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Simulating time-dependent thermoelectric transport in quantum systems
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We put forward a gauge-invariant theoretical framework for studying time-resolved thermoelectric transport
in an arbitrary multiterminal electronic quantum system described by a noninteracting tight-binding model. The
system is driven out of equilibrium by an external time-dependent electromagnetic field (switched on at time t0)
and possibly by static temperature or electrochemical potential biases applied (from the remote past) between the
electronic reservoirs. Numerical simulations are conducted by extending to energy transport the wave-function
approach developed by Gaury et al. and implemented in the t-Kwant library. We provide a module that allows us
to compute the time-resolved heat currents and powers in addition to the (already implemented) charge currents,
and thus to simulate dynamical thermoelectric transport through realistic devices, when electron-electron and
electron-phonon interactions can be neglected. We apply our method to the noninteracting resonant level model
and verify that we recover the results reported in the literature for the time-resolved heat currents in the expected
limits. Finally, we showcase the versatility of the library by simulating dynamical thermal transport in a quantum
point contact subjected to voltage pulses.
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I. INTRODUCTION

Since its early stages in the 1960s [1], research in time-
dependent quantum nanoelectronics has predominantly fo-
cused on charge transport. Milestone achievements in the
AC regime include, e.g., the realization of electron pumps
[2,3], the measurement of the relaxation times of RC [4] and
LC [5] quantum circuits, the observation of radiative signa-
tures of dynamical Coulomb blockade [6], and the dynamical
measurement of the fractional charge of anyons [7]. In the
last decade, the experimental realization of single-electron
sources [8–10] has opened up a new research avenue in time-
dependent nanoelectronics [11], with potential applications to
quantum computing. On the theory side, the usual frameworks
to handle time-dependent transport in quantum electronic
systems are the nonequilibrium Green’s function (NEGF) ap-
proach [12] and the time-dependent scattering formalism [13],
combined with the Floquet theory [14,15] for time-periodic
perturbations. In practice, the NEGF equations are extremely
difficult to integrate, even numerically [16–18], so that alter-
native computational strategies have been developed [19–24].
In particular, a novel wave-function-based approach [25–27]
implemented in the t-Kwant library [28] has recently made
possible the simulation of time-resolved quantum transport in
realistic mesoscopic devices [29–33].

Dynamical charge transport has thus been the subject
of an intense experimental and theoretical activity in the
last decades. In comparison, the study of energy and heat
transport in time-dependent quantum electron systems is an
emerging research topic. Experimental investigations in the
field are challenging and currently at their infancy [34].
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A breakthrough has been achieved recently by Karimi et al.
[35] with the measurement of heat and temperature fluc-
tuations in superconducting quantum circuits. Nevertheless,
the literature in the field is largely dominated by theoreti-
cal works, in particular those studying mesoscopic systems
with periodic driving [36]. They can be roughly ranged into
three categories: a first one investigating the fundamentals of
quantum thermodynamics [37–41], a second one assessing
the applicative potential of high-frequency nanoelectronics for
AC-driven thermoelectrics [42–48], heat pumping [49–53],
or Josephson-effect-based refrigeration [54,55], and a third
one analyzing energy current and noise as new probes of
mesoscopic electron systems [56,57]. From a technical point
of view, a wide range of approaches have been pursued
to deal with dynamical energy and heat transport in meso-
scopic electron systems subjected to time-dependent bias and
gate voltages, e.g., the Floquet theory in the AC regime
[36–39,47,56], the master equation approach [53,58,59] of-
ten assuming slow driving and weak system-reservoir cou-
pling, the well-established (but cumbersome) NEGF tech-
nique [42,45,46,52,60–62], and more recently the wave-
function [63] and the auxiliary-mode [64] approaches. The
effect of Coulomb interaction has been included within dif-
ferent frameworks, near the adiabatic regime [41,43,53,65]
and beyond [40,44,66]. Interestingly, alternative methods have
also been developed to describe transient particle and heat
currents in response to the application of a temperature gra-
dient [67–70]. However, to date, the different methods listed
above have only been applied to paradigmatic systems ranging
mostly from the single-site resonant level model (RLM) to the
one-dimensional chain.

In addition to the technical difficulty of solving the time-
dependent quantum problem, the study of energy transport
and conversion in open electronic quantum systems driven
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by time-dependent potentials is hindered by fundamental
issues about the nonequilibrium thermodynamical description
of such systems. In particular, the question of the proper
definition of a time-dependent heat current (in consistency
with thermodynamic requirements) is still under debate. A
major difficulty arises from the ill-defined splitting [71,72]
between the central system and the electronic reservoirs in the
strong-coupling regime. Using the time-dependent RLM as a
prototypical model, it was argued in Refs. [38,39] that half of
the contribution coming from the energy stored in the system-
reservoir coupling region should be included in the definition
of the heat current flowing into a given reservoir. This result,
derived in the case where the time dependence is restricted to
the central region, was later questioned in Refs. [61,73] when
the system-reservoir coupling is also made time-dependent. It
was finally generalized to the case of time-dependent coupling
by the inclusion of an extra term in the heat current definition
[74]. Recently, Bruch et al. [75] developed an alternative
approach based on the Landauer-Büttiker scattering theory
that circumvents the problem of the system-reservoir splitting.

In the present paper, we put forward a general framework
for the simulation of time-resolved thermoelectric transport
in realistic mesoscopic devices subjected to external time-
dependent electromagnetic fields. The system under consid-
eration is made of an arbitrary (noninteracting) electron scat-
tering region coupled through ideal (noninteracting) leads to
electronic reservoirs at local equilibrium. Spin is not included.
Till a given time t0, the tight-binding Hamiltonian describing
the system is considered as time-independent but the system
is possibly driven in a nonequilibrium steady state by the
application of (static) electrochemical potential or tempera-
ture gradients between the reservoirs. After t0, an external
time-dependent electromagnetic field is applied. It may ac-
count for the presence of voltage pulses in the leads, time-
varying electrostatic gates in the vicinity of the electron gas,
or time-dependent magnetic fields in the scattering region.
Our first task consists of building a thermoelectric framework
that involves quantities (particle, energy, and power densities,
particle and energy currents) that are all invariant under an
arbitrary gauge transformation of the external electromagnetic
field. For that purpose, we follow Refs. [76–78] and define an
energy operator that differs in general from the Hamiltonian
operator, since the expectation value of the Hamiltonian is
generally not gauge-invariant. Second, to compute the differ-
ent quantities numerically in an efficient way, we leverage the
wave-function approach developed in Refs. [25–27] for the
simulation of time-dependent quantum transport. Till recently
[63], this approach had only been considered within the con-
text of charge transport [29–33]. Its generalization to energy
transport was addressed in Ref. [63] for the study of a molec-
ular network model. Here, we formulate a general gauge-
invariant framework for simulating time-dependent thermo-
electric transport in an arbitrary (noninteracting) electron
system. We report on its practical implementation as a thermo-
electric extension of the t-Kwant simulation library, discuss
how it converges to the usual Landauer-Büttiker approach in
the static limit, and check the validity of our approach by using
the RLM as a test bed. A short investigation of time-dependent
heat transport in a quantum point contact (QPC) is also
provided for illustrating the potential of our t-Kwant based

numerical tool. However, little emphasis is put in this article
on physical interpretations for specific examples. This is left
for future works. Our approach which inherits the benefits of
t-Kwant brings within reach the simulation of time-resolved
heat and thermoelectric transport in large realistic systems.
It can handle arbitrary time-dependent perturbations, beyond
the single-frequency AC limit and the adiabatic regime. More-
over, it does not rely on the wideband limit hypothesis which
is commonly assumed in works using the NEGF technique.

The outline of the paper is as follows. We define our gen-
eral noninteracting and time-dependent tight-binding model in
Sec. II. Then in Sec. III, we draw up a gauge-invariant thermo-
electric framework in terms of the lesser Green’s function of
the system. The numerical method used to calculate the time-
dependent (particle, energy, and heat) currents as well as the
time-dependent powers is introduced in Sec. IV. It is based on
the wave-function approach developed in Refs. [25–27] which
draws upon a reformulation of the NEGF equations in terms
of the time-dependent scattering states. We review briefly the
approach and explain how to use it for energy transport. In
Sec. V, we apply our method to the resonant level (toy) model
and benchmark our results against the ones obtained with
other techniques in previous works. We show that we repro-
duce the NEGF results in the wideband limit and the results of
Ref. [69] beyond this limit. Finally in Sec. VI, we demonstrate
the feasibility of large-scale simulations by computing time-
dependent heat currents in a QPC subjected to a temperature
gradient and to a voltage pulse. We conclude in Sec. VII and
discuss briefly possible continuations of this work.

II. TIGHT-BINDING MODEL

We model noninteracting spinless electrons in an open
system made of a scattering region S connected to an arbitrary
number M of semi-infinite leads Lα (α = 1 to M). The system
is discretized on a lattice (with lattice spacing a = 1) and
from the remote past till a given time t0, it is described by
the general quadratic Hamiltonian

Ĥ (t � t0) = Ĥ0 =
∑
i, j

H0
i j ĉ

†
i ĉ j, (1)

ĉ†
i (resp. ĉi) being the creation (resp. annihilation) operator of

an electron on site i at position ri. The leads have a translation-
invariant structure made up of an infinite repetition of in-
terconnected identical unit cells and hopping terms between
two different leads are set to zero. Importantly, the couplings
between the (first cell of the) leads and the scattering region is
included in the static Hamiltonian Ĥ0. For this reason, our
approach is similar to the so-called partition-free approach
[19–21,68]. Ĥ0 also accounts for the presence of any static
electromagnetic fields due, e.g., to surrounding metallic gates
or to the application of voltage biases between leads. Finally,
each lead Lα is attached to a reservoir in thermodynamic
equilibrium characterized by an electrochemical potential μα

and a temperature Tα .
For times t larger than t0, an external time-dependent

electromagnetic field is applied:

E(r, t ) = −∇V (r, t ) − ∂A
∂t

(r, t ), (2a)

B(r, t ) = ∇ × A(r, t ), (2b)
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V (r, t ) and A(r, t ) being the electromagnetic scalar and vec-
tor potentials at position r at time t . The system Hamiltonian
becomes

