlation functions, the spin-
related (e.g., hyperfine) structure of individual optical transi-
tions should be visible. There are many examples of such sys-
tems: For NV− centers in diamond, the hyperfine interaction
constant with the nearest C13 atom can reach 0.1 μeV [65],
which is approximately two times larger, than the ho-
mogeneous linewidth at liquid helium temperatures [66].
For rare earth ions, A can reach 10 μeV, while the homoge-
neous linewidth is a few times smaller [67]. In the past few
years the van der Waals heterostructures are under intense
investigation. For localized spatially indirect excitons, the
hyperfine interaction induced spin relaxation time is predicted
to be T ∗

2 ∼ 1/(
√

Nωex) ∼ 1 ns [68,69], which is an order of
magnitude shorter, than the exciton lifetime 1/γ = 10 ns [70],
so that the nuclear related broadening of the optical transition
exceeds its linewidth by an order of magnitude. The similar
situation is realized for the lead halide perovskites where
T ∗

2 is comparable with 1/γ [71]. So, these systems can
be efficiently studied with the resonance shift nuclear spin
noise spectroscopy. Apart from the solid state physics, the
hyperfine structure of optical transitions is quite routinely
observed for atoms, such as K, Na, Rb, Cs; and for simple
molecules, such as I2 [72]. Therefore these systems are also
promising for the resonance shift spin noise spectroscopy.

In conclusion, we have developed a theory of a class of
optical phenomena that occur in optically transparent solids
with localized spins (e.g., Mn2+ spins in diluted magnetic
semiconductors), forming a basis for a set of experimental
methods, which can be generically called resonance shift
spin noise spectroscopy. The distinctive feature of these phe-
nomena is that the spins do not directly participate in the
probed optical transitions (e.g., excitonic ones), but they shift
such transitions via the spin-spin interactions. To demonstrate
the universality and power of this approach, we obtained
the expressions for multispin flip Raman spectra in diluted-
magnetic quantum wells and calculated the Faraday rotation
noise spectra. We predict multiple overtones of the Larmor
frequency in the spectra, which reflect the contributions of the
high-order correlation functions of the spin fluctuations. Our
predictions open a way for the experimental investigation of
high-order spin noise, including quantum noise. Our approach
is directly extendable to a wide range of solid-state and atomic
systems.
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APPENDIX A: CALCULATION OF THE POLARIZATION

We start from the general form of the Hamiltonian (1). Its
Hilbert space is a direct product of the states of the spin system

and the excitonic states including exciton vacuum state. For
heavy hole excitons there are four states, which can be labeled
by the electron spin projection Se

z = ±1/2 and the hole spin
Sh

z = ±3/2. The excitonic states can be denoted as |k〉, where
k = 1, 2, . . . In the first order in the incident field amplitude,
one can consider a single exciton states only, so the exciton
Hamiltonian has the form

Hexc =
∑

k

Hk′k
excc†

k′ck, (A1)

where ck (c†
k ) are the annihilation (creation) operators for the

states |k〉. This Hamiltonian describes the fine structure of
the excitonic levels and exciton interaction with the external
magnetic field.

The coherent exciton generation is described by Eq. (2),
where

P =
∑

k

dkck (A2)

with dk being the dipole moments of the excitonic states.
In the particular model, which is used in the derivation of
Eq. (20), there are two excitonic states with the dipole mo-
ments d± = d (−ex ∓ iey)/

√
2, where eα are the unit vectors

along the corresponding axes.
The Hamiltonian H0 describes the magnetic spin system

only and does not contain operators ck and c†
k . Moreover, the

Hamiltonian of the spin-exciton exchange interaction has the
form

Hint =
∑
k,k′,i

IiHkk′
int c†

kck′ . (A3)

Note that this Hamiltonian contains off diagonal terms (with
k �= k′) and coincides with Eq. (15).

The operator of the system evolution is

U = T exp

[
− i

h̄

∫ t

0
H(t ′)dt ′

]
, (A4)

and the Heisenberg polarization operator is

P(0)(t ) = U †PU . (A5)

We are interested in the contribution P(t ) to P(0)(t ) only,
which is linear in the amplitude of the probe light E. This
operator acts only in the Hilbert space of the exciton vacuum
state, so it is given by

P(t ) = e
i
h̄ H0t P

∫ t

0
e− i

h̄ (H0+Hexc+Hint )τ
i

h̄
(P†E )e− i

h̄ H0(t−τ )dτ.

(A6)
Since the spin Hamiltonian H0 commutes with P, this expres-
sion can be written as

P(t ) = i

h̄
P

∫ t

0
�(t, τ )dτ (P†E ), (A7)

where

�(t, τ ) = e
i
h̄ H0t e− i

h̄ (H0+Hexc+Hint )τ e− i
h̄ H0(t−τ ). (A8)

To simplify this expression, we note that

∂�(t, τ )

∂τ
= − i

h̄
�(t, τ )[Hexc + H̃int (t − τ )] (A9)
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with H̃int (t ) given by Eq. (4). One can readily see that
�(t, 0) = 1, so the solution of this equation is

�(t, τ ) = T exp

{
− i

h̄

∫ τ

0
[Hexc + H̃int (t − τ ′)]dτ ′

}
.

(A10)
Substituting this expression in Eq. (A7) we see that P(t ) =
Pψ , where

ψ= i

h̄

∫ t

0
T exp

{
− i

h̄

∫ τ

0
[Hexc + H̃int (t − τ ′)]dτ ′

}
dτ (P†E )

(A11)
in agreement with Eq. (5). One can readily check that it
satisfies Eq. (3) indeed.

