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The recent ability of plasmonic nanostructures to probe subnanometer and even atomic scales demands
theories that can account for the nonlocal dynamics of the electron gas. The hydrodynamic Drude model (HDM)
captures much of the microscopic dynamics of the quantum mechanical effects when additional boundary
conditions are considered. Here, we revisit the HDM under the Madelung formalism to reexpress its coupled
system of equations as a single nonlinear Schrödinger equation in order to have a natural quantum mechanical
description of plasmonics. Specifically, we study the response of two overlapping nanowires with this formalism.
We ensure that an proposed frame concurs with classical electrodynamics when the local response approximation
holds in the plasmonic system by finding the correction needed.
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I. INTRODUCTION

In the last decade, the advancements of nanofabrication
techniques [1–3] and imaging [4,5] have allowed the field
of plasmonics to expand at an exponential rate [6–14]. On
the other hand, the theoretical framework needed to describe
rigorously these plasmonic systems is still lacking. In fact, the
classical Lorentz-Drude model still forms most of the theo-
retical background and modeling in use [15,16]. However, at
the nanometric scale, the collective behavior of the conduction
electrons is influenced by their quantum nature [17–20]. To
describe these features, another model was introduced [21].
This model is called the hydrodynamic Drude model (HDM)
as it describes the electrons in a metal as a charge fluid
coupled with the electromagnetic field [22,23]. The main ad-
vantages of the HDM are that it takes into account atomic and
subatomic interactions [22], in particular electron-electron
repulsion, by considering the Pauli exclusion principle. The
HDM has been used in numerical simulations of plasmonic
nanostructures and has yielded a good agreement with the
experimental data [24]. However, solving the fluid equations
is not trivial as, for example, the geometry of the system is
introduced by defining additional boundary conditions that
can complicate the problem. To bypass this, we use the
Madelung formalism [25].

The Madelung formalism was initially established to reex-
press the Schrödinger equation in terms of the fluid equations
that describe the flow of probability of the wave function in
quantum systems [26]. The objective in this scenario is to
proceed in the opposite direction, rewriting the fluid equations
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in one nonlinear Schrödinger equation which can then be
solved numerically. Unlike the standard HDM approaches
found in the literature [24], our approach does not need to de-
fine the so-called additional boundary conditions to describe
the geometry of the problem, as this is already defined with
the linear terms of the potential in the Schrödinger equation.

The Madelung formalism allows us to describe a plasmonic
system using the Schrödinger equation. Because of it, we
can use methods commonly found in quantum mechanics
and quantum optics to model our problem. Thus, pushing
the analogy between plasmonic systems and atoms commonly
discussed in the field: Plasmonic systems are often compared
to meta-atoms since the collective behavior of the electrons in
the metal can be discretized into modes much as an electron
bound in the atom.

In this paper, we provide a linear analyses of this model
by comparing the Rabi oscillations with the absorption cross
section obtained by full-wave numerical calculations and
transformation optics (TO) [27]. In order to do this com-
parison, we will simplify the HDM in association with the
Madelung formalism to a linear equation with an abrupt
interface between the metal and the dielectric.

II. PHYSICAL MODELS

A. Hydrodynamic Drude model

The HDM assumes that the motion of electrons in a metal
(assumed nonmagnetic, μr = 1) under the influence of an
electromagnetic field are described by the fluid equations [28]
that include the continuity equation,

−∂t n = ∇ · (n�u), (1)

and the Euler equation,

n∂t �u + n(�u · ∇ )�u = − ne

me
( �E + �u × �B) − ∇P

me
− γ n�u, (2)
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where n, �u, me, and e are the electron density, velocity, mass,
and charge, respectively, and �E and �B are the electric and
magnetic fields of the electromagnetic radiation, respectively.
In Eq. (2), e( �E + �u × �B) represents the Lorentz force, ∇P
describes the Thomas-Fermi pressure (a pressure that ac-
counts for the Pauli exclusion principle), and γ �u represents the
damping forces (a phenomenological parameter that accounts
for the damping due to electron-ion collisions).

