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Effective Floquet Hamiltonians for periodically driven twisted bilayer graphene
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We derive effective Floquet Hamiltonians for twisted bilayer graphene driven by circularly polarized light
in two different regimes beyond the weak-drive, high-frequency regime. First, we consider a driving protocol
relevant for experiments with frequencies smaller than the bandwidth and weak amplitudes and derive an
effective Hamiltonian, which through a symmetry analysis, provides analytical insight into the rich effects of
the drive. We find that circularly polarized light at low frequencies can selectively decrease the strength of
AA-type interlayer hopping while leaving the AB-type unaffected. Then, we consider the intermediate frequency
and intermediate-strength drive regime. We provide a compact and accurate effective Hamiltonian which we
compare with the Van Vleck expansion and demonstrate that it provides a significantly improved representation
of the exact quasienergies. Finally, we discuss the effect of the drive on the symmetries, Fermi velocity, and the
gap of the Floquet flat bands.
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I. INTRODUCTION

The recent discovery of strong-correlation effects in
twisted bilayer graphene (TBG) generated great interest in
moiré heterostructures [1–31] and ways to simulate them
[23]. Similar to the behavior in cuprates [32,33] at different
filling factors superconductivity, Mott-insulating [4,16,34–
36], and ferromagnetic behavior [37,38] has been observed
in TBG. The experimental observations were followed by
several theoretical proposals to explain the observations based
on the existence of flat bands that appear at special twist
angles [1,9,39]. These flat bands play an essential role in
the emergence of strong correlations because the interaction
terms become relatively dominant [40] over the kinetic energy
contributions of the dispersive bands [12,24,36,39–41].

In TBG, the flat bands depend strongly on the twist angle
between the graphene layers, which is experimentally difficult
to set to a precise value. This challenge has led to several stud-
ies proposing different mechanisms to correct for deviations
from the magic angle, for example, via pressure [5,42–44] or
light confined in a waveguide [45].

In parallel to the developments on moiré lattices, there has
been rapid progress in our understanding of nonequilibrium
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systems, both experimentally and theoretically, particularly
for the case of periodic drives, which may be induced by a
laser [46–58]. The existence of an exponentially-long pre-
thermal time regime [59–64] in driven interacting quan-
tum systems allows one to introduce the notion of effec-
tive time-independent theories. The development of several
techniques to derive effective Hamiltonians in different drive
regimes led to rapid evolution of the Floquet engineering field
[61,65–86]. For instance, the prediction of an anomalous Hall
effect in single-layer graphene driven by circularly polarized
light [87] has been recently confirmed in experiments [88].
More generally, there has been an increased interest in the
study of topological transitions induced by periodic drives
[87,89–107].

More recently, the fields of twistronics and Floquet engi-
neering crossed paths in twisted bilayer graphene driven by
circularly polarized light in free space [108–110]. Interesting
effects like topological transitions at large twist angles using
high-frequency drives [108] and the induction of flat bands
using near-infrared light in a wide range of twist angles [110]
were found. These studies are mainly numerical and only
provide analytical descriptions in the high drive frequency
regime, which we will define rigorously in the next section.

The aim of this work is to derive analytical effective
Floquet Hamiltonians that allow us to gain insight into twisted
bilayer graphene subjected to circularly polarized light away
from the conventional weak drive, high frequency regime of
Van Vleck [111,112], Floquet-Magnus, or Brillouin-Wigner
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FIG. 1. (a) Sketch of twisted bilayer graphene irradiated by cir-
cularly polarized light. (b) Moiré Brillouin zone. (c) Band structure
for twisted bilayer graphene for w0 = w1 = 110 meV and θ = 1.05◦.
The low-energy flat bands are highlighted in red.

approximations [66,74]. Our effective Floquet Hamiltonians
allow us to elucidate the effects of the interplay of moiré
lattices and Floquet drives. Particularly, we consider two
complementary regimes: (i) a regime characterized by weak
drive and low frequencies and ii) a regime characterized by
intermediate frequencies and strong drives. The remainder of
the paper is organized as follows: In Sec. II we describe the
system we consider, in Sec. III we examine the low-frequency,
weak drive limit, and in Sec. IV we address the intermediate
frequency and intermediate strength drive regime. Finally, in
Sec. V we present our conclusions and outlook.

II. SYSTEM DESCRIPTION

A. Static Hamiltonian

The starting point of our discussion is the effective Hamil-
tonian that describes twisted bilayer graphene [1,25,39,113–
115]

Hk(x) =
(

h(−θ/2, k − κ−) T (x)

T †(x) h(θ/2, k − κ+)

)
(1)

which describes two stacked graphene layers that are rotated
with respect to each other by an angle θ , as shown in the
sketch of Fig. 1(a). Here,

h(θ, k) = γ

(
0 f (R(θ )k)

f ∗(R(θ )k) 0

)
(2)

is the single-layer graphene Hamiltonian, f (k) = e− 2
3 ia0ky +

2e
ia0ky

3 sin ( a0kx√
3

− π
6 ) describes the intralayer hopping ampli-

tude between nearest-neighbor sites, and γ = vF /a0, where
we use natural units h̄ = c = e = 1. The inclusion of the full
structure of f (k) means that this Hamiltonian is valid in the
full Brillouin zone and not just near a K point. The interlayer
hopping matrix

