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Exciton g factors of van der Waals heterostructures from first-principles calculations

Tomasz Woźniak ,1,* Paulo E. Faria Junior,2 Gotthard Seifert,3 Andrey Chaves ,4,5 and Jens Kunstmann 3,†

1Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
2Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany

3Theoretical Chemistry, TU Dresden, 01062 Dresden, Germany
4Departamento de Fisica, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará, Brazil

5Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

(Received 6 February 2020; revised manuscript received 26 April 2020; accepted 29 April 2020;
published 3 June 2020)

External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an
excitation in a magnetic field is quantified by its effective g factor. Here we show how exciton g factors and their
sign can be determined by converged first-principles calculations. We apply the method to monolayer excitons
in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe2/WSe2 heterobilayers
and obtain good agreement with recent experimental data. The precision of our method allows us to assign
measured g factors of optical peaks to specific transitions in the band structure and also to specific regions
of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further
show that, due to specific optical selection rules, g factors in van der Waals heterostructures are strongly spin-
and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of
bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue.
The presented approach can potentially be applied to a wide variety of semiconductors.
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I. INTRODUCTION

Since the dawn of quantum mechanics the application of
external magnetic fields has proven to be an invaluable tool
to probe the properties of matter. A good textbook example
is the Zeeman effect in atoms, that describes the linear shift
of an energy level ε = gμBB in a homogeneous magnetic
field B, where g is the Landé g factor and μB is the Bohr
magneton. The theory of magnetic field shifts in semiconduc-
tors is closely related and was developed by multiple authors
before [1–3], mostly within the context of k · p perturbation
theory or few-band tight-binding models. For conventional
semiconductors, these models have proven to be useful and
predictive but their applications to two-dimensional semicon-
ductors based on transition metal dichalcogenides (TMD) has
not led to satisfactory results yet [4–6]. Early experimental
studies of the magnetic field dependence of excitons, i.e.,
optical excitations formed by bound electron-hole pairs, in
monolayer MoSe2 observed a Zeeman shift g ≈ −4, which
has been attributed to the d-orbital character of the conduction
and valence states involved in the excitonic transition [7,8].
However, subsequent studies in WSe2 [9–11] and WS2 [12]
where excitons exhibit the same orbital character, observed
slightly larger values, which pointed to possible corrections
due to the angular momentum texture of the conduction and
valence bands. This picture became even more puzzling when
g factors of ≈ 9.5 were experimentally observed for dark
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exciton states in bilayer WSe2 [13], and when interlayer
excitons in heterobilayers of TMD where demonstrated to
have g factors of ≈ 6.7 and ≈ −16 [14], which deviate even
more from the value expected for ground state excitons in
TMD. It is thus clear that a more rigorous theoretical model,
which properly accounts for the angular momentum character
of conduction and valence states in monolayer and bilayer
materials, is required for an accurate description of the exciton
Zeeman shifts in these materials. In this work, we address this
problem and offer a practical solution that particularly works
for excitonic states.

To test and apply the method we consider monolayers
(see Fig. 1) and heterobilayers (see Fig. 2) of TMD. They
are particularly suited to our method because (i) their optical
properties are dominated by excitons and (ii) related phenom-
ena such as exciton complexes, Rydberg series, Zeeman shifts
and more were recently studied in great detail [15,16].

A van der Waals heterostructure is formed by vertically
stacking two-dimensional crystals via deposition or mechani-
cal exfoliation. Today it is possible to fabricate heterostruc-
tures with arbitrary material sequence and relative lattice
orientation (twist angle θ ) [17]. The interlayer interactions
are weak and therefore many monolayer properties are pre-
served in heterostructures. TMD heterobilayers (HB) usually
have a staggered (type-II) band alignment and free electrons
and holes accumulate in different layers which leads to the
formation of long-lived, charge-separated, spatially indirect
interlayer excitons [18–20]. A mismatch of the in-plane lattice
constants or a sufficiently large twist angle between individual
layers leads to the formation of a moiré pattern where the
lattice registry and the band gap continuously vary in space.
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FIG. 1. Properties of transition metal dichalcogenide monolayers
MX2. (a) Top view of the atomic structure, large and small balls
represent M (metal) and X (chalcogen) atoms, respectively. (b) The
Brillouin zone with the points � at the center and K at the corners.
The sign of the K points (valley index) alternates. (c) Schematic band
structure at the +K point. Small arrows next to the colored bands
indicate the spin orientation of the conduction (c, c + 1) and valence
(v-1, v) bands. Double arrows indicate dipole-allowed optical tran-
sitions, where the polarization σ+ is shown in red, z in black and
the dashed line represents a forbidden transition. In summary: the
spin-conserving transitions at +K couple to σ+ polarized light, one
of the spin-flip transitions is optically dark and the other one couples
to z-polarized light.

