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We propose a Haldane-like model of dice lattice analogous to graphene and explore its topological properties
within the tight-binding formalism. The topological phase boundary of the system is identical to that of Haldane
model of graphene but the phase diagram is richer than the latter due to existence of a distorted flat band. The
system supports phases which have a “gapped-out” valence (conduction) band and an indirect overlap between
the conduction (valence) band and the distorted flat band. The overlap of bands imparts metallic character to
the system. These phases may be further divided into topologically trivial and nontrivial ones depending on the
Chern number of the “gapped-out” band. The semimetallic phases exist as distinct points that are well separated
from each other in the phase diagram and exhibit spin-1 Dirac-Weyl dispersion at low energies. The Chern
numbers of the bands in the Chern-insulating phases are 0 and ±2. This qualifies the system to be candidate for
quantum anomalous Hall effect with two chiral channels per edge. Counterpropagating edge states emanate from
the flat band in certain topologically trivial phases. The system displays beating pattern in Shubnikov de Haas
oscillations for unequal magnitude of mass terms in the two valleys. We show that the chemical potential and
ratio of topological parameters of the system viz. Semenoff mass and next-neighbor hopping amplitude may be
experimentally determined from the number of oscillations between the beating nodes and the beat frequency,
respectively.
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I. INTRODUCTION

Engineering topological phases in materials has become
an indispensable part of modern condensed matter physics.
Although the notion of topology originated in mathematics
long time back, it gained impetus from the discovery of
quantum Hall effect (QHE) [1]. QHE demonstrated that when
a two-dimensional (2D) electron gas is subjected to strong
magnetic field, the Hall resistance forms a series of plateaus
quantized at (h/νe2) as the magnetic field or carrier density
is varied. The number ν which defines the quantization may
take integer (integer QHE) [1] or fractional values (fractional
QHE) [2]. The quantized effect was attributed to the formation
of Landau levels [3–7] or magnetic Bloch bands [8–13] in the
presence of a constant magnetic flux. Each of these bands may
have a nonzero integer associated with it called the Thouless-
Kohmoto-Nightingale-Nijis (TKNN) invariant. As long as the
Fermi level lies in an energy gap, the Hall conductivity is
given by the sum of invariants of all the bands lying below the
Fermi level. The invariants resist any change from adiabatic
perturbations in the system, which accounts for robustness of
quantum Hall plateaus. The quantization has been predicted
[14–20] and observed [21–26] in wide range of quasi-2D
systems.

Although a constant flux appeared to be necessary to
create Landau levels for the Hall quantization, it was pro-
posed by F. D. M. Haldane that even a zero flux would do
[27]. In his model, Haldane considered a honeycomb lattice
(graphene) with sublattice symmetry breaking potential and
a periodic magnetic flux such that net flux linked with an
unit cell vanishes. This breaks time-reversal symmetry (TRS)
and inversion symmetry (IS) of the system without altering

the original periodicity of the lattice. The phase space of
sublattice potential and the periodic flux reveals the existence
of a gapped phase, where the bands have nonzero TKNN
invariants. It gives a quantized Hall conductivity similar to
QHE when the Fermi energy lies in the gap. This phenomenon
gave birth to the idea of quantum anomalous Hall effect
(QAHE). Breaking TRS is a necessary condition for QAHE
to occur. Driving a system with high-frequency circularly
polarized light may also exhibit QAHE due to the breaking
of TRS [28]. Several systems displaying QAHE have been
fabricated recently [29–31]. The QHE and QAHE represent
two distinct phenomena but they are unified by the concept of
topology. These systems belong to the symmetry class A of
the topological classification [32]. Under this class, each band
of a 2D insulator has a uniquely defined topological invariant
Z called Chern number associated with it, which is always an
integer and is not protected by TRS, particle-hole, or chiral
symmetry. The quantized Hall conductances of these systems
are directly related to the Chern numbers of the bands and
are hence called Chern insulators. The Chern numbers of all
bands identically vanish for a trivial insulator.

Motivated by the possibility of new Chern phases, we pro-
pose a Haldane-like model [33,34] of dice lattice [35–41] with
broken sublattice symmetry and complex next nearest neigh-
bor (NNN) hopping rendered by a staggered magnetic flux.
Unlike graphene, we make a particular choice of a hexagonal
unit cell where the staggered flux vanishes. This is necessary
for drawing analogies with Haldane model of graphene. We
compute the tight-binding band structure as a function of
topological parameters such as Semenoff mass, NNN hop-
ping, and periodic flux. We get a phase boundary identi-
cal to that of Haldane model of graphene which separates
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the trivial and nontrivial topological phases. The phase di-
agram reveals the presence of metallic phases in addition
to semimetallic, insulating and Chern insulating ones. The
metallic phases are a consequence of indirect overlap be-
tween distorted flat band and conduction/valence band. The
semimetallic phases are characterized by spin-1 Dirac-Weyl
dispersion at either of the Dirac points and are represented
by four distinct points in the phase diagram. The topological
quantization in the Chern-insulating phases is twice as that of
graphene. The quantization manifests itself as a pair of chiral
edge states at either edge of a nanoribbon.

The marriage of QHE and QAHE results in interesting
phenomena like integer QHE in graphene [42]. However,
the behavior of magnetoconductivity in quantum anomalous
Hall systems remains unexplored. The magnetoconductivity
of a 2D electron system is known to exhibit Shubnikov de
Haas (SdH) oscillations at strong magnetic fields and low
temperature. In this work, we show that the Haldane model
displays beats in the oscillations when the magnitude of mass
terms in the two Dirac valleys are unequal and Fermi energy
is close to higher Landau levels of the conduction or valence
band. The beats can be used to extract information about the
system parameters like Semenoff mass, NNN hopping, and
Fermi energy. Similar beating patterns have been observed in
systems with Rashba spin-orbit coupling [43].