Ĥ (t > t0) =
∑
i, j

Hi j (t )ĉ†
i ĉ j (3)

with

Hi j (t ) = H0
i j + H ′

i j (t ). (4)

The Hamiltonian Ĥ ′(t ) = ∑
i, j H ′

i j (t )ĉ†
i ĉ j accounts for the

presence of the external time-dependent electromagnetic field
when t > t0. In the scattering region, the field may be fully
arbitrary and we have

H ′
i j (t ) = eVi(t )δi j + H0

i j (e
iφi j (t ) − 1)(1 − δi j ) (5)

when i and j both lie in S (or one of them lies in the
first cell of one lead). In Eq. (5), e denotes the electron
charge, Vi(t ) = V (ri, t ), and φi j (t ) = (e/h̄)

∫ ri

r j
A(r, t ) · dr is

a Peierls phase [79] accounting for A(r, t ). In the leads Lα , no
time-dependent magnetic fields but only homogeneous time-
dependent electric potentials Vi(t ) = Vα (t ) are supposed to be
applied so that

H ′
i j (t ) = eVα (t )δi j (i ∈ Lα, j ∈ Lα ). (6)

If needed, the abrupt drop of Vi(t ) at the interface between
the leads and the scattering region S can be easily absorbed
by including the first cells of the leads into S and by defining
an effective [80] screened potential Vi(t ) in the vicinity of the
interface. Besides, in an actual device, a time-dependent volt-
age source may induce a variation of the chemical potential
in the electronic reservoir, in addition to a variation of the
electric potential. This case is not handled in the present paper
as it would require modeling relaxation inside the reservoirs.
Yet a qualitative discussion of the role of the electrostatics
in realistic devices (reported in Sec. 8.4 of Ref. [25]) shows
that the above model has broad applicability in the field of
time-dependent quantum nanoelectronics.

III. GAUGE-INVARIANT TIME-RESOLVED
THERMOELECTRIC FRAMEWORK

Here we construct the theoretical framework that will be
used to describe time-dependent thermoelectric transport in
the generic tight-binding model defined above. Our aim is to
formulate a theory that is invariant under any gauge transfor-
mation of the external electromagnetic field. For that purpose,
we follow Refs. [76–78] and define an energy operator that
differs in general from the Hamiltonian operator. We start
this section with a succinct reminder of gauge invariance in
quantum mechanics, then we draw our theoretical picture of
time-dependent thermoelectrics from the local to the global
scale.

A. Gauge transformations

We consider an arbitrary local gauge transformation of the
electromagnetic field,

V (ri, t ) → Ṽ (ri, t ) = V (ri, t ) − ∂�(ri, t )

∂t
, (7a)

A(ri, t ) → Ã(ri, t ) = A(ri, t ) + ∇�(ri, t ), (7b)

where �(ri, t ) is an arbitrary, differentiable, real function
of space and time. Under Eq. (7), the Hamiltonian Ĥ (t )
transforms as

Ĥ (t ) → ˆ̃H (t ) =
∑
i, j

H̃i j (t )ĉ†
i ĉ j, (8)

where

H̃ii(t ) = Hii(t ) − e
∂�i(t )

∂t
, (9a)

H̃i j (t ) = Hi j (t )ei e
h̄ [�i (t )−� j (t )] (if i �= j), (9b)

and �i(t ) = �(ri, t ). In particular, for t � t0 when V (ri, t ) =
0 and A(ri, t ) = 0, the gauge-transformed static Hamiltonian
ˆ̃H (t � t0) = ˆ̃H0 may become artificially time-dependent. In
the rest of the paper, we fix the gauge when t � t0 and no
time-dependent electromagnetic field is applied. We choose
the natural gauge in which �i(t � t0) = 0.

The electromagnetic gauge transformation (7) can also be
understood [81] as a change of basis of the one-body orbitals
on sites i associated with the operators ĉi. Under Eq. (7) a
unitary transformation Û (t ) = exp[i e

h̄

∑
i �i(t )ĉ†

i ĉi] is made
on the annihilation operator

ĉi → ˆ̃ci = Û ĉiÛ
† = e−i e

h̄ �i (t )ci (10)

so that the transformed Hamiltonian ˆ̃H can be written as

ˆ̃H = Û ĤÛ † − ih̄ Û
∂Û †

∂t
(11)

after having noticed that

ih̄ Û
∂Û †

∂t
= e

∑
i

∂�i

∂t
ĉ†

i ĉi = e
∑

i

(Vi − Ṽi )ĉ
†
i ĉi. (12)

The Schrödinger equation

ih̄
∂|�(t )〉

∂t
= Ĥ (t )|�(t )〉, (13)

written here for an arbitrary solution |�(t )〉, turns out to be
invariant in form under the local gauge transformation (7),

ih̄
∂|�̃(t )〉

∂t
= ˆ̃H (t )|�̃(t )〉, (14)

since the wave function |�(t )〉 transforms as

|�(t )〉 → |�̃(t )〉 = U |�(t )〉. (15)

While any Hermitian operator Ô = ∑
i, j Oi j ĉ

†
i ĉ j that trans-

forms as

Ô → ˆ̃O = Û ÔÛ † (16)

under Eq. (7) has a gauge-invariant expectation value

〈�|Ô|�〉 = 〈�̃| ˆ̃O|�̃〉, (17)

the Hamiltonian does not [see Eq. (11)]: its expectation value
is in general not gauge-invariant,

〈�|Ĥ |�〉 �= 〈�̃| ˆ̃H |�̃〉, (18)

and thus it cannot be considered as the energy operator [82].
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B. Local quantities

In this section, we define the energy density and the
local energy current carried by electrons inside the scatter-
ing region. We also derive the related continuity equation.
It involves the local power injected in the system by the
time-dependent external electromagnetic field. The different
quantities are constructed following Refs. [76–78] so as to
be gauge invariant. They are formally written in terms of the
lesser Green’s function of the system. The continuity equation
for the electron density is also recalled for completeness.

1. Particle density and local particle current

We introduce the lesser Green’s function

G<
i j (t, t ′) = i

h̄
〈ĉ†

j (t
′)ĉi(t )〉, (19)

where ĉi(t ) is the annihilation operator in the Heisenberg
representation. The change over time of the electron density

ρN
i (t ) = 〈ĉ†

i (t )ĉi(t )〉 = −ih̄G<
ii (t, t ) (20)

can be calculated by using the equation of motion

dÔH
dt

= ∂Ô

∂t

∣∣∣∣
H

+ i

h̄
[ĤH, ÔH], (21)

here written for an arbitrary operator Ô. ÔH and ĤH =∑
i, j Hi j (t )ĉ†

i (t )ĉ j (t ) correspond to Ô and Ĥ in the Heisenberg
representation. The subscript H will be dropped in the rest
of the paper. We find the continuity equation for the particle
number

dρN
i

dt
+

∑
j �=i

IN
ji (t ) = 0, (22)

where

IN
i j (t ) = 2 Re[Hji(t )G<

i j (t, t )] (23)

is the local particle current between sites i and j, that satisfies
IN

ji = −IN
i j . Using Eqs. (9b), (10), and (15), it is easy to check

that ρN
i and IN

i j are gauge-independent quantities.

2. Energy density, local energy current, and power density

In the static case, the energy operator coincides with the
Hamiltonian operator. Actually, as pointed out in Ref. [78],
this is only true if the scalar and vector potentials used
to describe the static electromagnetic field are taken time-
independent but it is customary and natural to choose such
a gauge for static fields.

In the time-dependent case, we follow Refs. [76–78] and
define the energy operator ε̂ as

ε̂(t ) = Ĥ (t ) − eV̂ (t ), (24)

where V̂ (t ) = ∑
i Vi(t )ĉ†

i ĉi. The sum is made here over all
sites i in the whole system, including the leads Lα where
Vi = Vα . By construction, 〈ε̂〉 is gauge-invariant. Indeed,

〈�|Ĥ − eV̂ |�〉 = 〈�̃| ˆ̃H − e ˆ̃V |�̃〉 (25)

in virtue of Eqs. (11), (12), and (15).

With this definition, the energy operator reads ε̂(t ) =∑
i, j εi j (t )ĉ†

i ĉ j with

εii(t ) = H0
ii , (26a)

εi j (t ) = Hi j (t ), if i �= j, (26b)

and the gauge-transformed energy operator reads ˆ̃ε(t ) =∑
i, j ε̃i j (t )ĉ†

i ĉ j with

ε̃ii(t ) = H0
ii , (27a)

ε̃i j (t ) = Hi j (t )ei e
h̄ [�i (t )−� j (t )], if i �= j. (27b)

We now write the energy operator ε̂ as a sum of local
energy density operators ε̂i,

ε̂ =
∑

i

ε̂i (28)

with

ε̂i(t ) = εii(t )ĉ†
i ĉi + 1

2

∑
j �=i

[εi j (t )ĉ†
i ĉ j + ε ji(t )ĉ†

j ĉi] (29)

containing both the on-site potential energy εii on site i and
half of the kinetic energy εi j stored in the hoppings. Note that
the definition of the energy density operator is not unique:
There exist other ε̂i that yield Eq. (28) and there are a priori
no physical but only technical grounds to favor one choice
over the others, as noticed in Ref. [83]. Our definition (29)
corresponds to the discretized version on a lattice of the
energy density of the second kind put forward in Ref. [83],
which leads to a symmetrized local energy current (IE

ji below).
The same definition has been used in, e.g., Refs. [38,63,84].
To be fully precise, Refs. [38,63,83,84] dealt with the inherent
ambiguity in the definition of the Hamiltonian density opera-
tor Ĥi (so as Ĥ = ∑

i Ĥi) but the same discussion holds for
ε̂i.