This gap variation can act as an additional confining potential
for interlayer excitons [21–23]. It was recently shown that in
MoSe2/WSe2 HB and MoS2 bilayers with θ close to 0◦ (R)
or 60◦ (H) structural deformations lead to strong deviations
from the ideal moiré pattern and the areas of high-symmetry
stacking configurations with the lowest total energies are sig-
nificantly enlarged [24,25]. The period of these deformations

FIG. 2. Properties of transition metal dichalcogenide heterobi-
layers for interlayer twist angles θ close to 0◦ (top line) and
60◦ (bottom line), as exemplified by MoSe2/WSe2. (a) Scheme
of the periodic atomic structure reconstruction, indicating strong
deviations from ideal moiré patterns. The area of low-energy, high-
symmetry stacking configurations (blue) is significantly enlarged
and 0◦ and 60◦ have different reconstructions. (b) The geometry of
high-symmetry stacking configurations, where purple corresponds
to WSe2 and orange to MoSe2 layers. Metal atoms are depicted
by bigger circles and chalcogenes by smaller ones. (c) Schematic
band structures of the stacking configurations at the +K point of the
heterobilayer Brillouin zone. The color code indicates that MoSe2 is
the electron layer and WSe2 is the hole layer. Small arrows to the left
of the bands indicate the spin-orientation. Double arrows indicate
dipole-allowed optical transitions (selection rules), where σ+, σ−
and z are the corresponding polarizations. The selection rules are
strongly spin- and stacking-dependent where, contrary to monolayers
(see Fig. 1), spin-flip transitions can couple to σ+ or σ− polarized
light.

is equal to the moiré wave length. For R systems the sample
area is mostly covered by equal proportions of RX

h (AB) and
RM

h (BA) stackings, while in H systems Hh
h (ABBA) covers

most of the sample [26]. This is illustrated in Figs. 2(a) and
2(b) where for the labeling of the stacking configurations [27]
we follow the notation of Yu et al. [28,29].

In TMD monolayers, the fundamental band gap is direct
and located at the corners of the hexagonal Brillouin zone
at the ±K points [see Fig. 1(b)]. There are two symmetry
inequivalent ±K valleys, that are connected by time-reversal
symmetry, and the sign is called the valley index. Spin-orbit
interactions split the band edge states into spin-polarized
bands as indicated in Fig. 1(c). The magnitude of the splitting
is several hundred meV in the valence band and only a few
meV in the conduction band. Due to mirror symmetry in
monolayers, the projection of the spin onto the quantization
axis perpendicular to the layer is preserved and mz = 1/2 is a
good quantum number. However, the spin-orbit coupling can
lead to a reduction of mz, while preserving mx = my = 0, as
shown in Ref. [30] for 2D hexagonal crystals. Nevertheless, in
most cases, taking mz = 1/2 was demonstrated to be a reason-
able approximation [31]. In molybdenum-based monolayers
the spin orientation of the valence and conduction bands is
the same, while in tungsten-based systems the spin orientation
is opposite [32]. At the ±K valleys optical transitions couple
to light of specific circular (σ±) or linear (z) polarization, as
indicated by vertical double arrows in Fig. 1(c). The allowed
transitions are determined by dipole selection rules,

|e+ · πcvk|2 > 0 ←→ σ+,

|e− · πcvk|2 > 0 ←→ σ−, (1)

|z · πcvk|2 > 0 ←→ z,

where e± = (1,±i, 0)/
√

2, z = (0, 0, 1), and πcvk =
(π x

cvk, π
y
cvk, π

z
cvk ) are momentum (or optical) matrix elements

for transitions between the valence and conduction band and
v, c are the corresponding band indices. The left-hand side
of Eq. (1) is directly proportional to the oscillator strength
of a transition and therefore we will refer to it as “intensity.”
The selection rules differ in monolayers and HB, where they
are also stacking-dependent [29]. In Fig. 1(c) it is discernible
that in monolayers the spin-conserving transition (giving
rise to spin-singlet excitons) couples to σ+ light at the +K
valley (and to σ− at –K) and one spin-flip transition (leading
to spin-triplet excitons) couples to z-polarized light and the
other one is forbidden/dark. In stark contrast are the selection
rules of MoSe2/WSe2 HB, that are shown in Fig. 2(c). There,
depending on the stacking configuration, spin-conserving and
spin-flip transitions couple to entirely different polarizations,
e.g., for the spin-conserving transition in a Rh

h HB we have
(σ± ↔ ±K), while in a RX

h HB we have (σ± ↔ ∓K).
In this paper we demonstrate how the theory of magnetic

field-induced energy shifts in semiconductors can be realized
with state of the art density functional theory calculations.
We test the method by calculating g factors of excitons in
MoS2, MoSe2, MoTe2, WS2, WSe2 monolayers and obtain
excellent agreement with available experimental data. Then,
we consider interlayer excitons in MoSe2/WSe2 HB (which
might serve as model for arbitrary TMD-based HB) and
show that the approach can explain recent magnetooptical
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measurements on HB, where unusual signs and values of
excitonic g factors were reported [14,33–35]. We further
demonstrate how stacking-dependent selection rules lead to
stacking dependent exciton g factors.