This paper is organized as follows. In Sec. II, we discuss
about band structure of a dice lattice with NNN hopping.
The Haldane model of dice lattice, its phase diagram, and
the anomalous Hall conductivity are discussed in Sec. III.
In Sec. IV, edge states of Haldane-dice nanoribbon are
presented. The beating pattern in SdH oscillations of the
Haldane-dice model subjected to the quantizing magnetic
field is presented in Sec. V. Finally, summary of our results
are presented in Sec. VI.

II. DICE LATTICE

The dice lattice is basically a honeycomb lattice with an
additional atom at the center of each hexagonal unit cell
from which the electron can hop only to atoms at alternate
vertices of the hexagon as shown in Fig. 1(a). This leads
to a bipartitite lattice structure with two types of sites: rim
sites (A and C) and hub sites (B) with coordination numbers
3 and 6, respectively. The hopping amplitudes for nearest-
neighbor pairs A-B and B-C are identical (say, t/

√
2). The

lattice has inversion symmetry with hub sites as the inversion
centers. Dice lattice can be constructed by growing trilayers of
cubic lattices in [111] direction, e.g., SrTiO3/SrIrO3/SrTiO3

heterostructure [44]. An optical dice lattice may be generated
by suitable interference of three counterpropagating pairs of
identical laser beams on a plane [38].

The dice lattice can also be thought of as a limiting case
of α-T3 lattice [38,45] with α = 1. In recent years, there
are several studies on diverse properties of the dice lattice
such as orbital susceptibility [45], Klein tunneling [46,47],
zero-momentum optical conductivity [48–53], magnetotrans-
port properties [54–57], magnetoplasmons [58], wave-packet
dynamics [59], electron states in the field of a charged im-
purity [60,61], role of Berry phase in photoinduced gap,
topological phase transition under Floquet driving [62,63],

FIG. 1. (a) Sketch of a dice lattice. (b) A hexagonal unit cell
(yellow) of the lattice with NN and NNN hoppings. The black arrows
(a1, a2, and a3) represent the NN hopping vectors of B-type atom
while the orange dotted (b1, b2, and b3) and green dotted (−b1, −b2,
and −b3) arrows are the NNN hopping vectors for A-type and C-type
atoms. In Haldane model, a flux distribution is considered which has
the same periodicity as that of the lattice subject to the condition
that total flux through every unit cell vanishes. A symmetric flux
distribution is considered such that the triangular regions a (or b)
formed by the paths of NNN hoppings have identical flux passing
through them.

effect of electromagnetic radiation on dice lattice [64,65],
electronic states of dice lattice ribbons [66–68], Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [69], and chaotic
dynamics [70].

The tight-binding Hamiltonian of dice lattice in the basis
of sublattices A, B, and C is given as

H0(k) = 1√
2

⎡
⎣ 0 t f (k) 0

t f ∗(k) 0 t f (k)
0 t f ∗(k) 0

⎤
⎦, (1)

where k = (kx, ky), f (k) = ∑3
j=1 exp(−ik · a j ), a j are the

nearest-neighbor (NN) vectors as shown in Fig. 1(b) and
t the NN hopping amplitudes. The explicit expressions of
a j are a1 = (

√
3/2, 1/2)a0, a2 = (−√

3/2, 1/2)a0, and a3 =
(0, 1)a0 with a0 being the lattice constant. The band structure
comprises of a flat dispersionless band (E0 = 0) flanked by
two dispersive bands: E± = ±t | f (k)|. The upper and lower
bands are termed as conduction and valence bands, respec-
tively. The three bands touch each other with spin-1 Dirac-
Weyl dispersion at two distinct points of the Brillouin zone
K and K′ called Dirac points as shown in Fig. 2(a). The
low-energy excitations around these points are governed by
a pseudospin-1 Dirac-Weyl Hamiltonian given by

Hμ(q) = h̄v f (μqxSx + qySy). (2)

Here Sx and Sy are the usual spin-1 matrices, v f the Fermi
velocity, and q = (qx, qy) = k − K or k − K′. The index μ =
+1 and −1 represents K and K′ valleys, respectively. Diago-
nalizing the Hamiltonian (2), we get two linearly dispersive
bands E±(q) ≡ E±(q) = ±h̄v f q and the flat band E0 = 0.

Exact flat band, massless low-energy excitations, and
threefold degeneracy at Dirac points are rather approximate
for this lattice. The band structure does not retain these
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FIG. 2. Tight-binding bands of dice lattice with (a) t2 = 0 and (b) t2/t = 0.06. The gray-shaded region shows the indirect overlap between
the distorted flat band and the conduction band. The bands are plotted along the line joining the high-symmetry K′, M, and K points.

features when NNN hoppings are taken into account. The
NNN hopping amplitudes for A-A and C-C sites are identical
by symmetry (say, t2). The B-B NNN hopping vanishes since
it encounters the high potential barrier between A and C
atoms. When the NNN hoppings are included, the Hamilto-
nian takes the form

H (k) = 1√
2

⎡
⎣2

√
2 t2 d (k) t f (k) 0
t f ∗(k) 0 t f (k)

0 t f ∗(k) 2
√

2 t2 d (k)

⎤
⎦, (3)

where d (k) = ∑3
j=1 exp(ik · b j ), where b j are the NNN

vectors as shown in Fig. 1(b) with b1 = (
√

3, 0)a0,
b2 = (−√

3/2, 3/2)a0, and b3 = (−√
3/2,−3/2)a0.