Let us now introduce ρE
i = 〈ε̂i〉 the (gauge invariant) en-

ergy density on site i and let us write down the continuity
equation for the energy with the help of Eqs. (19), (21), and
(29). We find

dρE
i

dt
+

∑
j �=i

IE
ji (t ) = SE

i (t ), (30)

where the local energy current IE
i j between sites i and j is given

by

IE
i j (t ) =

∑
k

Re[εk j (t )ε ji(t )G<
ik (t, t ) − εki(t )εi j (t )G<

jk (t, t )]

(31)

and the power source term SE
i on site i by

SE
i (t ) =

∑
j �=i

{
h̄ Im

[
∂εi j

∂t
G<

ji(t, t )

]
+ Re[eVi(t )εi j (t )G<

ji(t, t )

+ eVj (t )ε ji(t )G<
i j (t, t )]

}
. (32)

Using Eqs. (23) and (26), the source term can be written as

SE
i (t ) =

∑
j �=i

{
1

2
[Vi(t ) − Vj (t )] + h̄

2e

∂φi j

∂t

}
eIN

ji (t ), (33)
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which is the discretized expression on a grid of the electric
power density e j(ri, t ) · E(ri, t ), j(ri, t ) being the particle
current density and E(ri, t ) the external electric field given by
Eq. (2a). Equations (30) to (33) are derived in Appendix A.
It is worth noting that the splitting into local energy current
IE

ji (t ) and source term SE
i (t ) from the time derivative of the

energy density in the continuity equation (30) is not unique.
However the choice made above has several advantages:

(i) IE
ji and Si are gauge-invariant quantities.

(ii) The energy change over the full system is given by
only the external power source and not the energy currents,
i.e., ∑

i

dρE
i

dt
=

∑
i

SE
i (t ). (34)

(iii) The source term Si coincides with the electric power
density supplied by the external time-dependent electromag-
netic field.

(iv) IE
ji = −IE

i j to fit the interpretation of a net current
flowing from i to j. Moreover IE

ji = 0 if the sites i and
j �= i are disconnected (i.e., if Hji = 0). The identification of
a local energy current IE

i j out of the divergence
∑

j �=i IE
i j is

however not unequivocal. Another choice IE
i j �= IE

i j was made
in Ref. [63]. It satisfies

∑
j IE

i j = ∑
j IE

i j and IE
ji = −IE

i j but
contrary to IE

i j , IE
i j can be nonzero between two disconnected

sites.
(v) In the static case t � t0, the local energy current inte-

grated over a lead Lα (i.e., the energy current flowing in a lead
Lα) coincides with the usual static definition of the energy
current [85,86]. This will be discussed in Sec. III C 4.

C. Global currents

Hereafter, we integrate over space the local quantities
introduced above and define in particular the particle, energy,
and heat currents flowing in the leads. In the limit where
the external electromagnetic field becomes time-independent,
we compare those currents to the static ones given by the
usual Landauer-Büttiker formulas. As the latter formulas are
derived by taking the Hamiltonian as the energy operator, the
two energy currents are different in general. However the two
heat currents coincide in the static limit, as well as the two
particle currents.

1. Particle currents

We define

NS (t ) =
∑
i∈S

ρN
i (t ), (35a)

Nα (t ) =
∑
i∈Lα

ρN
i (t ), (35b)

the particle number at time t in the scattering region S and
in each lead Lα . The continuity equation (22) integrated over
space yields

IN
S (t ) = −dNS

dt
, (36a)

IN
α (t ) = −dNα

dt
, (36b)

where

IN
α (t ) =

∑
i∈Lα

∑
j∈S

IN
ji (t ) (37)

is the (incoming) particle current in the lead Lα (i.e., flowing
toward the scattering region) and

IN
S (t ) =

∑
i∈S

∑
α

∑
j∈Lα

IN
ji (t ) (38)

the displacement current. The total particle number is con-
served and we have

IN
S (t ) +

∑
α

IN
α (t ) = 0. (39)

2. Energy currents

We proceed similarly for the energy-related quantities and
define

ES (t ) =
∑
i∈S

ρE
i (t ), (40a)

Eα (t ) =
∑
i∈Lα

ρE
i (t ), (40b)

the energy at time t in the scattering region S and in each lead
Lα . By integrating spatially the continuity equation (30), we
get

dES
dt

+ IE
S (t ) = SE

S (t ), (41a)

dEα

dt
+ IE

α (t ) = SE
α (t ), (41b)

where

IE
S (t ) =

∑
i∈S

∑
α

∑
j∈Lα

IE
ji (t ), (42a)

IE
α (t ) =

∑
i∈Lα

∑
j∈S

IE
ji (t ) (42b)

are respectively the energy current in the scattering region and
the (incoming) energy current in the lead Lα , while

SE
S (t ) =

∑
i∈S

SE
i (t ), (43a)

SE
α (t ) =

∑
i∈Lα

SE
i (t ) (43b)

are the external power source terms. Using IE
ji = −IE

i j , we
obtain the following conservation equation:

dES
dt

+
∑

α

dEα

dt
= SE

S (t ) +
∑

α

SE
α (t ), (44)

i.e., the variation of the energy stored in the whole system
equals the power supplied by the external electromagnetic
field. Note that if for instance Vi(t ) = Vα (t ) are applied in the
leads Lα but not in the scattering region [Vi(t ) = 0 if i ∈ S],
and if no time-dependent magnetic field is applied, then the
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source terms reduce to

SE
α (t ) = e

2
Vα (t )IN

α (t ), (45a)

SE
S (t ) = e

2

∑
α

Vα (t )IN
α (t ), (45b)

and the total source term is SE
S + ∑

α SE
α = e

∑
α VαIN

α .

3. Heat currents

We define the (incoming) time-dependent heat current in
the lead Lα as

IH
α (t ) = IE

α (t ) − SE
α (t ) − μαIN

α (t ), (46)

where μα is the electrochemical potential of the reservoir
attached to Lα defined for t � t0 in Sec. II. This definition
leads to the following formulation of the first law of thermo-
dynamics:

dES
dt

= SE
S (t ) +

∑
α

SE
α (t ) +

∑
α

μαIN
α (t ) +

∑
α

IH
α (t ), (47)

where the first three terms on the right-hand side of Eq. (47)
correspond to the rate of work supplied to the scattering
region S by its environment. IH

α (t ) defined above is gauge-
invariant since IE

α (t ), SE
α (t ), and IN

α (t ) are. In a gauge where
the leads are time-independent, the following equality holds
(see Appendix B):

IH
α (t ) = − d

dt

〈
ˆ̃Hα + 1

2
ˆ̃HSα

〉
− μαIN

α (t ), (48)

where ˆ̃Hα and ˆ̃HSα denote respectively the gauge-transformed
Hamiltonian of the lead Lα and the gauge-transformed tunnel-
ing Hamiltonian between Lα and the scattering region S . Note

that ˆ̃HSα may depend on time but not ˆ̃Hα by construction. The
term on the right-hand side of Eq. (48) was used to define the
lead heat current in Refs. [38,39] in the case where the time-
dependent perturbations are confined to the scattering region.
It was argued in Ref. [74] that an extra term has to be added
in the heat current definition when the tunneling Hamiltonian
is also time-dependent. However in our case, this extra term
is zero [87] because the time dependency in the hopping
terms of our model Hamiltonian only appears through a
time-dependent phase, H̃i j (t ) = H0

i je
iφ̃i j (t ) (whose origin is a

time-dependent Peierls substitution or gauge transformation).
Therefore, Eq. (46) is a gauge-invariant formulation of the
lead heat current which coincides with the definition used in
Refs. [38,39,74] when a gauge in which the leads are time-
independent is chosen. This point will be discussed in more
detail in Appendix B. Besides, we will see in the next subsec-
tion that IH

α (t ) also coincides with the heat current given by the
Landauer-Büttiker formula in the particular limit where Ĥ (t )
becomes time-independent. Finally, it is noteworthy that if we
include the first cell of each lead into the scattering region,
and define thereby new leads Lᾱ , then SE

ᾱ (t ) = 0 and we have
IH
ᾱ (t ) = IE

ᾱ (t ) − μαIN
ᾱ (t ).

4. Static limit

When t � t0 and no external time-dependent electro-
magnetic field is applied, the system Hamiltonian is

time-independent, i.e., Ĥ (t � t0) = Ĥ0. Within the static
Landauer-Büttiker formalism, the particle, energy, and heat
currents in the lead Lα read [85,86]

IN,st
α =

∑
β �=α

∫
dE

h

[
fμα,Tα

(E ) − fμβ,Tβ
(E )

]
Tαβ (E ), (49a)

IE ,st
α =

∑
β �=α

∫
dE

h

[
fμα,Tα

(E ) − fμβ,Tβ
(E )

]
E Tαβ (E ), (49b)

IH,st
α = IE ,st

α − μαIN,st
α , (49c)

where fμ,T (E ) = [1 + exp( E−μ

kBT )]−1 is the Fermi function (kB

being the Boltzmann constant), the sum over β is a sum
over leads Lβ , and Tαβ (E )= ∑

mα

∑
mβ

|Sαβ
mαmβ

(E )|2 is the
probability for an electron at energy E to be transmitted from
the lead Lβ into the lead Lα [Sαβ

mαmβ
(E ) being the scattering

amplitude from the mode mβ at energy E in Lβ to the mode
mα at energy E in Lα]. It is straightforward to show that the
particle IN

α , energy IE
α , and heat IH

α currents, defined above in
Eqs. (36b), (42b), and (46), respectively, equal the standard
static current formulas:

IN
α (t � t0) = IN,st

α , (50a)

IE
α (t � t0) = IE ,st

α , (50b)

IH
α (t � t0) = IH,st

α . (50c)

This is true even in the time-dependent gauge [see the com-
ment below Eq. (9)].

Let us now consider the case for t > t0 where an external
time-dependent electromagnetic field is applied and let us as-
sume that the field converges to a static limit at long times, i.e.,
Ĥ (t → ∞) = Ĥ s̄t . In this new static configuration, the static
particle IN,s̄t

α , energy IE ,s̄t
α , and heat IH,s̄t

α currents are given
by the Landauer-Büttiker formulas (49) with μα → μα + eVα

and Tαβ → T̄αβ . Here, Vα ≡ Vα (t → ∞) in the leads Lα while
T̄αβ denote the transmissions of the system defined by Ĥ s̄t . In
Appendix C, we show

IN
α (t → ∞) = IN,s̄t

α , (51a)

IE
α (t → ∞) = IE ,s̄t

α − eVαIN,s̄t
α + SE

α (t → ∞), (51b)

IH
α (t → ∞) = IE ,s̄t

α − (μα + eVα )IN,s̄t
α = IH,s̄t

α .swe(51c)

Thus in the static limit t → ∞, the energy currents IE
α (t →

∞) in the leads Lα differ from the usual static energy currents
IE ,s̄t
α . This is due to the fact that IE ,s̄t

α is calculated by defining
the energy operator as ε̂ = Ĥ s̄t while IE

α (t → ∞) is calcu-
lated using ε̂(t → ∞) = Ĥ s̄t − eV̂ (t → ∞) [see Eq. (24)].
The discrepancy IE

α (t → ∞) �= IE ,s̄t
α is the price to pay for a

gauge-invariant energy current IE
α (t ) that also satisfies IE

α (t �
t0) = IE ,st

α . It stems from the definition of ε̂ in Eq. (24) as the
sum of the kinetic energy and of the static potential that is
present in the system from the remote past. In the peculiar
case where the external electromagnetic field converges to a
static limit (and then varies again), it might be relevant to
redefine the energy operator with respect to this new static
configuration and forget the past. More importantly, the heat
currents IH

α (t ) which are written as a difference of energy
currents are not affected by this choice of the reference static
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potential. We find that IH
α (t ) converges to the usual static heat

current in the static limit [see Eq. (51c)].