II. THEORY OF MAGNETIC FIELD SHIFTS
IN SEMICONDUCTORS

A. Effective g factor of a Bloch state

The basic theory of the magnetic field dependence of Bloch
states has been developed before by multiple authors and is
usually applied in models [1–6,36]. Here we reformulate it
in a way suitable for general electronic structure calculations.
The starting point is a nonrelativistic band structure Hamilto-
nian H0 and its corresponding band energies ε0

nk and Bloch
states |nk〉 (i.e., Bloch phase times lattice-periodic function),

H0 = p2

2m0
+ V, (2)

H0 |nk〉 = ε0
nk|nk〉, (3)

1 =
∑

n

|nk〉〈nk|, (4)

where p is the momentum operator, m0 is the rest mass of the
electron, V is the effective potential, and n and k are the band
index and the wave number, respectively. The last line empha-
sizes that the set of Bloch states forms a complete basis. These
states are obtained from electronic structure calculations and
are supposed to be known. The coupling of these states to
an external magnetic field is described by adding the spin
Zeeman term to H0 and by replacing the momentum operator
p by p − qA (minimal coupling), where A is the vector
potential, q = −|e0| the charge of the electron and e0 is the
elementary charge. For a uniform external magnetic field B
it is convenient to choose A = (B × r)/2, which satisfies the
Coulomb gauge ∇ · A = 0, where r is the position operator.
This leads to the Pauli equation

H (B) = H0 + HL(B) + HQ(B)

= H0 + μBB ·
(

L + g0

2
�

)
+ e2

0

8m0
(B × r)2, (5)

where μB = h̄e0/2m0 is the Bohr magneton, L = (r × p)/h̄
is the (dimensionless) angular momentum operator, � =
(�x, �y, �z ) is the vector of Pauli matrices, and g0 is the g
factor of the free electron. Above, we separate Eq. (5) into
HL(B) and HQ(B) that represent the part of H (B) that linearly
and quadratically depend on B, respectively.

Let us now consider that for a band edge state of a semi-
conductor the eigenvalues εnk are of the order of 1 eV. It is
further experimentally known that for a field of B ≈ 10 T the
energy shifts of the band energies are of the order of 1 meV.
Thus, HL(B) and HQ(B) are weak perturbations of H0 and
the magnetic field shift of the band energies can be evaluated
with first order perturbation theory. This gives

εnk(B) = ε0
nk + 〈nk|HL(B) + HQ(B)|nk〉.

Now choosing B = (0, 0, B) parallel to the Cartesian z
direction and g0/2 ≈ 1 we get

εnk(B) = ε0
nk + μBB(Lnk + �nk ) + HQ

nk, (6)

with the matrix elements Lnk = 〈nk|Lz|nk〉, �nk =
〈nk|�z|nk〉 and HQ

nk = e2
0B2/8m0〈nk|(rx )2 + (ry)2|nk〉.

The effective g factor of the Bloch state |nk〉 is thus

gnk = Lnk + �nk. (7)

The orbital angular momentum matrix elements are evalu-
ated as

Lnk = 1

h̄
〈nk|rx py − ry px|nk〉

= 1

h̄

N∑
m=1

rx
nmk py

mnk − ry
nmk px

mnk

= 1

im0

N∑
m=1,m �=n

px
nmk py

mnk − py
nmk px

mnk

εnk − εmk
, (8)

with the matrix elements rα
nmk = 〈nk|rα|mk〉, pα

nmk =
〈nk|pα|mk〉, where α = x, y, z represents Cartesian
components. The step from the first to the second line involves
the insertion of the identity operator Eq. (4), rx py = rx1py,
where the basis contains N states. Mind that the identity
is only fulfilled if N is sufficiently large (see discussion
below). The second line involves the matrix elements of the
position operator, that are nontrivial to evaluate in periodic
systems [37,38]. This problem is circumvented by using
the commutator relation [H0, r] = h̄

im0
p, that can explicitly

be shown to hold. Taking its matrix elements one finds
rα

nmk = h̄
im0

pα
nmk

εnk−εmk
, εnk �= εmk and obtains Eq. (8). The band

energies εnk and the matrix elements �nk and pα
nmk can be

obtained from electronic structure calculations and hence
allow to calculate the effective g factor of a Bloch state gnk
[Eq. (7)]. An alternative derivation of Eqs. (6)–(8) can be
obtained with the semiclassical theory of Bloch electron
dynamics in the presence of external fields, where the band
energies are corrected by the magnetic moments as in Eq. (6)
and the Berry curvature appears as a correction to the group
velocity in the equations of motion [38,39]. In this theory the
orbital moment can be seen as a self-rotation of a Bloch wave
packet around its center of mass.

Equation (8) can be applied not only to Bloch states of
crystals, but also to atoms or molecules. For an atomic orbital
(ao) of the hydrogen atom it can be shown that for a suffi-
ciently large number of states N , included in the summation,
this expression converges to the well known analytical result
Lao

n′l ′m′ = 〈n′l ′m′|Lz|n′l ′m′〉 = m′ [40]. However, the conver-
gence is slow. In the literature on TMD Lnk is sometimes di-
vided into a contribution coming from the atomic orbital (ao)
and one from the lattice (l) (or valley) Lnk = Lao

nk + Ll
nk and the

two contributions are separately discussed [9,11,14,33]. How-
ever, this division is only of qualitative nature, as the projec-
tion of a Bloch state |nk〉 onto atomiclike orbitals is nonunique
and leads to contributions from multiple atomiclike orbitals.
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1. Relativistic effects

Above, we outlined the nonrelativistic theory that is satis-
factory for light elements, but for systems with heavier atoms
(such as Mo and W) relativistic effects cannot be neglected.
In this paper we are mostly concerned with electronic struc-
ture calculations based on density functional theory (DFT).
Relativistic effects and external magnetic fields can be intro-
duced into DFT via current density functional theory [41,42].
However, for valence states it is sufficient to consider a
2-spinor formulation for an approximate relativistic Hamil-
tonian H0,rel = H0(p2) + HSOC(p) + HMV(p4) + HD + mc2,
where H0 is Hamiltonian (2) and the other terms represent
the spin-orbit coupling, the mass-velocity relation, the Darwin
shift and the electron rest mass, respectively [43]. Neglecting
the spin-orbit term leads to a scalar-relativistic approach, that
is often used in solid state codes [44].