T (x) =
1∑

i=−1

e−ibixTi, (3)

Tn = w012 + w1

(
cos

(
2πn

3

)
σ1 + sin

(
2πn

3

)
σ2

)
, (4)

describes tunneling between the two graphene layers and
encodes a hexagonal pattern that has its origin in that
the two superimposed graphene lattices which develop a
moiré pattern [see Fig. 1(b)], where b0 = (0, 0), and b±1 =
kθ (±√

3/2, 3/2) are the reciprocal lattice vectors. Following
Refs. [45,109,110] we introduced an additional parameter
w1 into the tunneling term to model relaxation effects, since
AB/BA stacking configurations are energetically favored over
AA configurations [114,116]. Furthermore, there are indica-
tions that AA and AB regions have different interlayer-lattice
constants [117]. Throughout this work, we fixed γ = vF /a0 =
2.36 eV, and a0 = 2.46 Å. For a detailed description of the
band structure numerical implementation, see the Appendix
of Ref. [45]. In Fig. 1(c) we show the band structure for w0 =
w1 = 110 meV, and θ = 1.05◦, value near the magic angle.

The Hamiltonian in Eq. (1) describes only one valley de-
gree of freedom. A full description of the system would incor-
porate the two graphene valleys. However, we only consider
perturbations induced by light, which cannot induce processes
that mix the two valleys. The Hamiltonian in the other valley is
connected by a C2 rotation [118]. The symmetries of the con-
tinuum model Eq. (1) include C3 rotational symmetry about
the center of a AA region, C2T symmetry (taking into account
both valleys, the TBG presents time-reversal symmetry T ),
and My : y, ky → −y,−ky mirror symmetry [16,118,119]. In
the small-rotation limit, the angle dependence of the graphene
sectors can be neglected, leading to an approximate particle-
hole symmetry C [119].

B. Driven twisted bilayer graphene

For the driven system, we assume that circularly polarized
light is applied in a direction normal to the TBG plane as
sketched in Fig. 1(a). Then, the light enters via minimal
substitution as kx → k̃x(t ) = kx − A cos(�t ), and ky → k̃y =
ky − A sin(�t ) leaving the tunneling sector almost unaltered.
The reason for this is simple. The inclusion of light in a tight-
binding model can be done via a Peirls substitution for hop-

pings ti j → ei
∫ R j

Ri
Adrti j . The interlayer hopping is dominated

by hopping between atoms that are almost exactly on top of
each other—after all other atoms are further away and the
overlap between orbitals is smaller. Therefore for interlayer
couplings mostly longitudinal components of A contribute
in the line integral

∫ Rj

Ri
Adr. Circularly polarized light only

has transverse components and therefore has little effect on
interlayer couplings. The time-dependent Hamiltonian is

H (x, t ) =
(

h(−θ/2, k̃(t ) − κ−) T (x)
T †(x) h(θ/2, k̃(t ) − κ+)

)
, (5)
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with H (x, t + 2π/�) = H (x, t ). The Floquet theorem
[65,66,70] exploits the discrete time-translational symmetry
and allows one to write the wave functions as |ψ (t )〉 =
eiεt |φ(t )〉, where |φ(t + 2π/�)〉 = |φ(t )〉 and ε is the
quasienergy. Replacing |ψ (t )〉 into the Schrödinger equation
leads to [H (x, t ) − i∂t ]|φ(t )〉 = ε|φ(t )〉, which governs the
dynamics of the periodic system. The exact solution can
be generically obtained either by constructing the Floquet
evolution operator UF = T exp{−i

∫ 2π/�

0 H (s)ds} = e−iHF T

or by employing the extended-state picture. In the extended-
state picture, we use the Fourier series |φ(t )〉 = ∑

n ein�t |φn〉,
which leads to

∑
m (H (n−m) + δn,m�m)|φm〉 = ε|φn〉, defined

in the infinite-dimensional Floquet-Hilbert space spanned
by the direct product of the Hilbert space of the static
system and the space spanned by a complete set of periodic
functions. The Hamiltonian Fourier modes are given by
H (n) = ∫ 2π

0 dτ/(2π )H (τ )e−iτn, which can be derived by
making the replacements

f (k) → f (n)(k) = e− 1
3 i(2a0ky+3(θ−π )n)

(
1 + 2eia0ky sin

(
a0kx√

3
+ 2πn

3
− π

6

))
Jn

(
2Aa0

3

)

T (x) → T (n)(x) = δn,0T (x), (6)

in Eq. (1).
The two exact approaches outlined above are challenging

to use in practice, and one usually has to employ approxima-
tions. In the following sections, we will employ a recently
developed [79] approach valid in the weak-drive limit and
for arbitrary frequencies. Also, we will introduce improved
methods to study the intermediate-amplitude drive regime
valid in the high and intermediate frequency regimes.