IV. NUMERICAL METHOD

We now discuss how to compute in an efficient way the
time-dependent quantities introduced in Sec. III. We use for
that purpose the wave-function-based approach developed
in Refs. [25–27] which has been shown to be formally
equivalent to the NEGF formalism but much more efficient
from a computational point of view. This approach is at the
root of the numerical package t-Kwant [28], which extends
to the time domain the quantum transport package Kwant
[88–90]. To date, t-Kwant has been used for calculating time-
resolved particle density and particle current in various sys-
tems [29,30,32,33,91,92]. The case of particle current noise
has also been dealt with in Ref. [31]. Hereafter, we present
succinctly the t-Kwant algorithm and explain how to use
it for the calculation of the time-resolved energy density,
power density, energy current, and heat current. Note that
the same wave-function-based approach has recently been
used in Ref. [63] for calculating energy currents in molecular
networks. We report here on its implementation in the t-Kwant
package.

A. Choice of the electromagnetic gauge

All quantities introduced in Sec. III, i.e., ρN
i , ρE

i , IN
i j ,

IE
i j , and SE

i , have been shown to be gauge-invariant. We are
therefore free to choose a convenient electromagnetic gauge
for numerical calculation. For t � t0, the t-Kwant algorithm
requires working in the natural gauge in which the system
Hamiltonian is time-independent [i.e., �i(t � t0) = 0 every-
where]. Another prerequisite for t-Kwant is the absence of
time dependency in the leads. This can be always achieved
by fixing the gauge function �i(t ) in the leads to

�i(t ) = φα (t ), if i ∈ Lα, (52)

where φα (t ) = ∫ t
t0

duVα (u). Indeed, under the gauge transfor-
mation (7), the Hamiltonian defined in Eqs. (3)–(6) transforms

as Ĥ (t ) → ˆ̃H (t ) according to Eq. (9), and one finds eventually
time-independent leads in the new gauge

H̃i j (t ) = H0
i j, if i ∈ Lα, j ∈ Lα, (53)

while the system-lead coupling terms acquire an additional
time-dependent phase

H̃i j (t ) = Hi j (t )ei e
h̄ [φα (t )−� j (t )], if i ∈ Lα, j ∈ S. (54)

There is however no restriction on the gauge function � j (t ) in
the scattering region S for t > t0. It can be chosen arbitrarily.

B. Main steps of the t-Kwant algorithm

In this section, we do not present any original result but
outline the main steps of the t-Kwant algorithm following
Refs. [25–27]. We use boldface letters to denote matrices;
e.g., H̃ is the matrix whose elements are H̃i j . Without loss of
generality, we also fix t0 = 0 in order to lighten the equations
below.

The central objects of the t-Kwant numerical technique are
the time-dependent scattering states �̃mαE (t ), solutions of the
Schrödinger equation

i h̄
∂

∂t
�̃mαE (t ) = H̃(t )�̃mαE (t ) (55)

with the initial condition

�̃mαE (t = 0) = �mαE ,0. (56)

The tildes on top of �̃mαE and H̃ are written to remind us
that the t-Kwant gauge (52) is used. The stationary scattering
states �mαE ,0 labeled by their energy E and their incoming
mode mα (in lead Lα) characterize the static problem for
t � 0,

H0�mαE ,0 = E�mαE ,0. (57)

They can be calculated with the Kwant library. Note that
while E corresponds to the energy of the stationary wave
function �mαE ,0, it cannot be interpreted as the energy of
the time-evolved scattering state �̃mαE (t ) since energy is not
conserved in a time-dependent setup. In practice, Eq. (55) is
numerically intractable as it is defined on the whole (infinite)
lattice. To circumvent this problem, a change of variable
�̄mαE (t ) = eiEt/h̄�̃mαE (t ) − �mαE ,0 is made. The new wave
functions �̄mαE (t ) satisfy the Schrödinger-like differential
equation

i h̄
∂

∂t
�̄mαE (t ) = [H̃(t ) − E ]�̄mαE (t ) + SmαE (t ) (58)

with the initial condition

�̄mαE (t = 0) = 0 (59)

and an additional source term

SmαE (t ) = [H̃(t ) − H0]�mαE ,0, (60)

which is nonzero only in a finite central region since the leads
are time-independent in the t-Kwant gauge (see Sec. IV A).
For this reason and as (i) the initial wave function vanishes
everywhere and (ii) �̄mαE (t ) is composed of outgoing modes
only, it is sufficient to solve Eqs. (58)–(60) in a finite system
around S; i.e., it is possible to truncate the leads (after having
calculated �mαE ,0). It is necessary however to get rid of
spurious reflections of outgoing waves on the truncated lead
boundaries. This can be done in different ways [25]. The most
efficient one consists of adding an imaginary on-site potential
i�x over the first lead unit cells (labeled x = 1, 2, . . . from
the scattering region) and to make it vary smoothly with x in
order to absorb the outgoing waves and suppress reflections.
Eventually, one solves

i h̄
∂

∂t
�̄mαE (t ) = [H̃(t ) − E − i�]�̄mαE (t ) + SmαE (t ), (61)

together with Eqs. (59) and (60) in a finite region made of
S and a finite portion of the leads. This is done with the
Dormand-Prince (Runge-Kutta) method. The sink term which
reads � = �x1cell in the first lead cells (and � = 0 elsewhere)
can be designed in such a way that the reflection amplitude
of outgoing waves is arbitrarily close to zero. Its expression
is given in Ref. [26], together with more details about the
source-sink algorithm outlined above.
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Once the time-dependent wave functions �̃mαE (t ) are com-
puted, the particle density ρN

i (t ) and the particle current IN
i j (t )

given by Eqs. (20) and (23) respectively can be deduced using
[25]

G<
i j (t, t ′) = i

∑
α

∑
mα

∫
dE

h
fα (E )

[
�̃

mαE
j (t ′)

]∗
�̃

mαE
i (t ),

(62)

where fα (E ) = fμα,Tα
(E ) is a shorthand notation for the Fermi

function and �̃
mαE
i (t ) denotes the wave-function value at site

i. Equation (62) is the cornerstone of the present paper as
it relates the NEGF approach (used in Sec. III) to the t-
Kwant wave-function approach (used hereafter for numerical
implementation). ρN

i (t ) = −ih̄G<
ii (t, t ) is directly given by

Eq. (62) while IN
i j (t ) reads in terms of the scattering states

IN
i j (t ) = −2

∑
α

∑
mα

∫
dE

h
fα (E )

× Im
{[

�̃
mαE
j (t )

]∗
H̃ji(t )�̃mαE

i (t )
}
. (63)

Hence both quantities can be computed with t-Kwant by inte-
grating over the scattering states which were initially occupied
at t = 0. In practice, the integration is preferably done in
momentum instead of energy (to avoid divergent behavior of
the integrand in the vicinity of band openings). We emphasize
that Eq. (63) can also be written without the tildes since IN

i j (t )
is gauge-invariant. The same goes for ρN

i (t ) = −ih̄G<
ii (t, t ).

However, technically, the calculations are done in the t-Kwant
gauge. This is the reason why we kept the tildes in the
formulas.

We end this introductory section of t-Kwant with a short
discussion of the performance of this numerical approach.
The first version of the algorithm (extensively described in
Ref. [25]) has been much improved by the inclusion of the
(customized) sink term � in Eq. (61) (see Ref. [26]). The com-
putational complexity associated with the calculation of the
time-dependent scattering states finally reduces to O(Ntmax)
where N is the number of sites in the system and tmax the
maximal time to which wave functions are evolved. This
complexity has to be multiplied by NE , the number of points
in energy needed for calculating the integral in Eq. (63).
Typically 20 < NE < 100. In the end it turns out that in terms
of computation times, the wave-function-based t-Kwant al-
gorithm outperforms the NEGF-based approaches by several
orders of magnitude (see Table I of Ref. [25]) though the two
formalisms are formally equivalent. This makes possible the
simulation of large realistic devices (made of tens of thou-
sands of sites) at simulation times which are long enough to
capture the full time-dependent response. Hereafter, we show
how to leverage the t-Kwant algorithm for the simulation of
time-dependent energy transport.

C. Generalization to energy transport

The local energy density ρE
i = 〈ε̂i〉 and the local energy

currents IE
i j (t ) written as a function of the lesser Green’s

function G<
i j (t, t ) in Eqs. (29) and (31), respectively, can be

readily expressed in the wave-function formalism with the

help of Eq. (62). One finds [93]

ρE
i (t ) =

∑
α

∑
mα

∫
dE

2π
fα (E )

×
∑

j

Re
{[

�̃
mαE
i (t )

]∗̃
εi j (t ) �̃

mαE
j (t )

}
(64)

and

IE
i j (t ) =

∑
α

∑
mα

∫
dE

h
fα (E )

×
∑

k

Im
{[

�̃
mαE
k (t )

]∗̃
εki(t )̃εi j (t ) �̃

mαE
j (t )

− [
�̃

mαE
k (t )

]∗̃
εk j (t )̃ε ji(t ) �̃

mαE
i (t )

}
. (65)

Both quantities can be computed with t-Kwant, in the same
spirit as ρN

i (t ) and IN
i j (t ) but with an additional sum over

the system sites. The electric power density SE
i (t ) given by

Eq. (33) can be computed as well. As before, all tildes
can be dropped in Eqs. (64) and (65) but in practice, the
calculation is done in the t-Kwant gauge, i.e., with the tilded
quantities. Those local quantities can eventually be summed
up over space to deduce for instance the lead energy currents
IE
α (t ) and the lead heat currents IH

α (t ). We have implemented
an additional Python package tkwantoperator [94] as an
extension to the t-Kwant package [28] to compute these
quantities and have shown that the extra CPU time needed
for computing these quantities is small in comparison to the
time needed for calculating the scattering states (see Appendix
E for more details). In the following, we perform t-Kwant
simulations of (electronic) heat transport in the paradigmatic
time-dependent RLM, in order to validate our approach and
our numerical implementation. We also report on an ex-
ploratory investigation of time-dependent heat transport in
a QPC driven by voltage pulses. Without discussing deeply
the physics involved, we illustrate the strong potential of
the t-Kwant (extended) platform for the study of dynamical
thermoelectrics and caloritronics.