In g-factor calculations including relativistic effects H0

in Eq. (2) is replaced by H0,rel which defines the set of
unperturbed Bloch states. Then the coupling of H0,rel to the
magnetic field is again realized by adding the spin Zeeman
term and replacing p by p − qA in the parts that explicitly
depend on p. For H0(p2) this procedure leads to Eq. (5). In
TMD systems the coupling of HMV(p4) leads to marginal
corrections that are neglected here. This leaves HSOC(p),
which gives an additional linear contribution that is taken
into account by replacing the momentum operator p in HL(B)
by [1]

π = p + h̄

4m0c2
� × ∇V. (9)

Specifically, pα
nmk needs to be replaced by πα

nmk =
〈nk|πα|mk〉 in Eq. (8). Mind that this replacement also
affects the optical selection rules [see Eq. (1)], where
spin-orbit coupling enables spin-flip transitions.

B. Effective g factor of excitons

Excitons are bound states formed by electron and holes
from the conduction (c) and valence (v) band edges, respec-
tively. Using Eq. (6) we define the momentum-direct exciton
energy as

Ek(B) = εck(B) − εvk(B) − EBinding
k

= E0
k + EL

k (B) + EQ
k (B), (10)

where EBinding
k is the exciton binding energy (that varies

throughout the Brillouin zone), E0
k = ε0

ck − ε0
vk − EBinding

k is
the zero-field exciton energy, EQ

k (B) = HQ
ck − HQ

vk is the
quadratic shift. The linear shift is

EL
k (B) = (gck − gvk )μBB = gkμBB (11)

and gk is the intravalley g factor of an exciton at k.
It is also possible to consider momentum-indirect excitons,

where electron and hole originate from Bloch states with
different crystal momentum k [45].

III. NUMERICAL METHODS

The electronic structure calculations were performed with
density functional theory (DFT) using the Vienna ab initio

simulation package (VASP) [46] version 5.4.4, Perdew-
Burke-Ernzerhof (PBE) [47] exchange-correlation functional
and the Projector Augmented Wave method [48] with po-
tentials of version 54. For testing purposes, we also used
the local density approximation (LDA). An energy cutoff of
300 eV and a 6 × 6 × 1 k mesh were chosen after careful
convergence tests. The k-space integration was carried out
with a Gaussian smearing method using an energy width of
0.05 eV for all calculations. All unit cells were built with at
least 15 Å separation between replicates in the perpendicular
direction to achieve negligible interaction. Dispersion interac-
tions corrections were of Tkachenko-Scheffler (TS) type [49].
Atomic positions and lattice constants were optimized with
10−3 eV/Å and 0.1 kbar precision. The optimized values are
given in footnote [50]. A comparative calculation for WS2 was
performed with the all-electron, full-potential linearised aug-
mented plane wave (LAPW) method as implemented in the
ELK package, using default parameters [51]. The momentum
matrix elements πα

nmk in VASP were obtained from the wave
function derivatives that are calculated within density func-
tional perturbation theory [52], in ELK they were calculated
according to Eq. (9).

IV. RESULTS AND DISCUSSION

A. Transition metal dichalcogenide systems and the
impact of optical selection rules on g factors

In TMD monolayers and heterostructures the band edge
states are mostly at k = ±K, which is what we will focus
on in this article. Due to time-reversal symmetry �n,+K =
−�n,−K and Ln,+K = −Ln,−K . Spin-orbit interactions split the
band edge states of monolayers into spin-polarized bands
[see Fig. 1(c)] and �v,±K = ±1 is commonly assumed [16].
We use this specific property to define the valley index; so
the valley where the valence band maximum is spin-up is
+K. In fact, ab initio calculations of monolayer TMD show
that |�n,±K | < 1 at the band edge (n = v, v − 1, c, c + 1).
However, the effect is so small that it has a negligible influence
on the g factor [53]. In TMD HB such calculations also show
highly spin polarized band edge states at the K points [54].
Therefore, taking �n,±K = ±1 for those states is indeed a
reasonable approximation. For the Bloch state and exciton g
factors the above symmetry properties imply gn,+K = −gn,−K

and g+K = −g−K , respectively.
The valley-dependent selection rules, as discussed in the

Introduction and visualized in Figs. 1 and 2, are employed to
experimentally determine the excitonic g factors, where it is
common to use

Eσ+(B) − Eσ−(B) = gμBB (12)

to extract the linear magnetic shift and to define the intervalley
g factor g. Using Eqs. (10) and (11) it follows for the lowest
energy transition in MoS2 monolayers (A exciton) g1L