To apply the Madelung formalism, one starts with the
Schrödinger equation

ih̄α∂tψ =
[
− h̄2β

2me
∇2 + V

]
ψ, (3)

where α and β are normalizing constants. In order to trans-
form Eq. (3) into Eqs. (1) and (2), we assume that the solution
to this Schrödinger equation takes the form of ψ = n1/2eiS .
Replacing this in Eq. (3) and separating it in two equations,
one with the real part and the other with the imaginary part,
yields

−h̄αṠ = − h̄2β

2me

[
1

2

∇2n

n
− 1

4

(∇n

n

)2

− (∇S )2

]
+ V (4)

for the real part, and

h̄α

2
ṅ =

[
− h̄2β

2me

(
∇2S + ∇n∇S

n

)]
n (5)

for the imaginary part.
If one now assumes that the magnetic component of an

electromagnetic wave is so small that it can be neglected when
compared to its electric counterpart, it is possible to define
∇S = u. Hence Eq. (4) is reduced to

ṅ = −β

α

h̄

me
∇ · (nu). (6)

Comparing Eq. (6) with Eq. (1) yields

β

α

h̄

me
= 1. (7)

From Eq. (5), one has

−Ṡ = −β

α

h̄

2me

[
1

2

∇2n

n
− 1

4

(∇n

n

)2

− (∇S )2

]
+ 1

αh̄
V,

(8)
defining V = V ′ − βVB, where

VB = − h̄2

4m

[
∇2n

n
− 1

2

(∇n

n

)2
]

= − h̄2

4me

∇2√n√
n

(9)

is the Bohm potential. With this in mind, and recalling that
∇S = u, Eq. (8) simplifies to

−u̇ = β

α

h̄

2me
∇(u · u) + 1

αh̄
∇V ′. (10)

Rearranging Eq. (10), one has

n�u + n(�u · ∇ )�u = − me

β h̄2 n∇V ′. (11)

Comparing this equation to the original fluid equation, one
concludes that

∇V ′ = β h̄2e

m2
e

�E + β h̄2

m2
e

1

n
∇P + γ

β h̄2

me
�u + β h̄2

m2
e

∇U , (12)

where �E is the electric field, ∇P is the Thomas-Fermi pres-
sure, γ the losses coefficient, and U the confining potential.
As the magnetic component of an electromagnetic wave is
small when compared to its electric counterpart and assuming
a perfect metal with no losses, the potential takes the form of

V = β h̄2e

m2
e

�r · �E + β h̄2

m2
e

(3π2)2/3h2

2me
n2/3

+ β h̄2

m2
e

U + β
h̄2

4me

∇2√n√
n

. (13)

The definition ψ = n1/2eiS implies that n = n0|ψ |2, which
means that the full potential on the Schrödinger equation takes
the form

V = β h̄2e

m2
e

�r · �E + β h̄2

m2
e

(3π2)2/3h2n2/3
0

2me
|ψ |4/3

+ β h̄2e

m2
e

U [eV ] + β
h̄2

4me

∇2
√

|ψ |2√
|ψ |2 . (14)

Equation (14) shows the full potential that arises in trans-
forming the fluid equations into a single Schödinger equation.
One could argue that, because it is a nonlinear equation, it
is as cumbersome to solve as the actual fluid equations. Yet
one could use the Madelung formalism and then simplify
the model by only considering the linear contributions of
the potential and then step by step introducing the nonlinear
terms.

After defining the Schrödinger equation, the analogy be-
tween plasmonic systems and problems found in quantum
mechanics has been established. Thus, one can use methods
commonly found in quantum mechanics such as the Rabi os-
cillations, which we describe succinctly next. A full derivation
of the Rabi oscillations can be found in Appendix A, though.