Now the bands are E = 2t2 d (k) and E± = t2 d (k) ±√
t2
2 d2(k) + t2| f (k)|2. Expanding d (k) around the Dirac

point K gives

d (q − K) = −3

2
+ 9a2

0q2

8
+ O(q3). (4)

At the Dirac point K, the eigenvalues are −3t2, −3t2, and 0.
This implies that a gap is created at the Dirac points reducing
the threefold degeneracy to twofold, as shown in Fig. 2(b).
The flat band also becomes dispersive. Although there is a
band gap, the conduction band states near the Dirac points
overlap with those of the distorted flat band near the � point
of the Brillouin zone. This indirect overlap imparts metallic
character to the system even if the flat band is completely
filled. Moreover, the band touching between the distorted flat
band and the valence band is quadratic in first order.

Graphene with only NN hopping also hosts two gapless
bands with massless quasiparticles at the Dirac points. The
inclusion of next-nearest-neighbor (NNN) hopping adds a k-
dependent scalar matrix to the tight-binding Hamiltonian in
sublattice basis

Hg
t2 (k) =

[
2t2 d (k) t f (k)
t f ∗(k) 2t2 d (k)

]
. (5)

So at any Dirac point E+ = E− = 2t2 d (K) = −3t2. Thus,
NNN hoppings only shift the Dirac points in graphene instead
of opening up a gap [71].

III. HALDANE-LIKE MODEL OF DICE LATTICE

We consider a spatially periodic magnetic flux through the
plane of the lattice such that total flux through the hexagonal
unit cell centered around any hub site (B) vanishes, as shown
in Fig. 1(b). Under such an orientation, the flux enclosed by
hexagons formed by the paths of NN hoppings A-B or B-C
also vanish by symmetry. Hence, the vector potential A(r) can
be chosen to vanish along those paths so that NN hoppings do
not acquire Aharonov-Bohm phases [∼ ∫ NN A(r) · dr]. The
flux enclosed by the triangle formed by NNN hoppings is
nonzero. Hence, they aquire phases ±φh ∼ ± ∫ NNN A(r) · dr
such that t2 → t2e±iφh . The sign of the phase is “+” for
clockwise and “−” for counterclockwise hopping. The value
of φh is proportional to the flux enclosed by the three cyclic
NNN hoppings A-A or C-C. On adding onsite energies M
(Semenoff mass) and −M to A and C type atoms, respectively,
the lattice becomes a three-level version of Haldane model.
The Hamiltonian reads

H (k) = 2t2h0(k) cos φhS0 + [M − 2t2hz(k) sin φh]Sz

+ t[gx (k)Sx + gy(k)Sy], (6)

where gx(k) = ∑3
i=1 cos(k · ai ), gy(k) = ∑3

i=1 sin(k ·
ai ), h0(k) = ∑3

i=1 cos(k · bi ), and hz(k) = ∑3
i=1 sin(k · bi ).

Also Sx, Sy, Sz are the usual spin-1 matrices and S0 ≡
diagonal matrix (1,0,1). The energy bands of Hamiltonian (6)
are obtained in Appendix A.

On choosing the hexagonal unit cell centered around a
rim site (A or B) with the flux orientation identical to that
in Fig. 1(b), the triangles formed by the NNN hoppings of
the same rim site do not enclose any flux by symmetry. So
NNN hoppings of the corresponding rim site do not aquire any
phase and may not be regarded as the conventional Haldane
model.

The phase diagram of the system governed by (6) is
shown in Fig. 3. The region enclosed by the red curves
represent topologically nontrivial phases while those out-
side it are trivial. The equations defining the red contours
are M = 3

√
3 sin φh and M = −3

√
3 sin φh. The topological

phase boundary is identical to that of Haldane model of
graphene but there are several features which are in contrast.
The topologically trivial and nontrivial phases are further
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FIG. 3. Phase diagram of Dice-Haldane model.

divided into three categories: VG, CG, and AG based on
the band structure. The symbols VG, CG, and AG denote
“valence-gapped,” “conduction-gapped,” and “all-gapped,”
respectively. “Valence-gapped” means that valence band is
gapped while the distorted flat and conduction bands have
indirect overlap with each other [Fig. 4(a)]. The overlap
is similar to that in bare dice lattice with NNN hopping.
“Conduction-gapped” implies that conduction band is gapped
while the other two have indirect overlap [Fig. 4(c)]. “All-
gapped” indicates that all bands are well separated from
each other having no overlap at all [Fig. 4(e)]. The red
contour separates two VG (CG) phases because of closing
and reopening of the band gap between the distorted flat
and valence (conduction) bands along the contour [Figs. 4(b)
and 4(d)]. There are four independent purple points in the
phase diagram at (±0.5,±3

√
3) where the conduction, flat,

and valence bands touch each other at either Dirac point with
spin-1 Dirac-Weyl dispersion [Fig. 4(f)]. The Chern numbers
of the conduction, (distorted) flat, and valence bands in the
topologically nontrivial AG phases around φh = ±π/2 are
∓2, 0 and ±2, respectively. In the nontrivial VG and CG
phases for φh ≶ 0, the Chern numbers of the gapped valence
and conduction bands are ∓2 and ±2, respectively. The Chern

FIG. 4. Band structure of different phases in Haldane model of dice lattice: (a) A VG phase, (b) a phase on the contour separating two VG
phases, (c) a CG phase, (d) a phase on the contour separating two CG phases, (e) an AG phase, and (f) a semimetallic phase.

235406-4



UNCONVENTIONAL PHASES IN A HALDANE MODEL OF … PHYSICAL REVIEW B 101, 235406 (2020)

FIG. 5. Band structure of Haldane-dice lattice for t2/t = 0.06, φh = π/2 and (a) M/t = 0, (b) M/t = 0.11, (c) M/t = 0.31, and (d) M/t =
0.51.

numbers have been calculated using the discretized Brillouin
zone method proposed by Fukui et al. [72]. The system
behaves as a Chern insulator when Fermi energy lies in a band
gap of any of the topologically nontrivial phases. The system
is metallic when Fermi energy lies in the range of overlapping
bands in the topologically trivial as well as nontrivial VG and
CG phases. The purple points can be termed as semimetallic
when Fermi energy is at the threefold band touching.