III. WEAK DRIVE REGIME

Thus far, most discussions of twisted bilayer graphene
irradiated by circularly polarized light have focused on the
high frequency limit. This is for practical reasons because
the lower frequency regime, while it is more interesting and
relevant for experiments, is also harder to treat using the
existing theoretical tools. In Ref. [79], we developed a method
to address this issue in the weak driving limit. Here, we apply
our method using a series of approximations necessary to
make progress and gain some analytical insights into the low
frequency regime.

If we are interested in the effects of the drive on the
low-energy bands, small angles, and weak drives our origi-
nal Hamiltonian can be approximated with f (k) ≈ fL(k) =
a0e−i θ

2 (kx − iky), in the vicinity of the graphene K point. The
reason we may Taylor expand for small momenta when the
twist angle θ is small is because the moiré Brillouin zone
is very small, i.e., kθ � kD. Nonlinear corrections only be-
come important for higher-energy bands. These higher-energy
bands are in turn not relevant for the driven system in the
weak-drive limit, since they couple weakly to the low-energy
bands.

The time-dependent Hamiltonian within these approxima-
tions has the form

H (t ) = HL + Pe−i�t + P†ei�t , (7)

where the monochromatic operator P = T −1
∫ T

0 dsH (x, s)
ei�s is given by

P = −Aγ a0

⎛
⎜⎝

0 eiθ/2 0 0
0 0 0 0
0 0 0 e−iθ/2

0 0 0 0

⎞
⎟⎠, (8)

and HL is the same as Eq. (1) just with f (k) → fL(k) lin-
earized momentum dependence.

For weak driving amplitudes A and arbitrary frequency
�, the periodically driven systems can be described by the
effective self-consistent time-independent Hamiltonian [79]

Heff ≈ HL + P
1

ε − HL − �
P† + P† 1

ε − HL + �
P, (9)

where H0 is the time-averaged Hamiltonian, and ε are the
quasienergies. For large frequency drives, we can apply a
Van Vleck expansion and obtain the effective Hamiltonian
[111,112] Heff = HL + H�, where the leading order correc-
tion is given by H� = −�τ0 ⊗ σ3, � = (Aγ a0)2/�, and σi,
τi are the Pauli matrices in pseudo-spin and layer space,
respectively. To keep the notation simple, in the remainder of
the text we refer to the approximation He f f ≈ HL + [P†, P] as
the Van Vleck approximation.

Therefore, in the high-frequency limit, the main effect
is the addition of the gap � in the quasienergy spectrum
originating from the breaking of time-reversal symmetry T .
This gap is topologically nontrivial, and leads to topological
Floquet flat bands with Chern number C = 4 [109,110] which
could serve as platforms to realize Floquet fractional Chern
insulators [109,120]. The relatively large Chern number orig-
inates from spin and valley degeneracy [109,110].

In order to evaluate the effective Hamiltonian Heff for
arbitrary frequency, we notice that the Brillouin zone has
dimensions kθ ∝ sin(θ/2) and therefore the corresponding
energy obeys h̄vF kθ � w0,1 for sufficiently low angles. This
is, for small angles, T (x) introduces the dominant energy
scale, i.e,. min ‖T (x)‖ � ‖h(k)‖, where ‖.‖ is a matrix norm.
This estimate can be written more precisely as√

(k − κ+)2 + (k − κ−)2 � 3
w1

h̄vF
(10)

if w0 ≈ w1. (Physically, this is a regime where the inter-
layer coupling are essential to the physics.) Therefore, for
small enough angles and momenta that fulfill this inequal-
ity we may introduce the approximation (ε − HL ± �)−1 ≈
(ε − HT ± �)−1 where

HT =
(

0 T (x)
T †(x) 0

)
. (11)
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Replacing this approximation in the second and third terms
of equation (9), we find the effective Hamiltonian Heff =
H0 + H� + O(( A

kD
)
3
, ( A

kD
)
2 kθ

kD
), where the neglected terms that

are third order in small parameters. We find that terms of
order O( A

kD
)
4

vanish. The leading-order correction to the
Hamiltonian H� has the following form

H�(x) = V (x,�)τ0 ⊗ σ0 + U (x,�)τ3 ⊗ σ0

+ 1
2�1(x,�)(τ0 + τ3) ⊗ σ3

+ 1
2�2(x,�)(τ0 − τ3) ⊗ σ3

+ δw0(x,�)τ+ ⊗ σ0 + δw∗
0 (x,�)τ− ⊗ σ0

+β(x,�)τ+ ⊗ σ3 + β∗(x,�)τ− ⊗ σ3. (12)

Equation (12) is the first main result of our work. The full
expressions for each of the terms appearing in Eq. (12) are
given in Appendix and depend on the quasienergy, which was
omitted explicitly for brevity. A perturbative approach gener-
ically generates long-range hopping terms as the frequency
is arbitrarily decreased. The method here employed leads to
the closed form in Eq. (12), which contains all the possible
terms that can be generated by the drive, even in the low-
frequency regime, defined as driving frequency � � W with
W ∼ maxt‖H (t )‖. Conversely, we define the high-frequency
regime for the moiré system as � > W ∼ maxt‖H (t )‖.