V. RESONANT LEVEL MODEL AS A BENCHMARK

The (noninteracting) time-dependent RLM has been exten-
sively studied in the literature to simulate dynamical charge
transport (see, e.g., Refs. [12,95,96]) and more recently dy-
namical energy transport [36,39,42,45,46,60–62,64,69,97] in
a single-level quantum dot or molecular junction connected
to two electronic reservoirs. Hereafter we use this model as
a test bed to benchmark our numerical approach described
above. We consider two cases: (i) when (only) the dot level
ε0(t ) is varied in time as ε0(t ) = ε0 + eV0�(t ), � being the
Heaviside function, and (ii) when the time-dependent step-
like perturbation is performed in the leads. We calculate the
time-dependent energy and heat currents with our numerical
approach and show that we reproduce in the expected limits
the results obtained previously in the literature.

A. Model

We consider a one-dimensional (1D) chain made of a
central site 0 with on-site energy ε0(t ) connected through a
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nearest-neighbor hopping term γc to two semi-infinite left (L,
on sites i � −1) and right (R, on sites i � 1) leads with on-site
energies εL(t ) and εR(t ), and a nearest-neighbor hopping term
γ . The Hamiltonian reads

Ĥ (t ) = Ĥ0(t ) +
∑

α=L,R

Ĥα (t ) +
∑

α=L,R

Ĥ0α, (66)

where

Ĥ0(t ) = ε0(t )ĉ†
0ĉ0 (67)

is the dot Hamiltonian,

Ĥα (t ) =
∑
±i�1

[εα (t )ĉ†
i ĉi + γ ĉ†

i±1ĉi + γ ĉ†
i ĉi±1] (68)

the Hamiltonian of the lead α = L or R, and

Ĥ0α = γc ĉ†
0ĉ±1 + H.c. (69)

the tunneling Hamiltonian between the dot and the lead α. In
Eqs. (68) and (69), a − (+) sign has to be taken if α = L (R).
The parameters ε0(t ) and εα (t ) are constant in time for t �
t0 (=0). Note that within the t-Kwant approach, the time de-
pendence of the lead on-site energies εα (t ) = εα + eVα (t )�(t )
is gauged out [εα (t ) → εα] while the dot-lead hopping term
γc acquires a dynamical phase (γc → γce−i e

h̄

∫ t
0 duVα (u); see

Sec. IV A). Finally, each lead α is attached from the remote
past to an electronic reservoir at equilibrium with static elec-
trochemical potential μα and temperature Tα defined for t �
0. They remain at equilibrium for t > 0. Only the electric part
of the electrochemical potential may become time-dependent
(depending on the gauge). The chemical potential and the
temperature are supposed to remain constant.

B. Results for a time-dependent dot energy level

Let us first consider the case where εL(t ) = εR(t ) = 0
while a steplike variation ε0(t ) = ε0 + eV0�(t ) of the dot
energy level is applied [see inset of Fig. 1(a)]. This config-
uration has the advantage of being analytically tractable with
the NEGF technique in the so-called wideband limit approx-
imation. Moreover, since the time-dependent perturbations
are restricted to the dot level ε0(t ), the energy operator ε̂

coincides in this case with the Hamiltonian operator in the
leads, and we have Eα = 〈Ĥα + 1

2 Ĥ0α〉, where Eα is defined
by Eq. (40b). Hereafter, we calculate with t-Kwant the time-
dependent heat current IH

L (t ) = − dEL
dt − μLIN

L (t ) in, e.g., the
left lead [see Eqs. (46) and (41b)] and compare it to the one
obtained within the NEGF formalism under the wideband
limit approximation (see Appendix D). A similar comparison
is done for the particle current IN

L (t ) and for an alternative heat

current ĨH
L (t ) ≡ − d〈ĤL〉

dt − μLIN
L (t ) which does not include

the contribution of the lead-dot tunneling Hamiltonian Ĥ0L.
Such a definition of the heat current was considered in, e.g.,
Refs. [42,45]. Note that in the wave-function formalism, we
have for the present model

d〈ĤL〉
dt

= 2
∑

α

∑
mα

∫
dE

h
fα (E )

× γ γc Im
{[

�
mαE
−2 (t )

]∗
�

mαE
0 (t )

}
. (70)
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FIG. 1. Left particle current IN
L (a) and left heat currents IH

L

(b) and ĨH
L (c) as a function of time t , for the 1D RLM defined by

Eqs. (66)–(69), when the dot energy level is modified as ε0(t ) =
ε0 + eV0�(t ) [inset of panel (a)]. Units of x and y axes are indicated
in brackets. In all panels, data are computed numerically with t-
Kwant for different values of λγ /� [1 (red lines), 6.25 (green
lines), and 100 (black lines)]. The horizontal dashed lines plotted for
λγ /� = 1 (in red) and 100 (in black) correspond to the static limits at
large times �t/h̄ � 1 given by the Laudauer-Büttiker formulas (see
Sec. III C 4). When λγ /� � 1, the t-Kwant results converge to the
NEGF results (circles) derived in the wideband limit (Appendix D).
Inset of panel (c): Comparison of IH

L (t ) (red dashed line) and ĨH
L (t )

(black line) in the wideband limit. In all panels, ε0 = 0.5�, eV0 =
2.5�, εL (t ) = εR(t ) = 0, TL = �/kB, TR = 0, μL = 0.5�, and μR =
−0.5�. The NEGF curves are independent of �. The t-Kwant curves
are functions of λγ /� and not of the three parameters λ, γ , and �

taken separately.
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This allows us to compute ĨH
L (t ) with t-Kwant. IN

L (t ) =
IN
0,−1(t ) and IH

L (t ) = IE
0,−1(t ) − SE

−1(t ) − μLIN
0,−1(t ) are calcu-

lated using Eqs. (33), (63), and (65).
To make the comparison between the t-Kwant and the

NEGF results in the wideband limit, we follow the scaling
approach used in Ref. [69]. We vary simultaneously the hop-
ping terms in the chain by replacing the γ and γc parameters
with

γ̄ = λγ , (71a)

γ̄c =
√

λγc, (71b)

where λ is a scaling factor. When λ is increased, the width
[−2γ̄ , 2γ̄ ] of the (single) conduction band in the leads
widens while the ratio � ≡ 4γ̄ 2

c /γ̄ remains fixed. In the
limit λγ /� → ∞ (keeping � finite), the retarded self-energy
�R(E ) of the (identical) time-independent left and right leads,

�R(E ) = γ̄ 2
c

γ̄

⎡⎣ E

2γ̄
− i

√
1 −

(
E

2γ̄

)2
⎤⎦, if

|E |
2|γ̄ | � 1,

(72)
converges to −i �

4 ; i.e., the real part of �R(E ) becomes zero
and its imaginary part becomes energy-independent. This
corresponds to the wideband limit hypothesis.

In Fig. 1, we plot IN
L (t ), IH

L (t ), and ĨH
L (t ) calculated with

t-Kwant for various values of the ratio λγ /� = λ(γ /γc)2/4,
keeping the other parameters fixed [98]. We check that in
the wideband limit λγ /� � 1, the t-Kwant results (black
lines in Fig. 1) converge to the NEGF results [99] given in
Appendix D (circles in Fig. 1). Moreover, in the inset of
Fig. 1(c), we compare IH

L (t ) and ĨH
L (t ) and show that both

quantities coincide in the long-time limit �t/h̄ → ∞. This is
illustrated in the wideband limit λγ /� → ∞ but holds for
any value of λγ /� (though the smaller λγ /�, the slower
the convergence). Such an equality between IH

L (t ) and ĨH
L (t )

at long times is expected as the energy may be stored only
temporarily in the lead-dot coupling region. Finally, we also
check that in the long-time limit �t/h̄ → ∞, the t-Kwant
particle and heat currents converge to the static particle and
heat currents IN/H,s̄t

L given by the Landauer-Büttiker formulas
(horizontal dashed lines in Fig. 1), as expected from Eqs. (51a)
and (51c).

C. Results for a time-dependent voltage bias

We continue studying the RLM but now consider that a
voltage bias is suddenly applied in the left lead, i.e., εL(t ) =
eVL�(t ), while ε0(t ) = ε0 and εR(t ) = 0 (see inset of Fig. 2).
This model under the same configuration has been studied in
Ref. [69] with an exact (partition-free) numerical approach
[68] which is formally equivalent to the t-Kwant approach.
The authors calculated the time-dependent particle currents
IN
α (t ) in the leads α = L and R, as well as some time-

dependent heat currents [100] Qα (t ) ≡ −d〈Ĥα + 1
2 Ĥ0α〉/dt −

μαIN
α (t ). In the present case, Qα (t ) and the gauge-

invariant heat currents IH
α (t ) are linked by the relations (see

0 1 2 3

-0.8

-0.6

-0.4

-0.2

0

4

FIG. 2. Left heat current IH
L (in red) and right heat current IH

R (in
blue) as a function of time t , for the 1D RLM defined by Eqs. (66)–
(69), when a voltage step εL (t ) = eVL�(t ) is applied in the left lead
(sketch in inset). Units are indicated in brackets. The data issued from
Ref. [69] (solid lines) and those calculated with t-Kwant (circles)
are superimposed. The horizontal dashed lines show the static limits
IH,s̄t
L/R at large times given by the Landauer-Büttiker formula (see

Sec. III C 4). Parameters are fixed to ε0 = 0.2γc, eVL = 2γc, εR(t ) =
0, γ = 5γc, TL = TR = 0.01γc/kB, and μL = μR = 0.