For a particular choice of flux such that φh = π/2, the
Hamiltonian takes the form

H (k) = [M − 2t2hz(k)]Sz + t[gx(k)Sx + gy(k)Sy]. (7)

On diagonalizing, we get the bands E0 = 0 and E± =√
t2[g2

x(k) + g2
y(k)] + [M − 2t2hz(k)]2. Here E± are two dis-

persive bands symmetrically gapped around a zero-energy
flat band E0 as shown in Figs. 5(a)–5(d). In this case, the
flat band remains completely unperturbed by t2. Thus, the flat
band which becomes dispersive on inclusion of t2 in bare dice
lattice regains its flatness under the application of Haldane
flux with φh = π/2. In fact, a completely flat band occurs
for φh = (2n + 1)π/2, where n is an integer. Considering the
symmetry in the band structure coming from pure imaginary
NNN hoppings, we will consider the Haldane-dice model only
with φh = π/2 (and M > 0) throughout the rest of the paper.

On linearizing the Hamiltonian (7) around the Dirac points
K and K′, we get

Hμ(k) = h̄v f (μqxSx + qySy) + mμv2
f Sz, (8)

where μ represents valley index, q is a small momentum
vector with respect to a Dirac point, v f = 3a0t/2h̄, and
mμv2

f = (M − μεt2 ) with εt2 = 3
√

3t2. The Hamiltonian (8)
is analogous to that of massive spin-1 Dirac quasiparticles in

two dimensions. The low-energy bands are E0(q) = 0 and

Eμ
± (q) = ±

√
(h̄v f q)2 + (

mμv2
f

)2
. (9)

The valley symmetry of the band structure is not preserved
due to breaking of TRS and inversion symmetry. The band
gaps at K are smaller than at K′.

The z component of Berry curvature of the bands around
these points are

�
μ
±(q) = ±μ

⎡
⎣ mμh̄2v4

f(
h̄2v2

f q2 + m2
μv4

f

) 3
2

⎤
⎦, �

μ
0 (q) = 0. (10)

The anomalous Hall conductivity is given by [73]

σyx(E f ) = σ0

∑
λ,μ

∫ ∞

0
�

μ
λ (q) f μ

λ (E f )qdq, (11)

where λ = 0,±1, σ0 = e2/h, and f μ
λ (E f ) = [e(Eμ

λ −E f )/kBT +
1]−1 is the Fermi-Dirac distribution function. Using Eqs. (10)
and (11), the Hall conductivity of the model at T = 0 as a
function of Fermi energy E f is obtained as

Case I: γ < 1

σyx(ε f )

σ0
=
(

2

|ε f |
)

θ [|ε f | − (γ + 1)] +
(

1 + 1 − γ

|ε f |
)

× θ [|ε f | − |γ − 1|]θ [|γ + 1| − |ε f |]
+ (2)θ [|γ − 1| − |ε f |], (12)

Case II: γ > 1

σyx(ε f )

σ0
=
(

2

|ε f |
)

θ [|ε f | − (γ + 1)] +
(

1 + 1 − γ

|ε f |
)

× θ [|ε f | − |γ − 1|]θ [|γ + 1| − |ε f |], (13)
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FIG. 6. Variation of the Hall conductivity (σyx) with Fermi en-
ergy (Ef ) for γ = 0 (solid blue curve), γ = 1.6 (lower, red dashed
curve), and γ = 0.64 (upper, green dashed curve).

Case III: γ = 0

σyx(ε f )

σ0
=
(

2

|ε f |
)

θ [|ε f | − (γ + 1)]

+ (2)θ [|γ − 1| − |ε f |], (14)

where ε f = E f /εt2 and γ = M/εt2 . The variation of Hall con-
ductivity of the system with E f is shown in Fig. 6 for different
values of γ . For γ = 0, σyx varies smoothly as ∼1/|E f | when
E f is below or above the band gap due to a valley-symmetric
band structure. For 0 < γ < 1 and γ > 1, cusps appear in
σyx when E f enters or leaves the gap at K′ point due to
asymmetry of band structure in the two valleys. For γ < 1,
the Chern number of valence and conduction bands are 2 and
−2, respectively, while that of flat band is zero. For γ > 1, the
Chern numbers of all the bands vanish and it acts like a trivial
insulator. Thus, the Hall conductivity is quantized as 2σ0 and
vanishes to 0 for γ < 1 and γ > 1, respectively, when E f lies
in the bulk band gap (at K).

Dice lattice also hosts a Floquet topological phase identical
to the case of Haldane model with M = 0 and φh = π/2,
when shine with circularly polarized light [63]. A similar
result was obtained for monolayer graphene where the com-
mutator in the effective Floquet Hamiltonian in real space is
equivalent to the second-nearest-neighbor hopping with phase
π/2 of Haldane model [28].

IV. EDGE STATES OF HALDANE-DICE NANORIBBON

The calculation of the Chern number requires evaluation of
Berry curvature �kxky and its integration over the 2D Brillouin
zone. Hence, a two-component parameter space is mandatory
for the concept of Chern number. However, mesoscopic mea-
surements are done on narrow strips of a material. The finite
width of the strip acts as a confining potential which breaks
the periodicity of latttice along the confining direction and
allows propagating states only in the direction perpendicular
to it. The 2D bands of an insulator decompose into a set of
densely spaced 1D sub-bands [74] representing bulk states,
with gaps in the spectra. For a Chern insulator, there exists
a set of states in the gaps which connect two adjacent bulk

FIG. 7. Schematic diagram of a dice nanoribbon with armchair
edges.

bands. The wave functions of these states decay exponentially
from the edge of the strip toward its bulk. They propagate
along a fixed direction at either edge and hence are called
chiral edge states. Due to their chiral nature, the edge states
do not undergo backscattering from impurities and carry a
dissipationless current. When the Fermi energy lies in a band
gap, only the dissipationless edge states in the gap conduct,
thereby giving rise to quantized Hall plateaus and nearly
vanishing longitudinal resistance. The number of chiral edge
states at the Fermi energy equals the sum of Chern numbers
of all the 2D bulk bands below it. Thus, the bulk topological
invariants manifest themselves as chiral edge states. This is
called bulk-edge correspondence [75].