Now, we discuss the origin and implications of each the
new terms on the symmetries of the system. Due to the
assumed approximations, the corrections to the Hamiltonian
H�(x) present no momentum dependence and do not com-
mute at different points in space, [H�(x), H�(x′)] �= 0.

The first term, V (x,�)σ0 ⊗ τ0, with V (x,�) ∝ O(�−2),
corresponds to an overall position-dependent potential
which does not introduce new physics. The second term,
U (x,�)σ0 ⊗ τ3, is a position-dependent interlayer bias with
U (x, y) = U (x,−y), U (x, y) = −U (−x, y), and U (x, y) ∝
O(�−3). This term breaks mirror symmetry My and allows
a relative shift in quasienergy between the Dirac crossings
at κ±, as shown schematically in Fig. 2(a) for a spatially-
uniform constant U . Because the U (x,�) is odd in the x
coordinate, C2T and C3 are also broken when taking the
position dependence into account.

In Bernal-stacked bilayer graphene, an interlayer bias U
opens up a gap in the energy spectrum around the K points
[121,122]. If we introduce a region in space where the sign
of the interlayer bias changes, U → −U , a domain wall
forms where the gap inverts, leading to topologically protected
helical (TPH) modes [123–125]. In twisted bilayers, even
though U does not gap the spectrum, the moiré pattern alter-
nating AB/BA regions leads to the formation of topological
boundary modes even for spatially-homogeneous interlayer
bias U [126]. Here, we obtained that circularly polarized light
induces an interlayer potential U (x,�) in the low-frequency
limit, which could induce the formation of topologically pro-
tected helical modes.

Next, the terms �1/2(x,�)(τ0 ± τ3) ⊗ σ3 with
�1/2(x,−y) = �1/2(x, y) and �2(x, y) = �1(−x, y) break
My, and C2T symmetry, which protects the linear band
crossing, leading to the opening of a gap at the κ± points in
the mBZ. The �1/2(x,�) position dependence is relevant

(a) (b)

(c) (d)

FIG. 2. Sketch of the individual effects of the new term generated
by low-frequency and low-intensity circularly polarized light on the
TBG quasienergies. The parameters used are w0 = w1 = 110 meV,
and θ = 1.2◦. The gray dashed curves correspond to the static case,
while the red curve indicates the effect introduced by the nonzero
perturbation introduced by light.

at order O(�−3), and the asymmetry �1 �= �2 is relevant
at order O(�−4). When both TBG valleys are taken into
account, this term breaks time-reversal symmetry T and leads
to the formation of topologically nontrivial Floquet flat bands
[109,110]. The asymmetry �1 �= �2 leads to asymmetric
gaps at the κ± points in the mBZ, as sketched in Fig. 2(b),
where we plot the bands for TBG with a constant term of
the form �1(τ0 ± τ3) ⊗ σ3 added. The �1/2(x,�) position
dependence leads to breaking of C3 symmetry.

The term δw0(x,�)τ+ ⊗ σ0 (and its hermitian conjugate)
where τ± = 1/2(τ1 ± iτ2), Re δw0(x,−y) = Re δw0(x, y),
Im δw0(x,−y) = −Im δw0(x, y), δw0(−x, y) = δw0(x, y)
introduces a correction to the tunneling amplitude w0,
consistent with the symmetries of the static system, except
C3. δw0(x,�) effectively renormalizes the Fermi velocity at
the κ± points and can modify the position of the magic angles.
To leading order, δw0(x,�) ≈ −(Aγ a0/�)2T11(x) cos(θ ),
where T11(x,�) corresponds to the diagonal entry of the
tunneling matrix Eq. (3).

In Fig. 2(d), we schematically show the effect of this term
in the Floquet bands. Controlled drive protocols to tune the
Fermi velocity of the Floquet zone center flat quasienergy
bands have previously been proposed [45]. For small angles,
large drive frequency �, and small quasienergies ε � �, this
term constitutes the second most relevant correction after
�1/2(x,�). An accurate description of the quasienergies ε

near the Floquet zone center is challenging to achieve with
high-frequency expansions such as the Magnus expansion,
which highlights the strength of our approach. Crucially, the
physics of the Floquet bands near the Floquet zone center is
not obfuscated by negligible contributions from static high-
energy bands which do not hybridize due to the weak drives
considered here. Finally, the correction to the interlayer tun-
neling δw0(x,�) is bears resemblence to effects one would
expect from the relaxation of the driven lattice. Particularly,
this term only affects the AA-type interlayer coupling w0,
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which reduces. One could observe a similar effect if the size
of AA-type patches were to shrink, which would also lead to
the reduction in w0. Secondly if the interlayer distance in AA
stacked regions increased, this would also lead to a similar
reduction of w0. Therefore the periodic drive is able to mimic
these effects.