Assuming that the field is tuned to the transition of two
plasmonic modes, the wave function can be written as

ψ = Caϕa + Cbϕb, (15)

so Eq. (3) transforms into

∂t

[
Ca

Cb

]
= −i

[
	AA(t ) 	AB(t )

	BA(t ) 	BB(t )

][
Ca

Cb

]
. (16)

Equation (16) is analogous to the Bloch equations derived
from the interaction of a two-level atom with a resonant or
near-resonant electromagnetic field. In the interaction picture,
Eq. (16) changes to

∂t

[
Ca

Cb

]
= −i

[
0 	(t )

	∗(t ) 0

][
Ca

Cb

]
, (17)

with 	(t ) ≡ 	A,B.
Assuming the rotating-wave approximation, one arrives at

|Cb(t )|2 = 	2

	′2 sin2

(
	′t
2

)
, (18)
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FIG. 1. (a) Cross section of the proposed plasmonic system to be
studied. (b) Cross section of the proposed plasmonic system after
the first transformation. (c) Cross section of the system after the
second transformation. The yellow and red lines are visual aids of
the transformations.

where 	′ = √
	2 + 
2, with 
 as the detuning and 	 =

〈A| HI |B〉 where A and B are the two energy levels. Equa-
tion (18) represents the probability of an electromagnetic
wave, with frequency ω, to excite the system from the state
|A〉 to the state |B〉 by absorbing a photon. The amplitude of
this probability [and not the energy levels calculated from Eq.
(3)] is closely related to a macroscopic property of the system
called the absorption cross section [5] that can be obtained
from full-wave simulations and TO.

The above derivation is a general one. From now on, we
will apply it to a specific plasmonic system assuming an infi-
nite potential: two overlapping nanowires [see Fig. 1(a)]. We
choose this system because we can solve it analytically using
TO as outlined next and we can further validate the results
with full-wave simulations. The metal properties for the TO
and the full-wave simulations are described in Appendix B.

B. Transformation optics

Another analytical method gaining momentum to describe
plasmonic systems is TO and its two-dimensional (2D) variant
known as conformal transformation [27,29]. These techniques
transpose a complex plasmonic system to a simpler system,
whereby it would be easier to solve analytically; then the
solution of the original problem is calculated by using the in-
verse transformation. Under such transformations, Maxwell’s
equations are invariant. In the last few years, this method has
gained quite a bit of popularity as it allows the description of
a wide range of plasmonic systems [7,29–36].

In the 2D case as the one chosen in this paper, conformal
transformations are special coordinate transformations that
preserve orientation and angles locally [27,29]. Hence, the
tangential component of the electric field and the normal com-
ponent of the displacement field are conserved, too. As such,
the material in the real and virtual world are identical. For that
local angle orientation preservation, the transformation needs
to satisfy the Cauchy-Riemann relations [34] that are given

by ∂x
∂x′ = ∂y

∂y′ and ∂x
∂y′ = − ∂y

∂x′ , where (x, y) is the coordinate
system of the real world and (x′, y′) of the virtual world.

In order to describe our overlapping nanowires with TO,
we define z = x + iy, where x and y are the coordinates of the
real world and apply two transformations [36,37]. The first
transformation is

z′ = g2

z
− ir0, (19)

where r0 is a constant that relates to the intensity of the
electromagnetic field in the real world and the position of
the dipole in the first virtual world, z′ = x′ + iy′ are the

coordinates of the first virtual world, and g2 = 2r0

√
R2 − D2

4 ,
where R is the radius of a single nanowire and D is the distance
between the two centers of each nanowire.

The second transformation follows

z′′ = ln

(
z′

r0

)
, (20)

where z′′ = x′′ + y′′ are the coordinates of the second virtual
world. The resulting geometry after each transformation can
be seen in Figs. 1(b) and 1(c).

If the original two overlapping nanowires are illuminated
by a plane wave, such a plane wave is transformed into an
array of x′′- or y′′-polarized dipoles depending if the plane
wave is y or x polarized, respectively. In this paper, we con-
sider an x-polarized plane wave only to excite the fundamental
plasmon modes.