A =
gσ+ − gσ− = g+K − g−K = 2g+K. In a Rh

h HB the selection
rules are the same and we obtain the same result gRh

h = 2g+K.
But a RX

h HB has different selection rules and therefore gRX
h =

gσ+ − gσ− = g−K − g+K = 2g−K. This demonstrates that in
HB the sign of the intervalley g factors, as defined by Eq. (12),
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FIG. 3. Impact of basis set size N , band gap correction
	, exchange-correlation functional (PBE, LDA), and electronic-
structure method (PAW, LAPW) on orbital angular momenta and
exciton g factors in WS2 monolayer. (a) Convergence of the (dimen-
sionless) orbital angular momenta Ln,+K of the two highest valence
band states (n = v, v − 1) and two lowest conduction band states
(n = c, c + 1) at the +K point with respect to the number of bands
N included in the calculation [Eq. (8)]. (b) Convergence of the
intervalley g factors of A and B excitons g1L

A = 2(Lc+1,+K − Lv,+K )
and g1L

B = 2(Lc,+K − Lv−1,+K ). N = 1 is the lowest-energy state of
the valence shell, the valence band maximum is indicated by a
dashed vertical line. A large number of bands (N � 300) is required
to converge the g factors to a precision of 0.1. (c) Impact of the
band gap correction 	 on the orbital momenta Ln,+K and (d) the
g factor. The dashed vertical line indicates the G0W0 quasiparticle
band gap. While the Ln,+K depend on 	, the exciton g factors are
almost insensitive to it.

depends on the stacking configuration, which will further be
discussed below.

B. Exciton g factors of monolayers

To apply this first-principles approach, we first consider
TMD monolayers since they are well-studied and therefore
represent a good test case. However, previous attempts to
calculate the g factor of TMD monolayers without making
assumptions about the orbital moment contributions were not
very satisfactory [4–6]—a problem that the present approach
can solve. For the g factors of A and B excitons Eqs. (12),
(11), and (7) give g1L

A,B = 2g+K = 2(	�+K + 	L+K ), where
	�+K and 	L+K are the difference of the spin and the orbital
angular momentum expectation values between conduction
and valence band, respectively. Figure 1(c) shows that cir-
cular polarized light couples valence and conduction band
states with the same spin, consequently 	�+K = 0 and only
	L+K matters. In WS2 the A (B) excitons are formed by
the transitions v → c + 1 (v–1 → c) and therefore g1L

A =
2(Lc+1,+K − Lv,+K ) and g1L

B = 2(Lc,+K − Lv−1,+K ).
Figures 3(a) and 3(b) show the convergence of Ln,+K and

g1L with respect to the number of bands N included in the
calculation [Eq. (8)] for WS2. The convergence behavior of
the other considered TMD is shown in Fig. 4. The largest
contribution to Ln,+K is at the band gap (dashed vertical line)
because the energy denominator in Eq. (8) is smallest there,
but apart from that, the convergence is very slow. We find that
for all considered TMD and the PBE-PAW method around
N = 300–500 states are required to converge both quantities

FIG. 4. Convergence of the orbital angular momenta Ln,+K of the
two highest valence band states (n = v, v − 1) and two lowest con-
duction band states (n = c, c + 1) at the +K point with respect to the
number of states N included in the calculation and the convergence
of the intervalley exciton g factor g1L = 2(Lc(+1),+K − Lv(−1),+K ) for
A and B excitons in transition metal dichalcogenide monolayers.
A large number of states N is required converge the g factors.
For a precision of 0.1/0.01 N = 322/695 states are necessary in
MoS2, 321/771 in MoSe2, 547/881 in MoTe2, 376/604 in WS2 and
303/746 in WSe2. The g factors of different TMD monolayers are
similar and the value of the B exciton is always lower than that of
the A exciton. In WSe2 g1L

A and g1L
B differ the most (see Table I).

N = 1 is the lowest-energy state of the valence shell, the valence
band maximum is indicated by a dashed vertical line and all values
are PBE-PAW results.

to a precision of 0.1 and around 700–900 to obtain an accuracy
of 0.01 (for details see Fig. 4). The slow convergence can be
understood by noticing that TMD monolayers strongly absorb
light over a broad energy range [69], which means that there
are many optical transitions with high intensities (momentum
matrix elements) that contribute to Eq. (8). This slow conver-
gence is in contrast to conventional semiconductors, where
only a few bands are required to obtain convergence [2]. This
finally explains why previous attempts to calculate exciton
g factors with few-band models did not lead to satisfactory
results [4–6] – the orbital contributions were not converged.

Figure 3 also shows that for the same geometry the
PBE and LDA results, obtained with the plane-wave-based,
frozen-core PAW method (PBE-PAW and LDA-PAW) and the
all-electron, full-potential LAPW method (PBE-LAPW) are
nearly identical. This shows that our results are consistent and
not bound to a specific code or (semi)local functional; the
small differences are due to numerical reasons.