Appendix B)

IH
L (t ) = QL(t ) − eVLIN

L (t ) + eVLNLδ(t ), (73a)

IH
R (t ) = QR(t ), (73b)

where NL is the particle number in the left lead defined in
Eq. (35b). Note that QL(t ) contains the term −∂〈ĤL〉/∂t [see
Eq. (21)] which cancels out the δ(t ) term in Eq. (73a). Using
IN
α (t ) and Qα (t ) data [101] issued from Ref. [69], we build up

IH
α (t ) data for t > 0 according to Eq. (73) and compare them

to the ones calculated with t-Kwant. We find a perfect agree-
ment (see Fig. 2). This provides a supplemental validity check
of our approach and highlights the difference between the
gauge-invariant heat current IH

α (t ) and the gauge-dependent
heat current Qα (t ) when a time-dependent voltage is applied
in the lead α.

VI. QUANTUM POINT CONTACT

To illustrate the potential of our t-Kwant based numerical
approach, we simulate hereafter dynamical (electronic) heat
transport in a QPC attached to two reservoirs held at different
temperatures. We focus on the possibility of extracting heat
from the cold reservoir by Peltier effect and ask whether or not
Peltier cooling may be enhanced by applying time-resolved
voltage pulses to one of the two electrodes attached to the
QPC (instead of a constant voltage bias across the system).

We consider a nanoribbon of length L and width W con-
nected through semi-infinite leads to two left (L) and right
(R) electronic reservoirs maintained at temperatures TL � TR

and electrochemical potentials μL � μR [see Fig. 3(a)]. The
system is discretized on a square lattice (with lattice spacing
a = 1). For times t � 0, no time-dependent perturbation is
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FIG. 3. (a) QPC discretized model. The site color in the central region encodes the value of the on-site potential Ui given by Eq. (75) [from
0 (white) to larger values (shades of blue)]. A few layers of the left and right semi-infinite leads are shown in red. A voltage pulse VL (t ) is
applied in the left lead. Currents are evaluated at the (green dashed) interface indicated by the green arrow. (b) Transmission function T (E ) of
the QPC defined by Ĥ 0 [see Eq. (74)]. (c)

∫ ∞
0 dt [IN

L (t ) − IN
L (t = 0)] (in blue, in units of 1/2π ) and

∫ ∞
0 dt IH

L (t ) (in red, in units of γ /2π ) as
a function of the pulse width τp at fixed np = 0.2. Squares with full lines are t-Kwant results; circles with dashed lines are Landauer-Büttiker
adiabatic results. Lines are guides to the eye. (d) to (g) Left particle currents IN

L (in blue, in units of 100γ /h) and left heat currents IH
L (in red, in

units of γ 2/h) as a function of time t (in units of h̄/γ ), for different widths of the voltage pulse [τp = 20 h̄/γ (d), 100 h̄/γ (e), 200 h̄/γ (f), and
800 h̄/γ (g)] at fixed np = 0.2. Full lines are t-Kwant results; dashed lines are Landauer-Büttiker adiabatic results. In all panels, parameters
are fixed to W = 18, L = 48, lx = 50, ly = 5, μL = 0.20607γ , μR = 0.2γ , TL = 0.018γ /kB, and TR = 0.02γ /kB.

applied and the system Hamiltonian Ĥ (t � 0) = Ĥ0 reads

Ĥ0 =
∑

i

(4γ + Ui )ĉ
†
i ĉi − γ

∑
〈i, j〉

ĉ†
i ĉ j, (74)

where γ is the nearest-neighbor hopping term and Ui is the
QPC confining potential modeled by

Ui =
{( yi

ly

)2[
1 − 3

( 2xi
lx

)2 + 2
∣∣ 2xi

lx

∣∣3]2
, if |xi| < lx

2 ,

0, if |xi| � lx
2 .

(75)

Here lx and ly are two parameters controlling the QPC shape
and the site of coordinates (xi, yi ) = (0, 0) is taken at the
center of the ribbon. The staircase-like transmission function
T (E ) of the QPC in the static configuration (computed with
Kwant) is plotted in Fig. 3(b) for a given set of parameters
used hereafter. We also fix TL � TR and choose μR so as
T (E = μR) ≈ 0.6 (guided by the fact that thermoelectric
effects are to be sought near transmission steps in the adiabatic
regime). The value of μL � μR is determined by the condition
IH
L (t � 0) = 0.

From time t = 0, we apply in the left lead a Gaussian

voltage pulse VL(t ) = Vp exp[−4 ln 2 (t−3 τp)2

τ 2
p

] of width

τp, amplitude Vp, and center 3τp. Therefore, the system
Hamiltonian becomes Ĥ (t > 0) = Ĥ0 + ∑

i∈L VL(t )ĉ†
i ĉi.

Using t-Kwant along with our tkwantoperator
extension [94], we compute the time-resolved particle
(IN

L ) and heat (IH
L ) currents in the left lead. Data are

shown in panels (d) to (g) of Fig. 3 for different pulse
parameters (τp,Vp) with fixed np ≡ (e/h)

∫
VL(t )dt =

(eVpτp)/(4h̄
√

π ln 2) (total number of electrons injected
by the voltage pulse in the left lead). To avoid spurious

effects that appear when the edges of the system’s conduction
band are probed [25,29], we consider relatively long pulses
with h̄/τp,Vp � μL, μR (but short enough to investigate the
nonadiabatic regime). The t-Kwant currents are compared
to the adiabatic currents IN,s̄t

L (VL(t )) and IH,s̄t
L (VL(t )) given

by the Landauer-Büttiker formulas (see Sec. III C 4). The
latter depend parametrically on time through VL(t ). They
are computed for static systems by using Kwant and a
numerical integrator over the energy. For small τp [short
pulses; see panel (d)], the particle current IN

L (t ) shows a
first positive peak centered around 3τp corresponding to
the injected pulse and some time later, a second negative
peak corresponding to the reflected part of the pulse. Both
peaks are well resolved in this (nonadiabatic) regime. They
contribute to two main negative peaks in the heat current
IH
L (t ). For large τp [long pulses; see panel (g)], the t-Kwant

currents converge to the adiabatic currents characterized by a
single peak centered at 3τp. We note that the particle current
converges more slowly to its adiabatic limit than the heat
current. The crossover between the two regimes is shown
in panels (e) and (f). Obviously, the time-resolved t-Kwant
currents in the nonadiabatic regime depend on the position
of the interface in the left lead at which they are calculated
[green dashed line in Fig. 3(a)]. However, the currents
integrated over time are independent of this position. In panel
(c) of Fig. 3, we plot

∫
dt [IN

L (t ) − IN
L (t = 0)] and

∫
dt IH

L (t )
as a function of τp [IH

L (t = 0) = 0 by construction]. We
find that heat can be extracted from the cold reservoir [102]
[
∫

dt IH
L (t ) > 0] in the limit of long pulses only and for all τp,

we have
∫

dt IH
L (t ) �

∫
dt IH,s̄t

L (VL(t )). Thus, the application
of short voltage pulses involving a nonadiabatic response
of the quantum system turns out to be detrimental to Peltier
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cooling (at least for the set of parameters considered here). A
detailed study of Peltier and Seebeck thermoelectric effects
in a time-dependent QPC is left for future works. The present
preliminary investigation shows the feasibility of further
studies. Indeed, the set of t-Kwant curves shown in panels (d)
to (g) of Fig. 3 required a few hours (d) to a few days (g) of
computation time on a single CPU core.

VII. CONCLUSION

We have built up a gauge-invariant theoretical framework
for studying time-dependent thermoelectric transport through
a broad class of electronic quantum systems, in the absence of
electron-electron and electron-phonon interactions. To simu-
late this approach on a large scale, we have adopted the wave-
function formulation of time-dependent quantum transport
drawn up in Refs. [25–27], which is formally equivalent to
the NEGF formalism, the Floquet theory (for periodic per-
turbations), and the partition-free approach. We have thereby
implemented a complementary package to the t-Kwant library
that allows us to simulate time-dependent energy transport
in addition to time-dependent particle transport. We have
checked that the built-in platform reproduces the expected
results for the time-resolved heat currents in the resonant
level model and have performed preliminary investigations
of dynamical heat transport in a larger system made up of
about one thousand sites. The approach benefits from t-Kwant
advantages in terms of versatility, user-friendliness, and com-
putational efficiency. It provides a numerical test bed for the
study of time-dependent thermoelectrics and caloritronics in
realistic electronic quantum systems, beyond the adiabatic
limit.

For the sake of simplicity, we have ignored the spin degree
of freedom and considered a spinless model throughout the
paper. Yet, there is no technical limitation at Kwant’s or t-
Kwant’s level as both softwares have been devised in such a
way that it is easy from a user or a developer point of view to
account for spin, orbital, or electron-hole degrees of freedom.
The difficulty arises from the choice of the energy operator ε̂

and from the interpretation of the different terms in the energy
continuity equation. While for instance the inclusion of the
Zeeman term is straightforward, the one of spin-orbit coupling
is less obvious.