Given the subwavelength size of the plasmonic system con-
sidered, the problem can be treated quasistatically. Thus, the
electric field is completely described by an electrostatic poten-
tial and such an electrostatic potential is conserved after the
conformal mapping due to its holomorphic nature. Hence, the
underlying physics of the two overlapping wires can be found
by solving the potential in one period of the infinite periodic
metal-dielectric system [36,37]. The solution starts by finding
the potential generated by the dipole in such a period, which
involves calculating its corresponding expansion coefficient
a(k). Then, a set of three equations is defined that describes
the total potential in the dielectric region above and below the
dipole, and in the metal region. The expansion coefficients
associated with the scattering potential in the dielectric b(k)
and metal region c(k) are determined by applying boundary
conditions: the conservation of the tangential electric field and
the normal displacement field.

From the tangential electric field one has

a(k)e−kθ0 + b(k)(e−kθ0 − ekθ0 ) = c(k)(e−kθ0 − e−k(2π−θ0 ) ),
(21)

and from the normal displacement field

a(k)e−kθ0 + b(k)(e−kθ0 + ekθ0 ) = εc(k)(e−kθ0 + e−k(2π−θ0 ) ),
(22)

where 2θ0 is the distance between two consecutive metal
slabs, in the second virtual world.

Once b(k) and c(k) are found, the dispersion relation is
derived by imposing that these scattering coefficients diverge,
yielding

ε tanh (kθ0) = − tanh [k(π − θ0)]. (23)
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The complete derivation of Eq. (23) can be seen in
Appendix C. By solving Eq. (23), one can find the relationship
between ω and k. With this relationship and recalling that the
electric field is the gradient of the electric potential, one can
now deduce the electric field at the dipole position as

�E (z′′ = iy′′
n ) = −i

�

2εθ0
�k, (24)

where yn is the position of the nth dipole, � is the amplitude
of the dipole, and � is defined as

� = ε cosh−1(kθ0)e−kθ0 [1 + tanh(kθ0)]

ε − εc + ε(εεc − 1) tanh2(kθ0)
, (25)

where εc = θ0−π
θ0

.
The power dissipated in the virtual world is given by

Pa = −ω

2
Im{�∗ex · �E (z′′ = iy′′

n )}, (26)

where Im stands for the imaginary part and is identical to the
power dissipated in the real world because of the quasistatic
treatment and the properties of conformal transformation.
Hence, the absorption cross section of our system can then
be calculated with

σa = Pa

Pin
= 2π2k0

�2

θ0
Re{k�}, (27)

where Pin is the intensity of the plane wave, � = D sin(θ0), k0

is the wave vector in vacuum, and Re stands for the real part.

III. RESULTS AND DISCUSSION

In order to test the models presented here, we have chosen
to describe a plasmonic system comprising two overlapping
nanowires. The cross section of a system such as that can be
compared to a diatomic molecule when the Madelung formal-
ism is used and this will be discussed first. The system can
also be analyzed analytically with the assistance of conformal
transformation [37] (see Fig. 1 for the cascaded conformal
transformations to arrive at a canonical infinite periodic metal-
dielectric system) and the results following this methodol-
ogy will be discussed afterwards and compared against the
Madelung formalism approach. However, in order to do this
comparison we have to simplify the model to its local limit.
This can be achieved by linearizing the Schrödinger equation
and by defining the linear potential with a sharp interface
between the metal and the surrounding environment.

To describe this system using the Madelung formalism, one
needs to first find the solutions of the linear coefficients of
the Schrödinger equation [Eq. (3), with the term V being the
linear parts of Eq. (14)], where the term U is defined to force
the electron density profile to abruptly vanish at the metal
interface. These solutions to the linear Schrödinger equation
can be seen in Fig. 2 for a distance between the centers of each
nanowire of D = 16 nm. Notice that these electron density
distributions do not represent directly the plasmonic modes
of the nanostructure. These solutions were found using the
finite-difference method that is described in more detail in
Appendix D. As expected, each solution can be defined by the
number of nodes inside the potential well and the probability
of finding an electron in the position z varies for each state.