It is well-know that standard DFT calculations using
(semi)local functionals like PBE or LDA underestimate band
gaps. This overestimates Ln,+K, due to the energy denominator
in Eq. (8). Quasiparticle GW calculations are able to correct
this error but they are numerically expensive. Fortunately
the wavefunctions obtained from (semi)local DFT are almost
identical to GW wavefunctions [70,71] (which explains why
non-self-consistent approaches like G0W0 give reasonable
results). Therefore, we expect the DFT spin and momentum
matrix elements �nmk and πα

nmk to be reasonable and it is a
good approximation to only correct the eigenvalue spectrum,
in particular the band gaps. This is conveniently done by
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TABLE I. Calculated g factors of A and B excitons g1L
A , g1L

B [Eq. (12)] in transition metal dichalcogenide monolayers and comparison with
experimental literature values. Despite the large spread of the experimental values the calculated results are in good agreement. Also given
are the related orbital angular momenta Ln = Ln,+K of the two lowest conduction band states (n = c, c + 1) and highest valence band states
(n = v, v − 1) at the +K point and the intensities h̄

m0
|e+ · π|2 of the related circularly polarized transition in (eV Å)2 for the A exciton. Using

|�n,+K| = 1 leads to no spin contribution to the g factor. All results are obtained with the PBE-PAW method.

MoS2 MoSe2 MoTe2 WS2 WSe2

g1L
A −3.68 −3.82 −3.96 −3.66 −3.80

g1L
A (exp.) −1.7,a −1.8,s −2.9,b −3.8e,f, −4.0,s −4.3,i −4.7,i −3.7,p −3.94,c −1.57,l −2.86,l −3.2,q

−3.0,b −3.6,b −3.8,b −4.1,g −4.2,h −4.8i −4.0b,p, −4.25,j −3.7,f −3.8,h −4.1t

−4.0,c −4.2,p −4.6d −4.3,b −4.4d −4.35k −4.25,r −4.3,m −4.37,n

−4.38o

g1L
B −3.70 −3.88 −4.02 −3.96 −4.26

g1L
B (exp.) −4.3,d −4.65c −4.2p −3.8h −3.99,c −4.9p −3.9p

Lc/Lc+1 2.09/1.87 1.78/1.51 1.58/1.21 2.31/3.20 1.87/2.91
Lv−1/Lv 3.72/3.93 3.45/3.69 3.22/3.56 4.29/5.03 4.00/4.81
Intensity (A) 28.6 21.2 13.9 42.9 33.1

aReference [55]; bReference [56]; cReference [57]; dReference [58]; eReference [8]; fReference [5]; gReference [7]; hReference [59];
iReference [60]; jReference [61]; kReference [12]; lReference [62]; mReference [11]; nReference [9]; oReference [63]; pReference [64];
qReference [65]; rReference [66]; sReference [67]; tReference [68].

defining a “scissor operator,”

ε0
nk

′ =
{

ε0
ck + 	,

ε0
vk,

(13)

that modifies the band energies by simply increasing the band
gap by 	. As shown in Fig. 3(c), Ln,+K decreases with 	.
When increasing the band gaps of the considered TMD to
their G0W0 value [72] (see dashed vertical line) the Ln,+K de-
crease by values ranging from 0.50–1.13 (17–44%). These are
big changes, which shows that calculating Ln,+K for individual
bands is challenging. The individual g factors of conduction
or valence bands could be probed separately via transport
experiments and this could provide some insight to identify
the individual values. However, the changes of the valence and
conduction band states are very similar and when taking their
difference for calculating the exciton g factor, the band gap
dependence nearly disappears. This is discernible in Fig. 3(d);
g1L

A,B of TMD increase only by 0.15–0.18 (3.9–4.7%) when
the band gap is increased to the G0W0 value. These changes
are small enough to claim that standard DFT calculations
using semilocal functional are suitable for calculating exciton
g factors. Therefore, we do not apply the “scissor operator” to
the results below.

In Table I we provide the PBE-PAW g factors for the
considered TMD, which are approximately equal to −4 for all
systems. The experimental values, provided in the table, have
a quite large statistical spread, even when we limit ourselves
to undoped, encapsulated samples and measurements at T =
4 K. However, all values are negative and vary about −4,
which is fully consistent with our theoretical results. To our
knowledge, this represents the first successful, parameter-free
calculation of exciton g factors in TMD. Overall, we do not
find significant differences in the g factors and the orbital
angular momenta between the TMD monolayers. However,
the calculated intensities in WX2 are larger than in MoX2

systems, which is consistent with measured photolumines-
cence spectra at room temperature [15]. The orbital angular

momenta at +K in Table I are all positive and much bigger
than commonly assumed in the literature, where L is often
approximated by the atomic orbital contribution (Lv,+K ≈
Lao

v,+K = 2 and Lc,+K ≈ Lao
c,+K = 0) [9,15,57]. However, 	L is

always close to −2, which explains the success of these simple
models. In Table I the g factors of both A and B excitons are
given. The two values are quite similar and they are close to
−4 in all systems. But we consistently find that g1L

A > g1L
B ,

which agrees with some experimental findings [57,64].

C. Stacking- and spin-dependent g factors
of interlayer excitons in heterobilayers

Now we apply the method to interlayer excitons in van
der Waals heterostructures. As prototypical moiré system we
chose MoSe2/WSe2 HB where unexpected values of g factors
were recently reported [14,33–35]. The lattice constants of the
monolayers are almost identical and for precise twist angles
of θ = 0◦ (R) or 60◦ (H) (and multiples of it) the system is
(quasi) commensurate [74]. But when samples are fabricated
by exfoliation methods θ cannot be precisely controlled;
for θ ≈ 0◦ or θ ≈ 60◦ the lattice reconstructs and certain
high-symmetry stacking configurations dominate the sample
[see Fig. 2(a)] [24,25]. Thus, it is sufficient to only study
those high-symmetry stacking configurations, because they
represent most of the properties of the HB.