We consider an armchair nanoribbon of the Haldane-dice
lattice infinitely long along x direction but having a finite
width along y as shown in Fig. 7. The tight-binding band
structure of this strip is plotted for different values of γ in
Fig. 8. The blue dots represent the edge states at a given
Fermi energy E f within the bulk band gap (shaded light
blue). For γ < 1, there are two chiral modes (unidirectional)
confined at either edge at a given energy in the bulk gap, as
shown in Figs. 8(a) and 8(b). The velocities of the states at
opposite edges are directed opposite to each other, thereby
making them chiral. These states are responsible for quantized
Hall conductance of 2e2/h (neglecting spin) when E f lies in
the bulk gap. This is consistent with Eq. (12) by bulk-edge
correspondence. For γ > 1, there exists no state within a
particular range (orange shaded) of the bulk energy gaps, as
shown in Fig. 8(c). So the system will be a trivial insulator if
E f lies in that range. However, there are counterpropagating
edge states at either edge at energies close to flat band. These
states exist even for γ 
 1. This kind of edge states are
absent in Haldane model of graphene in the nontopological
regime which implies that they are peculiar to pseudospin-1
Dirac-Weyl system and arise because of the flat band. Due to
counterpropagation, the pair of edge states will not carry a net
charge current at either edge and the system will behave as
an insulator. Hence, bulk-boundary corresponds holds good
in this case as well.

The band structure of the nanoribbon in topologically
trivial and nontrivial VG phases are shown in Fig. 9(a) and
Fig. 9(b), respectively. In the trivial phase, no state exists in
the bulk band gap (shaded light blue) while chiral edge states
fill the bulk gap in the nontrivial regime. This testifies the
topological nature of the system despite the “metallic” overlap
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FIG. 8. Low-energy tight-binding bands of Haldane-dice nanoribbon for φh = π/2, t2/t = 0.06 and (a) γ = 0, (b) γ = 0.64, and (c) γ =
1.6, where k = 3kx . Schematic sketches of a part of the infinite nanoribbon are shown below the plots as yellow rectangles. The width W of
the nanoribbon = 41 hexagonal cells ≈ 71 a0. There are four edge states (blue dots) at the Fermi energy Ef (dashed red line). For γ < 1 i.e.,
the topologically nontrivial regime, there exists two chiral states at either edge [(a) and (b)]. For γ > 1, i.e., the topologically trivial case, the
edge states are counterpropagating at either edge (c).

between two bands. Similar edge states appear for nontrivial
CG phases as well.

The armchair nanoribbon whose band structure is shown
in Figs. 8 and 9 has number of atomic rows Nr = 83 which is
equal to 3N − 1 with N = 28. It is known that the spectrum
for an armchair nanoribbon is semimetallic for Nr = 3N − 1
and insulating otherwise [66]. It has been observed that in
Haldane phases (with φh = π/2), the spectra for Nr = 3N − 1
and Nr �= 3N − 1 are slightly different around the flat band,
but the number and nature of edge states remain unaltered.

The edge states for nanoribbons with zigzag boundaries
have also been analyzed and similar results as armchair were
obtained.

V. HALDANE MODEL IN QUANTIZING MAGNETIC FIELD

Let the Haldane model be subjected to a uniform magnetic
field B = Bẑ. The vector potential A can be chosen in Landau
gauge (0, Bx, 0) with B > 0. We take the continuum model
of massive Dirac Hamiltonian (8) near the Dirac points and

FIG. 9. Tight-binding bands of the Haldane-dice nanoribbon in (a) topologically trivial [φh = 0, M = 2t2] and (b) topologically nontrivial
[φh = 0.25, M = 2t2] VG phases.
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incorporate the effect of magnetic field by minimal coupling
p → (p + eA). Then, the Hamiltonian can be written as

Ĥμ = v f [μp̂xSx + ( p̂y + eBx̂)Sy] + mμv2
f Sz. (15)

Since [ p̂y, Ĥμ] = 0, an eigenstate can be chosen as |λμ(x)〉 =
eiqyy|ψμ(x)〉, where |ψμ(x)〉 = [aφμ

a (x) bφμ

b (x) cφμ
c (x)]T .

Substituting |λμ(x)〉 in the Schrodinger equation, we get
Hμ|ψμ(x)〉 = εμ|ψμ(x)〉 with

Hμ =
⎡
⎣ εm εB fμ(x̂, p̂x ) 0

εB f †
μ(x̂, p̂x ) 0 εB fμ(x̂, p̂x )

0 εB f †
μ(x̂, p̂x ) −εm

⎤
⎦, (16)

where εμ
m = mμv2

f and εB = v f

√
h̄eB, fμ(x̂, p̂x ) =

−i(δμ,1â + δμ,−1â†). Here â and â† are the lowering and
raising operators of simple harmonic oscillator defined as

â =
√

eB

2h̄

[(
x̂ + h̄qy

eB

)
+ i

p̂x

eB

]
(17)

and â† can be obtained by taking complex conjugate of â. It
turns out that the eigenspinor should be of the form

|ψμ
n (x)〉 =

⎧⎨
⎩

aμ
n [δμ,1un−1(x − X ) + δμ,−1un+1(x − X )]

bμ
n un(x − X )

cμ
n [δμ,1un+1(x − X ) + δμ,−1un−1(x − X )]

⎫⎬
⎭
(18)

for n � 1, where un(z) is eigenfunction of the nth level of har-
monic oscillator and X = −h̄qy/(eB). Using âun(x − X ) =√

nun−1(x − X ) and â†un(x − X ) = √
n + 1un+1(x − X ), we

get the characteristic equation in eigenvalues ε as

ε3 − ε
[
ε2

m + (2n + 1)ε2
B

] + μεμ
mε2

B = 0. (19)

Equation (19) has the form of a depressed cubic equation,

ε3 + αε + β = 0. (20)

Its solutions are given by

ε
μ
n j = 2

√−α

3
cos

[
1

3
cos−1

(
3β

2α

√−3

α

)
− 2π j

3

]
(21)

with α = −[(εμ
m )2 + (2n + 1)ε2

B], β = μεμ
mε2

B, and j = 0, 1,
and 2. For n � 1, the eigenvalues or Landau level energies of
each valley ε

μ
n j are given by Eq. (21).