APPENDIX B: CUMULANT EXPANSION

The generating function for the cumulants of J (0) and
J (τ ) can be taken in the following form:

K = ln〈eiαJ (0)−iβJ (τ )〉. (B1)

Its Tailor series defines the cumulants κ (J l (0),J (n−l )(τ )) as

K =
∞∑

n=1

n∑
l=0

(
n

l

)
αl (−β )n−lκ (J l (0),J (n−l )(τ )). (B2)

Comparing this expression with the correlator in Eq. (31), we
find

〈[T eiJ (0)][T e−iJ (τ )]〉

= exp

{ ∞∑
n=1

2n∑
l=0

(−1)n+l

(2n − l )!l!
κ (J l (0),J (2n−l )(τ ))

}
, (B3)

where we took into account that the cumulants of the odd
orders vanish in the absence of the spin polarization along the
z axis (〈m(t )〉 = 0). The cumulants of the operators should be
calculated using the normal time ordering for the powers of
J (τ ), reverse time ordering for J (0) and putting J (0) always
to the left of J (τ ).

To simplify the following, we assume that the Mn2+ spins,
Ii in Eq. (17), are independent. In this case J (t ), as defined in
Eq. (28) also consists of N independent contributions Ji(t ) ∝
1/N . Then a cumulant of the sum of independent variables
takes the form [31]

κ (J l (0),J (2n−l )(τ )) =
N∑

i=1

κ
(
J l

i (0),J (2n−l )
i (τ )

)
. (B4)

From this relation one can see the scaling law for the cumu-
lants

κ (J l (0),J (2n−l )(τ )) ∝ 1/N2n−1. (B5)

The larger is N the less important are the cumulants of the
high orders.

In the limit of many independent Mn2+ spins, N 
 1, one
can neglect all the cumulants except for n = 1 (the second-
order one). This corresponds to the normal or Gaussian spin
noise. In this case Eq. (B3) reduces to

〈T eiJ (0)T e−iJ (τ )〉 = exp(〈J (0)J (τ )〉 − 〈J 2(0)〉s), (B6)

and from Eq. (31), we obtain

〈p∗+(0)p+(τ )〉 =
∫ ∞

0
e−2k+〈J (0)J (τ )〉−〈J 2(0)〉s dk. (B7)

The second-order correlator of J (t ) can be presented as
a double integral using its definition (28). The correlation
function 〈m(t1)m(t2)〉 depends on t1 − t2 only, so the double
integral can be reduced to a single integral as follows:

〈J (0)J (τ )〉 =
∫ k

−k
(k − |k′|)〈m(0)m(τ + k′/γ )〉dk′, (B8a)

〈J 2(0)〉s = 2
∫ k

0
(k − k′)〈m(0)m(k′/γ )〉sdk′. (B8b)

Substitution of these expressions in Eq. (B7) yields the polar-
ization correlation function, which defines, for example, the
Raman spin flip spectrum, see Eq. (50).

In order to describe the spectra beyond the adiabatic ap-
proximation in the zero temperature limit we use Eqs. (48)
and (B8) to obtain

〈J (0)J (τ )〉 = 〈J 2(0)〉se
i�Lτ−|τ |/τs , (B9a)

〈J 2(0)〉s = Ns
ω2

ex

�2
L

[1 − cos(�Lk/γ )], (B9b)

where we took into account that τsγ 
 1. Substitution of
these expressions in the polarization correlation function (B7)
yields Eq. (63).

APPENDIX C: SHAPE OF THE PEAKS

In the realistic limit τsγ 
 1 using Eq. (47), we obtain
from Eq. (B8)

〈J (0)J (τ )〉 = (J+e−i�Lτ + J+ei�Lτ )e−|τ |/τs (C1)

and 〈J 2(0)〉s = 〈J 2(0)〉 with

J± = ω2
ex

�2
L

(〈
I2
z

〉 ∓ 〈Ix〉
2

)[
1 − cos

(
�L

γ
k

)]
. (C2)

Substituting these expressions in Eq. (B7) and decomposing
the exponent into series we find

〈p∗+(0)p+(τ )〉 =
∞∑

n=0

n∑
l=0

ei(2l−n)�Lτ−n|τ |/τs

l!(n + l )!

×
∫ ∞

0
J l

+J n−l
− e−2k−J+−J−dk. (C3)

In the adiabatic approximation (�L � γ ), Eq. (C2) re-
duces to J± = k2μ±, so from Eq. (C3), we obtain

〈p∗+(0)p+(τ )〉 =
∞∑

n=0

n∑
l=0

μl
+μn−l

−
l!(n + l )!

ei(2l−n)�Lτ−n|τ |/τs

×
∫ ∞

0
e−2k−k2(μ++μ− )k2ndk. (C4)

In the next step, we introduce n′ = n − 2l and l ′ = l for
n′ � 0 and l ′ = n − l otherwise. Then we rewrite this
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expression as

〈p∗+(0)p+(τ )〉

=
∞∑

n′=−∞

∞∑
l ′=0

μl ′
sign(n′ )μ

|n′|+l ′
− sign(n′ )

l ′!(|n′| + l ′)!
e−in′�Lτ−(|n′|+2l ′ )|τ |/τs

×
∫ ∞

0
e−2k−k2(μ++μ− )k2(|n′ |+2l ′ )dk, (C5)

where we assume sign(0) ≡ 1 to be specific. Finally, the
Fourier transform of this expression [see Eq. (50)] yields

Eq. (51), where

P±
n (�) =

∞∑
l=0

∫ ∞

0
e−2ke−k2(μ++μ− )k2(n+2l )

× μl
±μn+l

∓
l!(n + l )!

2τs(n + 2l )

(n + 2l )2 + (�τs)2
dk. (C6)

Here we omitted the primes for the brevity and neglected the
terms with n = 0.
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