Finally, we address the term β(x,�)τ+ ⊗ σ3 (and
its hermitian conjugate) with real-space transformation
properties β(−x, y) = β(x, y), Reβ(x,−y) = Reβ(x, y), and
Imβ(x,−y) = −Imβ(x, y). To leading order, β(x,�) =
i(Aγ a0/�)2T11(x) sin θ + O(�−3). Neglecting its position
dependence, β preserves C2T and My. Taking the position
dependence into account, β(x) breaks both C2T and My. Phys-
ically β(x,�) can be interpreted as a pseudo-spin dependent
tunneling term. Therefore, in the weak-drive, small angle and
low-frequency regime, circularly polarized light can introduce
a collection of symmetry-breaking processes beyond the reach
of the high-frequency limit.

In addition to the small angle limit where Eq. (10) is
fulfilled let us also consider the opposite limit√

(k − κ+)2 + (k − κ−)2 � 3
w1

h̄vF
(13)

where (ε − HL ± �)−1 ≈ (ε − Hg ± �)−1 with

Hg =
(

h(−θ/2, k − κ−) 0
0 h(θ/2, k − κ+)

)
. (14)

In this case we find that Heff = H0 + H� +
O(( A

kD
)
3
, ( A

kD
)
2 w1,2

γ
)

H�(k) = V (k,�)τ0 ⊗ σ0 + U (k,�)τ3 ⊗ σ0

+ 1
2�1(k,�)(τ0 + τ3) ⊗ σ3

+ 1
2�2(k,�)(τ0 − τ3) ⊗ σ3. (15)

The gaps are given as

�1/2(k,�)

A2a2
0γ

2
= �(ε2 − �2 + | f1/2(k))|2)

�1/2(ε, k,�)
, (16)

the interlayer bias is

U (k,�)

A2a2
0γ

2
= −ε

2

2∑
m=1

(−1)m ε2 − �2 − | fm(k))|2
�m(ε, k,�)

, (17)

and

V (k,�)

A2a2
0γ

2
= ε

2

2∑
m=1

ε2 − �2 − | fm(k))|2
�m(ε, k,�)

, (18)

where f1/2(k) = f (R(∓θ/2)(k − κ∓)), with the property
| f1/2(kx,−ky )|2 = | f2/1(k)|2, and

�1/2(ε, k,�) =
2∏

m=1

(| f1/2(k))|2 − (ε + (−1)m�)2), (19)

with �1/2(ε, (kx,−ky),�) = �2/1(ε, k,�). This property
implies that V ((kx,−ky),�) = V (k,�), U ((kx,−ky ),�) =
−U (k,�), and �1/2((kx,−ky),�) = �2/1(k,�). Further-
more, U (k,�), V (k,�), and �1/2(k,�) are invariant un-
der a C3 rotation of the momentum, since | f1/2(C3{k})|2 =
| f1/2(k)|2. We find that not all terms appearing in Eq. (12)

TABLE I. This table lists the symmetries that are broken for
the different terms that can be generated for the case of position
dependence, momentum dependence, or if the term is constant. A
check mark means that the symmetry is preserved, while a cross
means that symmetry is broken.

C2T C3 My

U � � x
U (x) x x x
U (k) � � �
� x � x
�(x) x x x
�(k) x � x
δω0 � x �
δω0(x) � x �
β � x �
β(x) x x x

valid in the limit Eq. (10) are generated and that they are
momentum dependent rather than position dependent. A sum-
mary of the results for what symmetries get broken by the
different terms is given in Table I.

The more general case, where neither condition Eq. (10)
nor the opposite Eq. (13) are fulfilled, we can use the gen-
eral form of P to find that an effective Hamiltonian has
the same structure as Eq. (12). However, all terms have
an additional momentum dependence (e.g., �1,2(x,�) →
�1,2(x, k,�) etc.). While it is possible to determine that H�

has this structure generally, the coefficients are too cumber-
some to compute and are therefore not discussed.

IV. INTERMEDIATE DRIVE REGIME

A. Issues with the usual form of the rotating
frame transformation

A standard approach for treating systems subjected to
intermediately strong drives and intermediate frequencies is
applying a rotating frame transformation before the use of a
high frequency Magnus expansion [70,77,78]. To accomplish
when a Hamiltonian has the form H (t ) = H0 + λV (t ), one ap-
plies the unitary transformation U (t ) = e−iλ

∫
dtV (t ) to remove

V (t ) to lowest order. A large term λV (t ) in the Hamiltonian
can be traded this way for strongly oscillating terms [70].
This approach allows treating regimes where λ is too large
for a Magnus approximation to be applicable and is known to
give results that are more reliable than the Magnus expansion
[70,77,78].