FIG. 2. Normalized electron density distribution for the (a) first,
(b) second, (c) third, (d) fourth, and (e) fifth plasmonic energy levels
of two overlapping nanowires with R = 10 nm and D = 15 nm.

A full parametric study was done and the evolution of the
energy levels for each D can be seen in Fig. 3. With these
results, one can now make use of the Rabi oscillations, com-
monly use in quantum optics, to calculate the probability of a
change in the state of the plasmon mode of the nanostructure.
In practice, the plasmonic structure acts as a small antenna
which absorbs and reemits light. Given the total size of the
overlapping nanowires, scattering can be neglected. Thus, the
absorption of light is proportional to |Cb(t )|2 from Eq. (18) in
a two-level system. It is important to note that as one increases
the distance D closer to 20 nm, the modes start to trend back to
their original position with extra degeneracy. This is because
in the limit, instead of having two overlapping nanowires, we

FIG. 3. First five energy levels for two overlapping circular
nanowires of R = 10 nm as a function of the distance D, calculated
from using the inverted Madelung formalism after linearization of
the potential.
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FIG. 4. Linear combination for all the Rabi coefficients for a five-
level system and where the dots represent the maximum. Notice that
the energy depicted is the energy of light.

have two isolated nanowires. Another feature in Fig. 3 is the
crossing of the third and fourth mode at around D = 12 nm.
This happens because, as D increases, the shift of energy of
these two modes [Figs. 2(c) and 2(d)] is so large that they
actually trade places when sorting them by their value of
energy.

In Fig. 4 one can see the linear combination of all the
Rabi coefficients for a five-level system and their relationship
with the distance D and the energy of light defined both in
eV and ω/ωsp, where ωsp is the surface plasmon frequency.
This is done by using Eq. (17) for every combination possible
between the five-level system considered. It is important to
note that the solution used in the Madelung formalism is
a linear combination of all of the eigenstates. Since it is
impossible to compute all of these states, as there is an infinite
amount of them (for an infinite potential there is an infinite
amount of eigenstates), we restrict ourselves to the first five as
it gives a clear enough physical picture. These results can now
be compared to the ones obtained using TO.

Equation (23) is a transcendental equation, so the solutions
to Eq. (27) were found using a PYTHON code and can be
seen in Fig. 5. Even though TO has been widely confirmed
in the field, we have compared its solutions to a full-wave
solution using COMSOL, which can be seen in Fig. 6. The
scattering cross section was also computed using COMSOL

(not shown) to confirm that it is negligible. By comparing
Fig. 5 with Fig. 6, one can see that the first mode from the
COMSOL simulation matches directly with the one obtained
using TO. We refer the reader to Appendix E to see the
field distribution and charge density of this first mode along
with the first higher-order mode. One should note as well
that by using the TO formulation, higher-order modes are not
captured when a plane wave is the excitation, but the model
is able to do it when the plasmonic system is pumped by a
nearby nanoemitter [29,30,35,38].

FIG. 5. Absorption cross section for two circular overlapping
nanowires of R = 10 nm as a function of the distance between their
centers D using TO. Notice that it is normalized to the system’s
length along the dimer axis.

Figure 7 shows the ratio of the energy of the absorption
cross-section maximum obtained with TO and the energy of
the maximum of the Rabi oscillations (maximum probability
of absorbing a photon that results into a state transition)
obtained with the HDM with the Madelung formalism for
each value of D. For largely overlapping nanowires, higher-
order modes emerge close to the fundamental mode, influ-
encing greatly the latter. For less overlapping nanowires (i.e.,
larger values of D), even though there are more higher-order
modes to be considered, their influence on the fundamental
mode decreased as it is redshifted significantly with respect
to the higher-order modes. Hence, the ratio shown in Fig. 7

FIG. 6. Absorption cross section for two circular overlapping
nanowires of R = 10 nm as a function of the distance between their
centers D using full-wave COMSOL simulations. Notice that it is
normalized to the system’s length along the dimer axis.
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FIG. 7. Comparison between TO and the HDM with the
Madelung formalism as a function of D.

decreases as a function of D. In addition, the effects of
nonlocality are known to decrease for larger structures, mak-
ing the results of the Madelung formalism and HDM more
comparable to the local TO. The fact that this ratio is not
linear means that only solving the linear potentials of the
Schrödinger equation does not completely result in the local
limit of the HDM. Hence, the linearized Madelung formalism
still partially retains nonlocality.