The components of the eigenspinors ψ
μ
n j are given by

aμ
n j = −i

[
δμ,1

√
nB/B0 + δμ,−1

√
(n + 1)B/B0

ε̃
μ
n j − (γ − μ)

]
bμ

n j, (22)

cμ
n j = i

[
δμ,1

√
(n + 1)B/B0 + δμ,−1

√
nB/B0

ε̃
μ
n j + (γ − μ)

]
bμ

n j, (23)

and

|bμ
n j |2 = δμ,1

{
1 + nB/B0[

ε̃
μ
n j − (γ − μ)

]2 + (n + 1)B/B0[
ε̃

μ
n j + (γ − μ)

]2

}

+ δμ,−1

{
1 + (n + 1)B/B0[

ε̃
μ
n j − (γ − μ)

]2 + nB/B0[
ε̃

μ
n j + (γ − μ)

]2

}
,

(24)

FIG. 10. Variation of Landau level energies around K and K′

points with magnetic field for γ = 0.3 [(a) and (b)], γ = 1.0 [(c) and
(d)], and γ = 1.3 [(e) and (f)].

where ε̃
μ
n j = ε

μ
n j/εt2 and B0 = ε2

t2/(eh̄v2
f ) is a magnetic field

scale of the system.
Two other possible eigenspinors are |ψμ

0 (x)〉 =
[δμ,−1aμ

0 u1(x − X ) bμ
0 u0(x − X ) δμ,1aμ

0 u1(x − X )]T and
|ψ00(x)〉=[δμ,−1uμ

0 (x−X ) 0 δμ,1uμ
0 (x−X )]T with energies

ε
μ
0 = (−μεμ

m ±
√

(εμ
m )2 + 4ε2

B)/2 and ε
μ
00 = −μεμ

m ,

respectively. The amplitudes aμ
0 and bμ

0 are given by

aμ
0 =

[
i(δμ,1 − δμ,−1)ε̃μ

0√
B/B0

]
bμ

0 ,
∣∣bμ

0

∣∣ =
[

1 +
(
ε̃

μ
0

)2

B/B0

]−1/2

,

(25)
where ε̃

μ
0 = ε

μ
0 /εt2 .

The variation of Landau level energies with magnetic field
is shown in Fig. 10 for the two valleys. The valley symmetry
of the spectrum is broken for γ �= 0. For no mass term
(Semenoff or Haldane-like) in the Hamiltonian, we get infinite
number of degenerate zero-energy Landau levels [49,54]. The
Haldane mass term splits all these levels shifting them toward
positive or negative energy in each valley, as shown by blue
curves in the figure. This was observed for massive dice lattice
as well [57]. In each valley, there exists a constant energy
level ε

μ
00 denoted by pink lines, whose magnitude is equal to

the magnitude of the mass term in the respective valleys. For
γ �= 1, the Landau levels in K valley vary nearly as ∼√

B for
εm � εB [Figs. 10(a) and 10(e)]. For γ = 1, the energies scale
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FIG. 11. Longitudinal conductivity (σxx) of Haldane model of dice lattice as a function of inverse magnetic field (1/B) for (a) γ = 0,
(b) γ = 0.2, (c) γ = 0.3, and (d) γ = 0.4. Other parameters are Ef = 4εt2 and kBT = 0.005εt2 .

exactly as
√

B at K valley [Fig. 10(c)], where the gap closes
with massless spin-1 Dirac-Weyl dispersion. The mass term
in the K ′ valley is large for γ � 1. In this case, the spectrum
varies nearly as ∼B for εB � εm [Figs. 10(d) and 10(f)].

VI. LONGITUDINAL CONDUCTIVITY

Using the Kubo formalism, the longitudinal conductivity
σxx is obtained as (see Appendix B for derivation)

σxx = σ̃0

∑
n, j,μ

Iμ
n j f μ

n j

(
ε

μ
n, j

){
1 − f μ

n j

(
ε

μ
n, j

)}
, (26)

where σ̃0 = (gse2nimV 2
0 )/(πh�0kBT l2

0 ), f μ
n j =

[e(εμ
n j−E f )/KBT + 1]−1. Also the term Iμ

n j is obtained as

Iμ
n j = ∣∣aμ

n j

∣∣4[δμ,1(2n − 1) + δμ,−1(2n + 3)] + ∣∣bμ
n j

∣∣4(2n + 1)

+ ∣∣cμ
n j

∣∣4[δμ,1(2n + 3) + δμ,−1(2n − 1)] − 2
∣∣aμ

n j

∣∣2∣∣bμ
n j

∣∣2
× [δμ,1n + δμ,−1(n + 1)] − 2

∣∣bμ
n j

∣∣2∣∣cμ
n j

∣∣2[δμ,1(n + 1)

+ δμ,−1n]. (27)

Substituting Eq. (27) into Eq. (26), we obtain the longitudinal
conductivity as a function of B. In Fig. 11, σxx/σ̃0 is plotted
as a function of B0/B for different values of semenoff mass
M at a high E f in the conduction band. We get the usual SdH
oscillations in σxx for M = 0. For finite M, beats appear in the
SdH oscillations and the frequency of beats increases with M.
In Fig. 12, the beating pattern is plotted for different values
of E f for a given value of M. It is observed the number of

oscillations between two nodes increases with E f , but the beat
frequency is apparently constant. Similar phenomena occurs
when E f lies in the valence band.