First, we consider the simpler driven Dirac model

HD =
(

0 kx − iky + λe−i�t

kx + iky + λei�t 0

)
, (20)

which also describes the upper layer of twisted bilayer
graphene near the K point for w1 = w0 = 0, γ = a0 = 1,
κ± = 0 and very small θ . Application of the unitary transfor-
mation U (t ) = e−iλ

∫
dtV (t ) followed by a zeroth order Magnus

approximation leads to a Hamiltonian of the form

Heff,D = (B + Ry(τ )(κ1, κ2, 0)T ) · σ , (21)
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where Ry(τ ) is a rotation matrix around the y axis by an angle

τ = tan−1

(
sJ1(s)

sJ0(s) − J1(s) + s
2

)
, (22)

s = 4λ
�

, and Jn(x) is the nth Bessel function of the first kind.
The Hamiltonian has a constant fieldlike part with

Bx = λ

2
− λ

(
J0(s) − J1(s)

s

)
, (23)

By = 0, (24)

Bz = 1

s
λ(J0(s) − 1) − λJ1(s), (25)

and momenta given by

k̄x = kx(s + 2sJ0(s) − 2J1(s))

×
√

2s2J0(s)(1−2J2(s))+s2(1−2J2(s))+4(s2+1)J1(s)2

(s+2sJ0 (s)−2J1(s))2

2s
, (26)

k̄y = 1

2
ky

(
2J1(s)

s
+ 1

)
. (27)

By inspecting k̄x and k̄y, we realize that kx and ky are not
treated on equal grounds in this approximation. Specifically,
the Fermi velocity has become anisotropic. The quasienergy
spectrum is not rotationally symmetric for large driving λ.
Specifically if we expand k̄x,y ≈ kx,y(1 − s2

16 ∓ s4

384 ) we see
that the anisotropic behavior appears at fourth order in s that
is for relatively large λ. This is in qualitative disagreement
with exact numerical calculations, which present rotationally-
symmetric quasienergies. Since the problem already appears
in the Dirac case, we can therefore expect the rotating frame
approximation to also produce unphysical artifacts for the
more complicated problem of twisted bilayer graphene. It is
important to note that the same type of unphysical anisotropy
already appears on the level of a first order Magnus expansion
[65]. Therefore, a more careful partial resummation of the
Magnus expansion is needed.

B. A better choice of unitary transformation

In order to avoid introducing unphysical terms in the effec-
tive Floquet Hamiltonian, we write the time-dependent Hamil-
tonian as H (t ) = H0 + λV1(t ) + λV2(t ) with [Vi(t ),Vi(t1)] =
0 and apply the modified unitary transformation U (t ) =
e−i

∫
dtV1(t )e−i

∫
dtV2(t ) with V1(t ) = λ cos(�t )σ1 and V2(t ) =

λ sin(�t )σ2. There is an associated arbitrariness in the exact
form of this unitary transformation arising from the choice
of V1 and V2. However, given our implicit Floquet gauge
choice t∗ = 0, in a time-ordered exponential that removes all
of V1 + V2 we make the smaller error by removing a V1 first,
that is the larger of the two at t∗ = 0. In the Dirac model this
choice can be justified even better a posteriori by realizing
that it restores the rotational invariance in momentum space.
We will make an analogous choice of unitary transformations
for the TBG case in Sec. IV D, where we will explicitly
demonstrate that the anisotropy in the Fermi velocity is not
present.

C. Improved Van Vleck approximation

In this section, we identify a procedure to improve the
Van Vleck expansion used to obtain an effective Floquet
Hamiltonian which we will use as a baseline to com-
pare our improved rotating frame effective Hamiltonian.
For small twist angles θ it is sensible to treat k as a
small parameter because the dimensions of the moiré Bril-
louin zone are proportional to sin(θ/2). Therefore, we
may approximate f (k − A) ≈ f (−A) + (kx(∂kx f )(−A) +
ky(∂ky f )(−A)). In the weak-strength drive regime, A � a0,
we employed a simple Taylor expansion. However, in order
to capture the effect of stronger drives, we need to improve
our approach. For this, we perform a Fourier series in terms
of ei�nt instead. The result to first order in Fourier com-
ponents has the form f (k − A) ≈ a0(kx − iky)J0(2a0A/3) −
3J1(2a0A/3)ei�t − a0(kx + iky)J1(2a0A/3)e−i�t . For 2a0A/3
not too large compared with unit, J1(2a0A/3) � 1. Therefore,
terms like kiJ1(2a0A/3) are higher order and can be neglected.
We will thus work with the approximation

f (k − A) ≈ a0(kx − iky)J0

(
2a0A

3

)
− 3J1

(
2a0A

3

)
ei�t .

(28)
This type of approximation is reasonable for small angles and
2a0A/3 � 1.

After application of this approximation we can readily
improve on the Van Vleck approximation, which we will use
to compare our results from the rotating wave approximation.
The effective Floquet Hamiltonian keeps the same structure as
previously obtained, HvV

eff = HL − �τ0 ⊗ σ3 with gap

� = 9γ 2

�
J1

(
2Aa0

3

)2

(29)

and a renormalized Fermi velocity

ṽF = vF J0

(
2Aa0

3

)
. (30)

D. Rotating frame Hamiltonian

In this section, we will derive an effective Floquet Hamilto-
nian using a rotating frame approach, HR

eff, with an improved
unitary transformation. Then, we compare the quasienergies
obtained with the ones derived from the Van Vleck Hamilto-
nian HvV

eff .
We write the time-dependent Hamiltonian for twisted bi-

layer graphene as H (t ) = HL + V1(t ) + V2(t ), where the time
dependent potentials are given as