The calculated g factors of K point interlayer excitons for
each of these stackings are given in Table II. These values
show explicitly that g factors in TMD HB are spin- and
stacking-dependent, as discussed in Sec. IV A. Also indicated
are the corresponding optical transitions between the valence
(v) and the conduction (c, c + 1) bands and their intensities,
which are two to three orders of magnitude lower than the
ones of monolayer transitions (see Table I). This agrees well
with previous results [29,75,76] and explains why interlayer
excitons are hard to observe by absorption spectroscopy and
are typically probed in photoluminesce experiments. The
intensities of RM

h and HM
h are significantly lower and the
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TABLE II. Calculated g factors gHB [Eq. (12)] of interlayer excitons for high-symmetry stacking configurations of MoSe2/WSe2

heterobilayers and comparison with reported experimental values. Also indicated are the corresponding transitions between the valence
band (v) and the conduction (c, c + 1) band at the +K point, their intensities h̄

m0
|e± · π|2 in (eV Å)2, circular polarizations and whether

it is a spin-conserving (↑↑) or a spin-flip (↑↓) transition. 	� = �c,+K − �v,+K is the spin contribution (where |�n,+K| = 1 is used) and
	L = Lc,+K − Lv,+K is the orbital contribution to gHB; Ln = Ln,+K. All results are obtained with the PBE-PAW method. The g factors are
strongly stacking-dependent. Good agreement with experiment is found for v → c transitions with sizable intensities (highlighted).

RX
h Rh

h RM
h HX

h Hh
h HM

h

gHB 6.19 −10.73 −6.15 10.42 −12.60 −16.67 12.15 16.31
gHB (exp.) 6.72a −10.6f −8.5b −15.89a 10.7d

7.1b −15.1c

6.99e −15.2d

Transition v → c v → c+1 v → c v → c+1 v → c+1 v → c v → c+1 v → c
Intensity 0.08 0.05 0.12 10−7 0.01 0.03 0.34 10−4

Polarization σ− σ+ σ+ σ− σ+ σ+ σ− σ−
Spin ↑↑ ↑↓ ↑↑ ↑↓ ↑↑ ↑↓ ↑↑ ↑↓
	� 0 −2 0 −2 0 −2 0 −2
Lc(+1) 1.80 1.53 1.79 1.53 −1.53 −1.79 −1.53 −1.78
Lv 4.90 4.90 4.86 4.74 4.77 4.54 4.54 4.37
	L −3.10 −3.37 −3.08 −3.21 −6.30 −6.34 −6.07 −6.16

aReference [14]; bReference [34]; cReference [33]; dRef. [35], the authors only measured |gHB|; eRef. [73]; fReference [73], value of charged
exciton.

transitions can probably not be observed. If we further con-
sider that experimentally g factors are determined by low-
temperature photoluminescence spectroscopy where only the
lowest energy transition (v → c) matters, then we are left with
interlayer exciton g factors of +6.2, and −6.2 for 0◦ (R) and
−16.7 for 60◦ (H) systems (highlighted in Table II). Taking
into account the large statistical spread of reported experimen-
tal g factors (see Table I), these values are almost in quan-
titative agreement with recent experiments on MoSe2/WSe2

HB, where we are able to match our result to measurements
of Seyler et al. (6.72 ± 0.02 for θ ≈ 2◦ and −15.89 ± 0.03
for θ ≈ 57◦), Ciarrocchi et al. (+7.1 ± 1.6 and −8.5 ± 1.5
for |θ | < 1◦), Nagler et al. (−15.1 ± 0.1 for θ ≈ 54◦), and
Joe et al. (+6.99 ± 0.35) [14,33,34,73]. The g factor of
−16.7 originates from regions with Hh

h stacking, which is also
covering most of the sample [see Fig. 2(a)]. In R systems
g = +6.2 is linked to RX

h , which is the dominant stacking
(together with RM

h ). The negative g factor −6.2 comes from
regions with Rh

h stacking, that is present only in small parts
of the samples (the nodes). Ciarrocchi et al. [34] ascribe their
g = −8.5 peak to the spin-conserving and and the g = +7.1
peak to the spin-flip transition of the RX

h stacking. However, in
Table II the signs of the calculated g factors of spin-conserving
and spin-flip transitions of RX

h are exactly opposite to their
interpretation and the magnitudes of these two g factors differ
substantially. Therefore, our results suggest that the two peaks
reported by Ciarrocchi et al. are related to spin-conserving
transitions and they originate from different parts of the
sample. For H systems Wang et al. [35] find two transitions
with g factor magnitudes of |gH | = 15.2 ± 0.2 and 10.7 ± 0.2
(it is important to note that the authors did not determine the
sign of their g factors) and assign them to spin-singlet and
spin-triplet excitons, which correspond to spin-conserving and
spin-flip transitions, respectively. Our first-principles results
give slightly bigger magnitudes but otherwise confirm this
assignment. The spin-conserving transitions of HX

h and Hh
h are

both candidates to explain the lower of the two values; still it is
more likely that the transition originates from Hh

h because the
samples are mostly covered by Hh

h stackings and the oscillator
strength of the transition is particularly large. In electron-
doped R-type samples Joe et al. measure a PL peak with gR =
−10.6 ± 1.0 and in undoped samples they find +6.99 ± 0.35
[73]. The authors ascribe these two peaks to charged and
neutral interlayer excitons, respectively. According to Wang
et al. the approach for calculating g factors of neutral and
charged excitons is the same [5]. Our values of −10.7 for
the spin-flip (v → c + 1) transition and +6.2 for the spin-
conserving transition (v → c) transition in the RX

h stacking
nicely agree with these measurements. However, more de-
tailed analysis will be necessary to fully understand the agree-
ment for charged excitons. The remaining predicted values we
present in Table II could be observed in future experiments.