To qualitatively explain the nature of the plots in Figs. 11
and 12, we consider an approximated formula of SdH oscil-
lations in 2D electron system at low temperatures and low
magnetic fields, which is given by [76]

σxx

σ0
= 1 − λ

∑
μ

2π2kBT/εB

sinh(2π2kBT/εB)
e− π h̄

τεB cos

[
h̄Sμ

F

eB
+ φ

μ
0

]
,

(28)

FIG. 12. Longitudinal conductivity (σxx) of Haldane model of
dice lattice as a function of inverse magnetic field (1/B) for ε f = 3.5
(red), ε f = 4.5 (blue), and ε f = 5.5 (purple). Other parameters are
γ = 0.3 and kBT = 0.005εt2 .
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where λ is a constant, εB = h̄ωc, φ
μ
0 is the energy- and valley-

dependent Berry phase, and Sμ
F = π (kμ

f )2 is the area enclosed
by the Fermi circle in a given valley μ. For massive dice
lattice, φ

μ
0 = μ(2πmμv2

f /E f ). Using Eq. (9), we have Sμ
F =

π [E2
f − (mμv2

f )2]/(h̄v f )2. The cosine terms of the two valleys
act as harmonics with Sμ

F being the corresponding frequencies.
The beats arise due to small difference in S+

F and S−
F due to

difference in magnitude of mass terms in the two valleys. We
can obtain the beat frequency by modeling the longitudinal
concutivity as

σxx

σ0
∼ cos

(
h̄S+

F

eB
+ φ+

0

)
+ cos

(
h̄S−

F

eB
+ φ−

0

)
. (29)

On simplification, we obtain

σxx

σ0
∼ cos

{
2π

[
fm

(
B0

B

)
− 1

ε f

]}
cos

(
2πγ

[
B0

B
+ 1

ε f

])
,

(30)

where ε f = E f /εt2 and fm = (ε2
f − γ 2 − 1)/2 is the fre-

quency of modulation. The second cosine factor in Eq. (30)
gives the beating envelope with beat frequency fb = 2γ . The
position of jth beating node is (B0/B) j = (2 j − 1)/4γ −
1/εF , where j = 1, 2, 3 . . . . The interval between two succes-
sive beating nodes is � = (B0/B) j+1 − (B0/B) j = 1/ fb. The
number of oscillations between two successive nodes is given
by N = fm� = (ε2

F − γ 2 − 1)/(4γ ).
From Fig. 12, we have (B0/B)4 = 5.72 and (B0/B)5 =

7.39 which gives �plot = 1.67. This exactly matches with the
time period of beats given by � = 1/(2γ ). Also, in the SdH
plot for ε f = 4.5 in Fig. 12, we get nearly 16 oscillations
between two successive nodes. This matches with the result
(= 15.96) obtained from the expression for N .

The average frequency of oscillations arising from the two
valleys is proportional to E2

f . Thus, N falls rapidly as E f

approaches lower Landau levels of conduction or valence
band and the beats gradually become indistinct. This is ex-
pected because the formation of beats requires the individual
frequencies of the superposing harmonics to be much larger
than their difference. So well-defined beats can be observed
only when E f is large enough. In our analysis, we have chosen
E f = 4.5εt2 which is close to ∼50th Landau level of the con-
duction band at either valley for γ = 0.3 and B0/B = 5. Sim-
ilar beats are also expected for Haldane model of graphene.

It is to be noted that although the Landau levels are not
valley degenerate in massive dice lattice as well [57], it does
not show beats in SdH oscillations.

VII. CONCLUSION

We have constructed a theoretical Haldane-like model of
dice lattice and investigated its topological properties within
the tight-binding formalism. The phases of the system are
dictated by the Semenoff mass, second-neighbor hopping and
periodic magnetic flux. Unlike the Haldane model of graphene
which hosts phases representing a semimetal, trivial insulator
and a topogical insulator, this system supports a metallic phase
in addition to the former. The metallic phase arises due to
distortion of the flat band and its indirect overlap with either of
the two other bands. These phases also gapped bands which

may be topologically trivial or nontrivial. Chiral edge states
show up in the band structure of a nanoribbon of the sytem in
the nontrivial regime. A haldane phase with pure imaginary
hoppings restores the dispersionless flat band. The Chern
numbers of the bands are −2, 0, and 2 in the topological
phases implying that the system may exhibit QAHE with
two chiral edge channels. Exact expressions of Landau levels
are derived from low-energy massive pseudospin-1 Dirac
Hamiltonians around the two Dirac points. Peculiar beating
pattern appears in the SdH oscillations of magnetoconduc-
tivity when the magnitude of mass terms in the two Dirac
valleys are unequal and filling is close to the higher Landau
levels of the conduction or valence band. The information
about the phase-determining parameters of the system such
as Semenoff mass, next neighbor hopping and Fermi energy
can be extracted from the beat frequency and the number of
oscillations between two successive beating nodes.
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APPENDIX A: ENERGY BANDS OF HALDANE MODEL

In this Appendix, we present derivation of the energy bands
of the Haldane model for dice lattice. The Hamitonian (6)
yields the following characteristic equation of eigenvalues ε:

ε3 − 2p0ε
2 − (

p2
z − p2

0 + 2|pxy|2
)
ε + 2p0|pxy|2 = 0, (A1)

where p0 = 2t2h0(k) cos φh, pz = M − 2t2hz(k) sin φh, and
pxy = t[gx(k) − igy(k)]/