V1(t ) = −3J1(2a0A/3) cos(�t )

(
σ

(−θ/2)
1 0

0 σ
(θ/2)
1

)
(31)

V2(t ) = −3J1(2a0A/3) sin(�t )

(
σ

(−θ/2)
2 0

0 σ
(θ/2)
2

)
, (32)

where σ θ
i = e−i θ

2 σ3σiei θ
2 σ3 . After applying the unitary trans-

formation U (t ) = e−i
∫

dtV1(t )e−i
∫

dtV2(t ) and after taking an

235411-6
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average over one period 2π/� we find the following effective Hamiltonian for twisted bilayer graphene that is subjected to
circularly polarized light

HR
eff = R

((
e−i θ

2 ṽF (k − κ−) + �êz
) · σ T̃ (r)

T̃ †(r)
(
ei θ

2 ṽF (k − κ+) + �êz
) · σ

)
R†, (33)

where êz is a unit vector in z direction and σ is a vector of
Pauli matrices. The unitary transformation

R =
⎛
⎝e

3γ J1 (
2Aa0

3 )

�
iσ (θ/2)

2 0

0 e
3γ J1(

2Aa0
3 )

�
iσ (−θ/2)

2

⎞
⎠ (34)

allows us to cast the Hamiltonian in more readable form. From
this unitary transformation, one can directly identify the origin
of the spurious anisotropy in momentum that one would find
in a Magnus expansion approach. Particularly, an expansion
of R for large frequencies unavoidably leads to such an issue.

We find that the Fermi velocity has been renormalized to

ṽF = vF J0

(
2Aa0

3

)
J0

(
6γ J1

( 2Aa0
3

)
�

)
. (35)

In Fig. 3, we show a plot of the Fermi velocity and compare
it with the Fermi velocity from the improved Van Vleck
approximation HvV

eff . We find that the renormalization of the
Fermi velocity is ∼10% in some regions even for relatively
high frequencies.

Furthermore, in HR
eff, the quasienergy gap that is renormal-

ized to

�̃ = 3√
2
γ J1

(
2Aa0

3

)
J1

(
6
√

2γ J1
( 2Aa0

3

)
�

)
. (36)

A comparison with the Van Vleck result is shown in Fig. 4.
We find that also in this case there is considerable difference
(∼10% in some regions in parameter space) even for relatively
large driving frequencies � = 2γ . The most striking differ-
ence between HvV

eff and HR
eff appears in the tunneling sector,

0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

0.90

0.95

1.00

improved rot. frame

improved van Vleck

FIG. 3. Fermi velocity normalized to bare vF for relatively high
frequency drives γ

�
= 1

2 . In blue, we show the Van Vleck result and
in orange the renormalized result employing our improved rotating
frame approximation.

where HR
eff contains renormalized interlayer hopping

T̃ (x) =
1∑

l=−1

e−ibl x(T̃l − iβσ3)

T̃n = w̃012 + w̃1

(
cos

(
2πn

3

)
σ1 + sin

(
2πn

3

)
σ2

)
, (37)

with

w̃1 = w1J0

(
6γ J1

( 2Aa0
3

)
�

)
(38)

w̃0 = w0

[
1 + sin2

(
θ

2

)(
J0

(
6
√

2γ J1
( 2Aa0

3

)
�

)
− 1

)]
,

(39)

and a new imaginary term in the AA interlayer coupling

β = 1

2
sin(θ )

(
1 − J0

(
6
√

2γ J1
( 2Aa0

3

)
ω

))
. (40)

In the notation of the previous Sec. III the new coupling term
enters as −iβτ+ ⊗ σ3 and is position dependent. The new
dynamically-generated tunneling component β breaks C3, the
approximate particle-hole symmetry C, C2T and reflection
My symmetries.

In Fig. 5, we compare our results using HR
eff in Eq. (33)

to exact numeric results obtained from an extended space
approach [65]. We use the improved Van Vleck approximation
HvV

eff = HL − �τ0 ⊗ σ3 as a benchmark. We find that the Van
Vleck approximation is only valid until a0A ≈ 0.4, while the
new approximation works well until a0A ≈ 0.8. The approxi-
mation therefore has double the range of validity and therefore
is more reliable.

FIG. 4. Ratio �̃/� of the renormalized gap �̃ and the gap from
the Van Vleck � for driving frequency � = 2γ .
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FIG. 5. Quasienergy band structure. The dashed red curves correspond to the exact result, in blue the improved Van Vleck approximation
and in black the rotation frame transformation. The parameters used are � = 2γ , w1 = w0 = 110 meV, γ = 2364 meV, and θ = 1.05◦.

The same observation can be made a bit more lucidly—
albeit losing much information—if we compute the relative
error of the gap at the K point (gexact − gapprox)/gexact, where
gexact is the “exact” numerical gap at the K point and gapprox

is the gap for an approximation. For both approximations the
result is shown in Fig. 6 below. It is clear from both plots that
the rotating frame approximation derived in this paper is far
more reliable than the Van Vleck approximation.