IV. CONCLUSIONS

In this paper, we described the initial steps toward an
original complete theoretical framework for the so-called
classical (macroscopic) to quantum (microscopic) boundary,
from a quantum viewpoint rather than the classical viewpoint
as done rigorously by others recently [20]. In particular, we
presented another way to look at the hydrodynamic Drude
model for plasmonics using the Madelung formalism in order
to rewrite the fluid equations into a Schrödinger equation. For
the total population plasmonic system in the steady state to be
tractable (because of computational constraint), we restricted
ourselves to the five fundamental energy levels. This method
allowed us to describe the behavior of the fundamental local-
ized surface plasmon mode in the two overlapping nanowire
plasmonic systems under the local limit and assuming a clas-
sical, macroscopic sharp dielectric-metal boundary. Notice
that defining a linear potential with a nonsharp boundary to
account for electron spill-out is possible in our model and
will be addressed elsewhere. We then compared the results
with the ones obtained using transformation optics to find the
necessary correction to the model to account for the effective
potential. With such a semiempirical correction that ensures
that our model is valid in the local limit, one can start tackling
the nonlinear terms of the Schrödinger equation, and thus
incorporating in a natural way nonlocality without the need for
defining additional boundary conditions, which is the current
approach in plasmonics and is highly contested.
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APPENDIX A: RABI OSCILLATIONS

Assume that the system can be described by a two-level
system, |g〉 (for the ground state) with energy h̄ωg and |e〉 (for
the excited state) with energy h̄ωe. The Hamiltonian for the
coupling of this system and a radiation field of frequency ω

can be written as follows,

H = H0 + HI , (A1)

where HI is called the interaction Hamiltonian defined by
HI = r · E0 cos(ωt ), and H0 represents the unperturbed sys-
tem. The solution to the Schrödinger equation of the unper-
turbed system can be written as

ψ (r, t ) = cg(t ) |g〉 e−iωgt + ce(t ) |e〉 e−iωet . (A2)

Applying Eq. (A2) in Eq. (A1) yields

ih̄∂t [cg(t ) |g〉 e−iωgt + ce(t ) |e〉 e−iωet ]

= H (t )[cg(t ) |g〉 e−iωgt + ce(t ) |e〉 e−iωet ], (A3)

and expanding and simplifying this turns into

ih̄∂t cge−iωgt |g〉 + ih̄∂t cee−iωet |e〉
= HI e

−iωgt cg |g〉 + HI e
−iωet ce |e〉 . (A4)

Applying 〈g| and 〈e| to Eq. (A4) we have

ih̄∂t cg = cg 〈g| HI |g〉 + e−i(ωe−ωg)t ce 〈g| HI |e〉 , (A5)

and

ih̄∂t ce = e−i(ωg−ωe )t cg 〈e| HI |g〉 + ce 〈e| HI |e〉 . (A6)

Notice that in doing so we are computing the energy levels
of the dressed states (the eigenstates of the system composed
of plasmons and light) by opposition to the undressed states,
which refer to eigenstates of the plasmons considering only
the confinement potential produced by the metal geometry.

To simplify this notation, let us define

	i j = h̄−1 〈i| HI | j〉 e−i(ω j−ωi )t . (A7)

With this notation, Eqs. (A5) and (A6) can be written as

∂t

[
cg

ce

]
= −i

[
	AA(t ) 	AB(t )

	BA(t ) 	BB(t )

][
cg

ce

]
, (A8)

and in the interaction picture, it changes to

∂t

[
cg

ce

]
= −i

[
0 	(t )

	∗(t ) 0

][
cg

ce

]
, (A9)

with 	(t ) ≡ 	ge. If we now apply the rotating-wave approx-
imation (for this approximation, we assume that the electric
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FIG. 8. Spatial intensity distribution in logarithm scale of the first
(top) and second (bottom) plasmonic modes of the two overlapping
nanowires found using COMSOL full-wave simulations.

field period is much faster than the response of the atom), one
arrives at

|ce(t )|2 = 	2

	′2 sin2

(
	′t
2

)
, (A10)

where 	′ = √
	2 + 
2.