Another natural extension of this work would be the in-
clusion of the Coulomb interaction at the mean-field level.
Indeed it was argued by Büttiker et al. [103,104] that a proper
treatment of electrostatics is needed to restore (i) particle
current conservation, i.e.,

∑
α IN

α (t ) = 0, and (ii) the condition
of (strong) gauge invariance, i.e., the absence of particle
current generation upon varying the potential in all the leads
simultaneously. This is also true for electronic heat current
[66] though (i) may not be verified due to dissipation. Impor-
tantly, condition (ii) is a stronger form of gauge invariance
than the one considered in the present paper and it is not
satisfied within our noninteracting theory [105]. To go further,
one could follow the approach used in Ref. [91] and solve
the time-dependent Hartree problem with t-Kwant in order
to describe eventually time-dependent heat and thermoelectric
transport together with electrostatic effects.
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APPENDIX A: DERIVATION OF THE ENERGY
CONTINUITY EQUATION (30)

Using the equation of motion (21) for ε̂i and the definition
(24) of the energy operator, we find

dρE
i

dt
− i

h̄
〈[ε̂(t ), ε̂i(t )]〉 = i

h̄
〈[eV̂ (t ), ε̂i(t )]〉 +

〈
∂ε̂i

∂t

〉
. (A1)

We identify the right-hand side of the above equation with
the source term SE

i and (−i/h̄)〈[ε̂, ε̂i]〉 with
∑

j IE
ji . With this

choice, the equality
∑

i, j IE
ji = 0 is straightforward. After a

few lines of calculation, we get

i

h̄
〈[ε̂, ε̂i]〉 =

∑
k, j

Re(εkiεi jG
<
jk + εk jε jiG

<
ik ), (A2)

i

h̄
〈[eV̂ , ε̂i]〉 =

∑
j

Re(eViεi jG
<
ji + eVjε jiG

<
i j ), (A3)〈

∂ε̂i

∂t

〉
=

∑
j

h̄ Im

(
∂εi j

∂t
G<

ji

)
. (A4)

Here the explicit time dependency of the different terms has
been omitted for compactness. Equations (A3) and (A4) lead
to Eq. (32) after noticing that the terms for j = i are zero.
Equation (A2) does not allow us to identify immediately
the local energy current IE

ji as we seek an expression of IE
ji

that satisfies IE
ji = −IE

i j . To go further, we use the fact that∑
k, j Re(εkiεi jG<

jk ) = 0 since ε∗
i j = ε ji and (G<

jk )∗ = −G<
k j ,

and we rewrite Eq. (A2) as

i

h̄
〈[ε̂, ε̂i]〉 =

∑
k, j

Re(εk jε jiG
<
ik − εkiεi jG

<
jk ) (A5)

to be identified with −∑
j IE

ji = ∑
j IE

i j . This provides
Eq. (31) and completes the proof of Eq. (30). As pointed out
in Sec. III B 2, this choice for IE

ji is not unique.

APPENDIX B: DISCUSSION OF THE LEAD HEAT
CURRENT DEFINITION (46)

The purpose of this Appendix is to compare the lead heat
current IH

α (t ) defined by Eq. (46) with the lead heat current
Qα (t ) used in Refs. [38,39,69] and defined by

Qα (t ) = − d

dt

〈
Ĥα + 1

2
ĤSα

〉
− μαIN

α (t ), (B1)

where Ĥα is the Hamiltonian of the lead Lα and ĤSα the
tunneling Hamiltonian between Lα and the scattering region.
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We introduce the Hamiltonian density operator

Ĥi(t ) = Hii(t )ĉ†
i ĉi + 1

2

∑
j �=i

[Hi j (t )ĉ†
i ĉ j + Hji(t )ĉ†

j ĉi], (B2)

which yields
∑

i∈Lα
Ĥi = Ĥα + 1

2 ĤSα . Using ρE
i = 〈Ĥi〉 −

eViρ
N
i [which comes from Eq. (24)] and summing over the

sites i in Lα , we find with the help of Eqs. (40b) and (46)

IH
α (t ) = Qα (t ) + eNα (t )

∂Vα

∂t
− eVα (t )IN

α (t ). (B3)

IH
α (t ) is gauge-invariant while the three terms on the right-

hand side of Eq. (B3) are not. However in the t-Kwant gauge
(52) in which the leads are time-independent, IH

α (t ) = Q̃α (t ),
where Q̃α (t ) is defined by Eq. (B1) upon replacing Ĥ by

the gauge-transformed Hamiltonian ˆ̃H given in Sec. IV A.
Thereby we recover Eq. (48).

As a side note, let us add that the counterpart of the
continuity equation (30) for the Hamiltonian density reads

d〈Ĥi〉
dt

+
∑
j �=i

IH
ji (t ) =

〈
∂Ĥi

∂t

〉
, (B4)

where

IH
ji (t ) =

∑
k

Re(Hk jHjiG
<
ik − HkiHi jG

<
jk ) (B5)

(dropping the explicit time dependence of the different terms).
None of the three terms in Eq. (B4) is in general gauge-
invariant, contrary to the ones of Eq. (30).

APPENDIX C: CONVERGENCE TO THE STATIC LIMIT

We assume that the Hamiltonian Ĥ (t ) defined in Sec. II
converges to a static limit Ĥ (t → ∞) = Ĥ s̄t at long times.
We derive Eq. (51) with the help of Eqs. (63) and (65) upon
omitting the tildes in those equations since the proof given
below does not require working in the t-Kwant gauge (52).

1. Particle current

We prove Eq. (51a) in two steps. We focus first on the static
problem defined by Ĥ s̄t for all times. The local particle current
for this static problem is given by Eq. (63),

IN,s̄t
ji = 2

∑
β

∑
mβ

∫
dE

h
fμβ+eVβ ,Tβ

(E )

× Im
[(

�
mβ E ,s̄t
j

)∗
Hs̄t

ji �
mβ E ,s̄t
i

]
, (C1)

where �
mβ E ,s̄t
i is the stationary scattering state at site i corre-

sponding to an incoming mode mβ in lead Lβ with energy E ,
i.e.,

Hs̄t�mβ E ,s̄t = E�mβ E ,s̄t . (C2)

Note that the static electric potential Vβ is included in the
leads (i.e., Hs̄t

ii = H0
ii + eVβ if i ∈ Lβ) and in the reservoirs

through the Fermi-Dirac distribution. We now make use of
the periodic pattern of each semi-infinite lead built of identical
unit cells, labeled x = 1, 2, . . . from the scattering region. In
the stationary case, the total particle current IN,s̄t

α in the lead
Lα [given by Eqs. (38) and (C1)] is invariant along the lead

axis and we have for any x

IN,s̄t
α = −2

∑
β

∑
mβ

∫
dE

h
fμβ+eVβ ,Tβ

(E )

× Im
[(

�
mβ E ,s̄t
α,x−1

)†
Wα �

mβ E ,s̄t
α,x

]
, (C3)

�
mβ E ,s̄t
α,x being the scattering state in the xth cell of the lead

Lα corresponding to an incoming mode mβ in lead Lβ with
energy E and Wα the coupling matrix connecting neighboring
unit cells in Lα . Using the notations of Ref. [25], we write the
scattering state �

mβ E ,s̄t
α,x as a superposition of plane waves

�
mβ E ,s̄t
α,x = δαβ

ξ in
mβ√

h̄
∣∣vin

mβ

∣∣e
−ikin

mβ
x +

∑
mα

ξ out
mα√

h̄
∣∣vout

mα

∣∣eikout
mα

xSαβ
mαmβ

,

(C4)

where the sum runs over the modes mα in lead Lα . The
vectors ξ in

α,mα
(E ) and ξ out

α,mα
(E ) defined on one unit cell are

the transverse parts of the incoming and outgoing modes mα

with energy E in lead Lα . kin
mα

(E ), kout
mα

(E ) and vin
α,mα

(E ),
vout

α,mα
(E ) are the corresponding mode momenta and velocities.

Sαβ
mαmβ

(E ) is the scattering amplitude of an electron injected at
energy E from the lead Lβ in mode mβ into the mode mα in
lead Lα . By inserting Eq. (C4) into Eq. (C3) and by using the
relations [25,106]

i
(
ξ in

mα

)†(
e−ikin

nα Wα − eikin
mα W †

α

)
ξ in

nα
= δnαmα

h̄vin
mα

, (C5)

i
(
ξ out

mα

)†(
eikout

nα Wα − e−ikout
mα W †

α

)
ξ out

nα
= δnαmα

h̄vout
mα

, (C6)

i
(
ξ out

mα

)†(
e−ikin

nα Wα − e−ikout
mα W †

α

)
ξ in

nα
= 0, (C7)

it can be shown that IN,s̄t
α reduces to the standard Landauer-

Büttiker formula

IN,s̄t
α =

∑
β �=α

∫
dE

h
T̄αβ (E )[ fμα+eVα,Tα

(E ) − fμβ+eVβ ,Tβ
(E )],

(C8)
where T̄αβ = ∑

mα

∑
mβ

|Sαβ
mα,mβ

|2.
Let us now consider the time-dependent problem defined

by Ĥ (t ). In that case, the local particle current IN
ji (t ) given by

Eq. (63) reads

IN
ji (t ) = 2

∑
β

∑
mβ

∫
dE

h
fμβ,Tβ

(E )

× Im
{[

�
mβ E
j (t )

]∗
Hji(t )�mβ E

i (t )
}
. (C9)

To calculate IN
ji (t → ∞) using Ĥ (t → ∞) = Ĥ s̄t , it is impor-

tant to notice first that E in the equation above labels the
energy of an incoming mode mβ in lead Lβ in the remote
past, i.e., for t � t0. In that case, the on-site potential in Lβ is
Hii(t � t0) = H0

ii while Hs̄t
ii = H0

ii + eVβ (if i ∈ Lβ ). For this
reason,

eiθE (t ) �
mβ E
j (t ) −−−→

t→∞ �
mβ ,E+eVβ ,s̄t
j , (C10)

where θE (t ) is an (irrelevant) spatially constant phase. Do-
ing the change of variable E ′ = E + eVβ in Eq. (C9) and
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comparing with Eq. (C1), we find IN
ji (t → ∞) = IN,s̄t

ji . We
deduce Eq. (51a) by using Eqs. (38) and (C8).

2. Energy current

Let us consider first the static problem defined by Ĥ s̄t for
all time. For this static problem, we define the energy operator
as ε̂ = Ĥ s̄t . With this definition, the local energy current given
by Eq. (65) simplifies to

IE ,s̄t
ji = 2

∑
β

∑
mβ

∫
dE

h
fμβ+eVβ ,Tβ

(E )E

× Im
[(

�
mβ E ,s̄t
j

)∗
Hs̄t

ji �
mβ E ,s̄t
i

]
(C11)

after using the static Schrödinger equation (C2). To calculate
the energy current IE ,s̄t

α in the lead Lα with Eq. (42b), it is
convenient to redefine the scattering region S—as we did
previously to write down Eq. (C3)—by including into it the
first cell x = 1 of Lα (or an arbitrary number of cells x =
1, 2, . . .). This does not change IE ,s̄t

α as the static energy
current calculated with ε̂ = Ĥ s̄t is invariant along the lead
axis. By using Eqs. (C11) and (C4)–(C7), we find

IE ,s̄t
α =

∑
β �=α

∫
dE

h
E T̄αβ (E )

× [
fμα+eVα,Tα

(E ) − fμβ+eVβ ,Tβ
(E )

]
. (C12)

Note that Eq. (C12) is the usual Landauer-Büttiker formula for
the lead energy current in the static case, which we recovered
upon defining in this case the energy operator as ε̂ = Ĥ s̄t .