V. CONCLUSION AND OUTLOOK

We have introduced two new effective Floquet Hamiltoni-
ans that describe twisted bilayer graphene under the influence
of circularly polarized light. The Hamiltonians are applicable
in the regimes where the ordinary Van Vleck approximation
fails. We found that the weak drive strength Hamiltonian,
valid even in the low-frequency regime, gives insight into
which new terms a periodic drive can generate well beyond
the regime of validity of any other approximation scheme.
The usefulness of these schemes is limited by the challenge

imposed by the complexity of the terms derived and the self-
consistent nature of the low-frequency regime. An important
physical effect of the drive in this regime is a renormalization
of the interlayer coupling of the AA type. This makes it
possible to mimic the effects of some otherwise difficult
to achieve structural reorganizations—for instance a change
in the distance between the two graphene layers that only
appears in AA regions.

The rotating frame Hamiltonian, valid for strong drives
and intermediate drive frequencies, reveals that the gap
at the Floquet zone center, the Fermi velocity, and the
interlayer-coupling strengths are renormalized. This effective
Hamiltonian is useful for numerical implementation of the
quasienergy band structure and possesses a wide range of
validity. This would make it useful for applications where
an extended space calculation may be too expensive. For
instance if one studies the effect of disorder additional dis-
order averages make calculations expensive and therefore it
might be more feasible to do these calculations using the
effective Hamiltonian we presented rather than resorting to a
full treatment in an extended space picture.
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FIG. 6. Plot of the relative error for the gap at the K point of the
moiré Brillouin zone. In blue we present our results from the Van
Vleck approximation and in orange the results from our improved
rotating frame approximation.
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APPENDIX: THE LOW FREQUENCY HAMILTONIAN

The precise form of the effective low frequency Hamilto-
nian is given as

Heff = H0 + H� + O
((

A

kD

)4

,

(
A

kD

)2 kθ

kD

)

H� = A2γ 2a2
0

⎛
⎜⎜⎜⎝

W −
1 0 F− 0
0 W +

2 0 F+
F ∗

− 0 W −
2 0

0 F ∗
+ 0 W +

1

,

⎞
⎟⎟⎟⎠

F± = e∓iθ
(
(ε ± �)2T11(x) − det(T (x))T ∗

11(x)
)

D(ε ± �)
,

W ±
n = − (ε ± �)

[
(ε ± �)2 − w2

0λ − w2
1τn

]
D(ε ± �)

,

λ = 1 + 4 cos

(√
3xθ

1

2

)(
cos

(√
3xθ

1

2

)
+ cos

(
3xθ

2

2

))
,

τn = 3 − 4 cos

(
3xθ

2

2

)
sin

(
π

6
−

√
3

2
(−1)nxθ

1

)
,

− 2 sin
(

(−1)n
√

3xθ
1 + π

6

)
; xθ

i = xikθ ,

D(ε) = −ε4 + ε2Tr(T †(x)T (x)) − |detT|2. (A1)

The quantities in the main text can be derived from here. We
find that the intralayer gaps are given as �1(x) = 1

2 (W −
1 −

W +
2 ), �2(x) = 1

2 (W −
2 − W +

1 ). A Taylor series reveals

�n(x)

A2γ 2a2
0

= − 1

�
− ε2 + Tr(T †T ) − w2

0λ − w2
1

τ1+τ2
2

�3

− (−1)n 3εw2
1 (τ1 − τ2)

2�4
+ O(�−5). (A2)

The interlayer bias is given as U (x) = 1
4 (W −

1 − W +
1 − W −

2 +
W +

2 ). A series expansion is

U (x)

A2γ 2a2
0

= (τ1 − τ2)w2
1

2�3
+ O(�−5). (A3)

As last term from the diagonal block we find the overall
potential of form V (x) = 1

4 (W −
1 + W +

1 + W −
2 + W +

2 ), which
is expanded as

V (x)

A2γ 2a2
0

− O(�−5)

= − ε

�2
− ε

(
2ε2+ 6

(
Tr(T †T ) − λw2

0

) − 3w2
1 (τ1 + τ2)

)
2�4

.

(A4)

Notably the lowest order term is just a constant shift in
quasienergy.

On the off-diagonal blocks we find the interlayer hop-
ping strength δw0(x) = 1

2 (F− + F+), which to lower order in
�−1 is

δw0(x)

A2γ 2a2
0

− O(�−5)

= −T11 cos(θ )

�2
− 2iεT11 sin(θ )

�3

−cos(θ )(T11(3ε2 + tr(T †T )) − T ∗
11det(T ))

�4
. (A5)

Furthermore we find that the interlayer hopping has a bias β =
1
2 (F− − F+), which to low orders has the form

β(x)

A2γ 2a2
0

− O(�−5)

= − iT11 sin(θ )

�2
− 2T11ε cos(θ )

�3

− i sin(θ )(T11(3ε2 + Tr(T †T )) − T ∗
11det(T ))

�4
. (A6)
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