With Eq. (A10), we can relate the amplitude of this prob-
ability to the macroscopic property of the system that is the
absorption cross section.

APPENDIX B: METAL MODEL

Both the TO and the full-wave simulations considered
the same ideal metal whose concentration of free electrons
per unit volume is 1.07 × 1028, and thus has the following
dielectric permittivity,

ε = 1 − ω2
p

ω2 + iγω
, (B1)

where ωp = 5.8353 × 1015 rad/s, γ = 2.861 364 884 × 1014

rad/s.

APPENDIX C: CHARACTERISTIC EQUATION FROM THE
TRANSFORMATION OPTICS METHOD

In order to arrive at the dispersion relation of the system
considered, one has to rearrange Eqs. (21) and (22). So from
Eq. (21), one has

a(k)e−kθ0 + b(k)(e−kθ0 − ekθ0 )

= c(k)e−kπ (ek(π−θ0 ) − e−k(π−θ0 ) ), (C1)

FIG. 9. Numerically computed charge density of the first (top)
and second (bottom) plasmonic modes of the two overlapping
nanowires. The scale color bars are saturated to better appreciate the
charge density.

and from Eq. (22),

a(k)e−kθ0 + b(k)
(
e−kθ0 + ekθ0

)
= εc(k)e−kπ

(
ek(π−θ0 ) + e−k(π−θ0 )

)
. (C2)

Dividing Eq. (C1) with Eq. (C2) yields

ε
a(k)e−kθ0 + b(k)(e−kθ0 − ekθ0 )

a(k)e−kθ0 + b(k)(e−kθ0 + ekθ0 )
= tanh [k(π − θ0)]. (C3)

Organizing Eq. (C3), one has

b(k)= a(k)e−kθ0

2

ε−tanh [k(π − θ0)]

cosh (kθ0){ε tanh (kθ0)+tanh [k(π−θ0)]} .
(C4)

Replacing Eq. (C4) in Eq. (C1), one can find the definition
of c(k) to be

c(k) =a(k)

2

ekπ e−kθ0

cosh [k(π − θ0)]

× ε
tanh (kθ0) + 1

ε tanh (kθ0) + tanh [k(π − θ0)]
, (C5)
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which simplifies to

c(k) =a(k)

2

εekπ

cosh (kθ0) cosh [k(π − θ0)]

× 1

ε tanh (kθ0) + tanh [k(π − θ0)]
. (C6)

The characteristic equation can then be found when both
b(k) and c(k) diverge. That happens when

ε tanh (kθ0) = − tanh [k(π − θ0)]. (C7)

APPENDIX D: FINITE-DIFFERENCE METHOD

The Hamiltonian for the linear components of the
Schrödinger equation were defined using the finite-difference
method and sparse matrices. This method works by approx-

imating a derivative with an equation of differences [39].
A sparse matrix is a matrix that contains mostly zeros. In
order to save memory, in numerical methods that use a sparse
matrix, the computer only stores the nonzero elements and
their position.

APPENDIX E: ELECTRIC FIELD AND CHARGE DENSITY

Figure 8 shows the spatial intensity distribution of the
first two plasmonic modes in the two overlapping nanowire
plasmonic system with R = 10 nm and D = 16 nm. The
corresponding frequencies are ω = 0.685ωsp and 0.877ωsp,
respectively. For both modes, the field is extremely confined
and intense in the vicinity of the structure singularities, that is,
the points where the two nanowires merge.

Figure 9 shows the charge density for the first two plas-
monic modes in the two overlapping nanowire plasmonic
system with R = 10 nm and D = 16 nm.
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