Let us consider on the other hand the time-dependent
problem defined by Ĥ (t ). The energy operator is now defined
by Eq. (24). Using Eqs. (65), (C10), and finally (C2), we find
for the local energy currents in the long-time limit

IE
ji (t → ∞) = IE ,s̄t

ji − e

2
(Vi + Vj )I

N,s̄t
ji , (C13)

where Vi ≡ Vi(t → ∞) is a shorthand notation for the long-
time limit of the external time-dependent scalar potentials
Vi(t ). We deduce from Eq. (42b)

IE
α (t → ∞) = IE ,s̄t

α − eVαIN,s̄t
α + SE

α (t → ∞), (C14)

since Vi = Vα if i ∈ Lα and ∂φi j

∂t → 0 in the static limit t →
∞. This concludes the proof of Eq. (51b).

APPENDIX D: RESONANT LEVEL MODEL WITHIN THE
NONEQUILIBRIUM GREEN’S FUNCTION FORMALISM

In this Appendix, we give the RLM formula for the lead
particle current IN

α (t ) and the lead heat currents IH
α (t ), ĨH

α (t )
that are used in Fig. 1 to plot the NEGF curves. The model
under consideration is the one introduced in Sec. V A with
ε0(t ) = ε0 + eV0�(t ) and εL(t ) = εR(t ) = 0. The lead Hamil-
tonians Ĥα and the tunneling Hamiltonians between the dot
and the leads Ĥ0α are written in the reciprocal space, as

Ĥα =
∑

kα

εkα
ĉ†

kα
ĉkα

, (D1)

Ĥ0α =
∑

kα

Vkα
ĉ†

kα
ĉ0 + H.c., (D2)

where ĉkα
= ∑

j∈α ei jkα ĉ j is the annihilation operator of an
electron with momentum kα in lead α = L or R, Vkα

=
γc sin(kα ) the hybridization term, and εkα

= −2γ cos(kα ) the
dispersion relation (with a lattice spacing fixed to unity).
Then the currents are calculated within the NEGF formal-
ism under the wideband limit approximation, i.e., assum-
ing that �α (E ) ≡ −2 Im�R(E ) = 2π

∑
kα

|Vkα
|2δ(E − εkα

) is
energy-independent (�L = �R = �/2). This is true in the
limit λγ /� � 1 as noticed in Sec. V B. We refer to the
seminal paper [12] of Jauho et al. for the derivation of the
particle current and to Refs. [39,42,45,46] for its extension
to the energy and heat currents. We gather here the results.
Introducing the notations K̂N

α = N̂α = ∑
i∈α ĉ†

i ĉi, K̂E
α = Ĥα +

1
2 Ĥ0α , and K̂ Ẽ

α = Ĥα , we have for λ = N , E , and Ẽ〈
dK̂λ

α

dt

〉
=

∑
β

∫
dE

2π
fβ (E ) Iλ

αβ (E , t ), (D3)

where the sum over β is made over both leads L and R, and

IN
αβ (E , t ) = �

h̄

[
�

4
|A(E , t )|2 + δαβImA(E , t )

]
, (D4)

I Ẽ
αβ (E , t ) = E IN

αβ (E , t ) + �2

4
Im

[
A(E , t )

∂A∗

∂t
(E , t )

]
,

(D5)

IE
αβ (E , t ) = I Ẽ

αβ (E , t ) + �

2
δαβRe

[
∂A

∂t
(E , t )

]
, (D6)

while the spectral density A(E , t ) reads

A(E , t ) = E − ε0 + i �
2 − eV0ei(E−ε0−eV0+i �

2 )t/h̄(
E − ε0 + i �

2

)(
E − ε0 − eV0 + i �

2

) . (D7)

We used the formula above to plot the NEGF particle cur-
rent IN

α (t ) = −〈 dN̂α

dt 〉 and the NEGF heat currents IH
α (t ) =

−[〈 dK̂E
α

dt 〉 − μα〈 dN̂α

dt 〉] and ĨH
α (t ) = −[〈 dK̂Ẽ

α

dt 〉 − μα〈 dN̂α

dt 〉] in
Fig. 1 (circles). The integrals over the energy were computed
numerically.

APPENDIX E: T-KWANT EXTENSION PACKAGE FOR
ENERGY TRANSPORT: OVERVIEW AND PERFORMANCE

To calculate our newly defined energy-related
quantities, we have implemented a Python package,
tkwantoperator [94], as an extension to t-Kwant [28], with
additional classes : EnergyDensity, EnergySource, and
EnergyCurrentDivergence can be called for calculating
respectively ρE

i , SE
i , and

∑
j �=i IE

ji over a given list of sites
{i}; EnergyCurrent for calculating the current IE

ji flowing
through a given list of hoppings between sites {( j, i)};
LeadHeatCurrent for calculating the heat current IH

α in a
given lead Lα . Since the classes that are called to evaluate
the particle and energy operators all have a similar structure,
another class [107] generalizing the former ones has also
been implemented but not yet used.

The calculation of the many-body expectations values of
the various operators involves an integration over the energy
E and a sum over the modes mα injected at this energy from
all the leads Lα . Since the resolution of the Schrödinger-like
differential equation (61) giving the evolution in time of the
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scattering states �mαE (t ) is the most time-consuming task
of the t-Kwant algorithm (see below), it is crucial to use as
few scattering states as possible to evaluate the expectations
values. For this purpose, a Gauss-Kronrod adaptive scheme
[27] is used when integrating the contribution of each state
over the energy. It determines the needed number Nscat of scat-
tering states for a given precision on the expectation values.
Moreover, the time evolution of the scattering states can be
done in parallel on multicore computers, each core dealing
with a subset of the scattering states. Both functionalities
implemented in the core version of t-Kwant are leveraged to
compute the expectation values of the energy operators.

Hereafter, we analyze the extra CPU time cost due to the
evaluation of the energy operators. Given that the computation
times for evolving the scattering states (between times tn−1

and tn) and for calculating a many-body expectation value
(at a time tn) grow linearly with the total number Nscat of
scattering states, we compare these two computation times for
only one wave function �. The wave function is initialized
(at t0 = 0) with uniformly distributed random complex values
on each system site, in the [−1, 1] × [−i, i] complex square.
The computation time for the stationary problem, done once
for a given system, is not considered here. Investigations of
the t-Kwant CPU times are done for a closed (i.e., without
leads) square system with N = L2 sites lying on a square
lattice. The on-site potential Hii is disordered and shifted by a
time-dependent perturbation for t � t1 as

Hii(t > 0)=wi + �(t − t1)[sin(αt )e−βt2 + η(1+tanh(δt ))],
(E1)

where t1 = 0.8, α = 8, β = 15, η = 0.3, δ = 10, and wi are
random values that are normally distributed around zero with
a standard deviation of 0.025. Hopping terms between sites
i �= j are fixed to Hi j = γ (=1) up to the zth nearest neighbors
and are zero beyond. Each site i thus has Mz

i connected
neighbors. We note Mz = ∑

i Mz
i . In Fig. 4, we compare the

computation times used for making the wave function �(t )
evolve by a time step and for calculating its contribution
to the various particle and energy operators. Its contribution
reads for instance

∑
j Re[�∗

i εi j� j] for the energy density
operator evaluated on site i [see Eq. (64)]. Each point in
Fig. 4 is obtained by averaging the computation times of 200
measurements performed at times tn [or over the intervals
[tn, tn+1] for the evolution of �(t )] evenly spaced between
t0 = 0 and tmax = 2. CPU times are expressed in seconds and
result from simulations run on a single core (Intel Xeon Silver
4114 CPU at 2.20 GHz, 32 GB RAM).

We check on the left panel of Fig. 4 (i) that the CPU
time used for evolving a wave function by a time step grows
linearly with the number of sites N (as already reported in
Refs. [25,26]), and (ii) that the CPU times corresponding to
the computation of the contributions to the various operators
grow linearly with the size of the lists of sites or hoppings
on which they are calculated. The relative positions of the
straight lines in this panel (obtained for z = 1) show us that it
takes (much) longer to calculate the energy operators than the

FIG. 4. Comparison of the computation times needed for the
evolution of a single wave function by a time step and for the
evaluation of its contribution to the particle and energy operators.
Data (bullets) are shown for the square system made of N = L2 sites
defined in the text. Its Hamiltonian includes hopping terms up to
the zth nearest neighbors. Dashed lines are linear fits. Left: CPU
times for evaluating operators and evolving the wave function, as
a function of the size of their input site/hopping tuples (varied by
increasing L, for fixed z = 1). The input size equals N = L2 for the
wave function and the density/source operators, while it equals the
number of hoppings M[z=1]/2 = L(L − 1) for the current operators.
Right: CPU times divided by the input size N or Mz/2, as a function
of the average number of neighbors per site Mz/N , varied by taking
z = 1, 2, 3, and 4 at fixed N = 104 sites.

particle ones (which is obvious in view of the mathematical
expression of the operators) but that the global CPU time used
by the simulation is nevertheless dominated by the calculation
of the wave-function evolution. In the right panel of Fig. 4,
we investigate how this picture is modified when second (z =
2), third (z = 3), and fourth (z = 4) nearest-neighbors are
included. The CPU time used for the wave-function evolution
is unaffected (except for z = 4 due to unknown—probably
memory—reasons), as well as the CPU time corresponding to
the particle density and the CPU time per hopping correspond-
ing to the particle current. On the contrary, the CPU times
corresponding to the energy operators are much increased
since their expressions involve a sum over neighboring sites.
It is to be noted at that stage that often, in practice, the
operators only need to be calculated on a subsystem while
the wave function has to be calculated necessarily over the
N sites of the system. For instance, the lead (particle, energy,
heat) currents are calculated at the interface between the
leads and the scattering region which involves a negligible
number of hoppings in comparison to the total number Mz/2
of hoppings in the system. For this reason, we conclude that
evaluating operators has a low-to-negligible impact on the
global t-Kwant computation time for most practical situations.
For completeness, let us add that the CPU times needed for
evaluating the operators and evolving the scattering states
depend at a quantitative level on the simulated systems and
on the hardware used. Additional (not shown) data indicate
that this should not affect qualitatively the conclusion given
above.
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