After showing the good agreement with recent experi-
ments, let us now analyze orbital and spin contributions and
the sign of the g factors. In MoSe2/WSe2 HB the band align-
ment is such that MoSe2 states form the conduction band and
WSe2 states the valence band. This is indicated by the color
code in Figs. 2(b) and 2(c). In TMD HB the K-point states do
not hybridize and are basically a superposition of monolayer
states [77]. That is why the magnitudes of Ln in Table II
deviate only marginally from the corresponding monolayer
values. In H systems the real space twist of the monolayers
relative to each other is connected to a similar twist of the
Brillouin zones. Hence for H systems the MoSe2 conduction
band state from –K is at +K in the HB [see Fig. 2(c)]. This
swaps the sign of the related spin and orbital contributions,
as presented in Table II by the negative value of Lc(+1) for
H systems. As a consequence the orbital contribution 	L of
H systems is approximately twice the value of R systems,
which explains why the magnitude of the g factors is always
bigger for H than for R systems. In HB both spin-conserving
(↑↑) and spin-flip transition (↑↓) can couple to circularly
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TOMASZ WOŹNIAK et al. PHYSICAL REVIEW B 101, 235408 (2020)

polarized light and hence they matter when defining the g
factor via Eq. (12). Furthermore a spin-flip transition provides
a spin contribution to the g factor of 	� = −2, that generally
increases the magnitude of the g factor. This is most significant
for the g factor of −16.7 for the Hh

h stacking configuration.
The large magnitude is a consequence of it being (i) a H
transition and (ii) a spin-flip transition (leading to a spin-
triplet exciton) [35]. If we consider the intra-valley g factor
at +K, as defined by Eq. (11), then all g factors would be
negative, because only 	L and 	� matter. However, the
intervalley g factor, according to Eq. (12) and commonly used
in experiment, employs valley selection rules for circularly
polarized light. The stacking- and spin-dependence of these
selection rules is what leads to g factors with both positive
and negative signs. For example, the intravalley g factor at
+K for the RX

h stacking is g+K = 	L + 	� = −3.10 and
g−K = +3.10, due to time-reversal symmetry. Then applying
the corresponding optical selection rules to obtain the inter-
valley g factor gives gRX

h = gσ+ − gσ− = g−K − g+K = +6.2.
In many HB samples multiple interlayer exciton peaks are
experimentally found and not all of them can be explained by
considering momentum direct K-point transitions. It is likely
that momentum-indirect excitons are playing an important
role in these systems [45].

Let us now have a look at the electron g factor. Jian et al.
reported a value of +1.07 ± 0.079 at +K (and −1.11 ± 0.095
at –K) but they were not able to determine if their sample
is R or H [78]. Using the results in Table II and Eq. (7)
we obtain gc,+K = +2.8 for R stackings and the same value
with negative sign for H stackings. Considering that the
orbital contribution is calculated without scissor correction,
we expect the actual g factor to be smaller. If we now assume
that the sign convention of Jian et al. is consistent with ours,
then our results indicate that their system is of R type (i.e.,
θ ≈ 0). Thus, g factor measurements of excitons (or even
electrons) combined with our results enable to determine
whether a system is R or H. For exfoliated HB such a tool
is sometimes needed, because the usual method of choice,
i.e., second harmonic generation measurements, is not always
perfectly robust for such systems.

V. SUMMARY

In this paper we showed that g factors of excitons in
semiconductors (value and sign) can be determined by first-
principles methods if the calculation of the orbital angular
momentum L is properly converged. For the considered two-
dimensional materials hundreds of bands were required to

obtain reasonable convergence, indicating that the basis set
size is a critical numerical issue. For an individual Bloch state
the calculation of L suffers from the well-known band gap
underestimation of density functional theory. However, the
error in L is approximately the same for electron and hole
states and for excitons (which depend on the difference 	L)
error cancellation enables quantitative calculations.

We applied the method to excitons in monolayers of
semiconducting MX2 (M = Mo, W; X = S, Se, Te) and
interlayer excitons in MoSe2/WSe2 heterobilayers and ob-
tain good agreement with available experimental data. The
precision of our method allows to assign measured g factors
of optical peaks to specific transitions in the band structure
and also to specific regions of the samples. This revealed
the nature of various, previously measured interlayer exciton
peaks. We further show that due to specific optical selection
rules g factors in van der Waals heterostructures are strongly
stacking- and spin-dependent.

The presented numerical approach can be applied to a wide
variety of semiconductors. Combined with g factor measure-
ments it might become a useful tool that helps to reveal the
nature of optical excitations in semiconductors.

Note added. During the submission of this article
three preprints on the calculation of exciton g factors of
TMD monolayers using first-principles methods appeared
[68,79,81].
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