√
2. Solutions of this equation gives

the band structure of the sytsem as functions of M, t2, and φh.
Equation (A1) has the form

Aε3 + Bε2 + Cε + D = 0, (A2)

with A = 1, B = −2p0, C = −(p2
z − p2

0 + 2|pxy|2), and
D = 2p0|pxy|2. The solutions can be obtained by converting
it to a depressed cubic equation. Substituting ε = ω − B/3A
into Eq. (A2) and dividing by A, we get

ω3 + pω + q = 0, (A3)

where

p = 3AC − B2

3A2
, q = 2B3 − 9ABC + 27A2D

27A3
. (A4)

Equation (A3) has the form of a depressed cubic equation
with p < 0 for all values of k in our system. Since all the
eigenvalues are real, the solutions are of trigonometric form

ω j = 2

√−p

3
cos

[
1

3
cos−1

(
3q

2p

√
−3

p

)
− 2π j

3

]
, j = 0, 1, 2.

(A5)
The energy bands of the Haldane model of the dice lattice are
given by ε j = ω j − B/3A.

APPENDIX B: MAGNETOCONDUCTIVITY FROM THE
KUBO FORMULA

Here we will provide the derivation of the analytical ex-
pression of the longitudinal conductivity in the linear response
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regime where the electric field is very weak. For this pur-
pose we will be using the well-known Kubo formalism [77].
In general, the longitudinal conductivity has diffusive and
collisional contributions. In presence of quantizing magnetic
field, the diffusive contribution exactly vanishes since the
diagonal elements of the velocity operator are simply zero.
Therefore, the longitudinal conductivity solely arises due to
the collisional process.

In the framework of Kubo formalism, the general expres-
sion for the collisional conductivity in presence of quantizing
magnetic field is given by [6,78–80]

σxx = e2

SkBT

∑
ξ,ξ ′

f (εξ ){1 − f (εξ ′ )}Wξξ ′ (xξ − xξ ′ )2, (B1)

where S is the surface area of the system, ξ ≡ ( j, n, qy, μ)
represents a set of all quantum numbers, T being the tem-
perature of the system, xξ = 〈ξ |x|ξ 〉 = qyl2

0 , and f (εξ ) =
[e(εξ −E f )/kBT + 1]−1 is the Fermi-Dirac distribution function.
Moreover, Wξξ ′ describes the probability that an electron
makes a transition from an initial state |ξ 〉 to a final state
|ξ ′〉. Its expression for elastic scattering by static impurities is
given by

Wξ,ξ ′ = 2πnim

h̄S

∑
k

|V (k)|2|Fξ,ξ ′ |2δ(εξ − εξ ′ ), (B2)

where nim is the impurity density and V (k) is the
Fourier transform of the screened Coulomb potential V (r) =
e2e−ksr/(4πε0εrr) with ε0 is the free space permittivity, ε is
the dielectric constant of the medium and ks is the screened
wave vector. The expression of V (k) for a 2D system is
V (k) = e2/(4πε0εr

√
k2 + k2

s ). Finally, Fξ,ξ ′ denotes the form
factor which is defined as Fξ,ξ ′ = 〈ξ ′|eik·r|ξ 〉. We now con-
sider only the intraband ( j′ = j) and intralevel (n′ = n) scat-
tering because of the presence of the term δ(εξ − εξ ′ ) in

Eq. (B2). The valley-dependent form factor is simplified as∣∣Fμ
n j (u)

∣∣ = {∣∣aμ
n j

∣∣2[δμ,1Ln−1(u) + δμ,−1Ln+1(u)]

+ ∣∣bμ
n j

∣∣2Ln(u) + ∣∣cμ
n j

∣∣2[δμ,1Ln+1(u)

+ δμ,−1Ln−1(u)]
}
e−u/2, (B3)

where Ln(u) is the Laguerre polynomial of order n.
The sharp Landau levels are broadened by the static im-

purities present in the system: δ(εξ − εξ ′ ) = (1/π )�0/[(εξ −
εξ ′ )2 + �2

0] with �0 being the broadening parameter. It may
be written as δ(εξ − εξ ′ ) � 1/(π�0) for intralevel and intra-
band scattering. Further, V (k) is approximated as V (k) �
e2/(4πε0εks) ≡ V0 since small values of k2 will be contribut-
ing more due to the presence of exponentially decaying term
e−u in the expressions of |Fμ

n, j |2.
Using the fact that

∑
qy

→ gsS/(2π l2
0 ) with gs being the

spin degeneracy and
∑

k → S/(2π )2
∫

k dk dθ with θ being
the polar angle of k, we finally obtain the following expression
for the longitudinal conductivity as:

σxx = σ̃0

∑
j,μ,n

Iμ
n, j f

(
ε

μ
n, j

){
1 − f

(
ε

μ
n, j

)}
, (B4)

where σ̃0 = (gse2nimV 2
0 )/(πh�0kBT l2

0 ) and Iμ
n, j =∫∞

0 u|Fμ
n j (u)|2 du. Using the standard results of∫∞

0 L2
n (u)e−uudu = 2n + 1 and

∫∞
0 Ln(u)Ln−1(u)e−uudu =

−n, Iμ
n, j is obtained as

Iμ
n, j = ∣∣aμ

n j

∣∣4[δμ,1(2n − 1) + δμ,−1(2n + 3)] + ∣∣bμ
n j

∣∣4(2n + 1)

+ ∣∣cμ
n j

∣∣4[δμ,1(2n + 3) + δμ,−1(2n − 1)] − 2
∣∣aμ

n j

∣∣2∣∣bμ
n j

∣∣2
× [δμ,1n + δμ,−1(n + 1)] − 2

∣∣bμ
n j

∣∣2∣∣cμ
n j

∣∣2[δμ,1(n + 1)

+ δμ,−1n]. (B5)
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