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Robust conductance zeros in graphene quantum dots and other bipartite systems
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Within the Landauer transport formalism we demonstrate that conductance zeros are possible in bipartite
systems at half-filling when leads are contacted to different sublattice sites. In particular, we investigate the
application of this theory to graphene quantum dots with leads in the armchair configuration. The obtained
conductance cancellation is robust in the presence of any single-site impurity.
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I. INTRODUCTION

The cancellation of the electronic conductance on account
of destructive quantum interference (DQI), independent of
the coupling strength to the leads, is a quantum mechanical
effect without correspondence in classical circuits. Finding
systems where such property occurs is of both fundamental
and practical interest, as in designing of on/off switches,
for example. The existence of the DQI phenomena has been
investigated previously in various quantum dots or molecular
systems [1–9]. More recently, this topic received renewed
attention in connection with the transmission phase lapse of π

at the conductance zeros between the resonances of a quantum
dot, arguably one of the longest standing puzzles in meso-
scopic physics, whose elucidation spanned 30 years [10,11].

In this paper we demonstrate the presence of a robust zero
transmission in graphene quantum dots (QD) at half-filling
(i.e., zero Fermi energy), starting from an analysis of quantum
transport in bipartite lattices. Such systems, known to provide
an appropriate description for graphene, are composed of
two sublattices A and B with hopping only between A and
B sites and no hopping in the same sublattice (see Fig. 1).
In the Landauer formalism, where the conductance between
two points Gi j is proportional to the transmittance Ti j , it was
previously found that zeros are obtained in graphene QDs
when both leads are connected to the same sublattice, TAA or
TBB [12,13]. Moreover, it was shown that this type of zeros
occurs with a π phase lapse of the transmission amplitude,
a property characteristic to Fano zeros. Here we focus on
the origin of the transmission zeros and their characteristic
properties in a setup that involves DQI when the transport
leads are connected to both sublattices, TAB.

To this end we first prove the conductance cancellations
in a multiterminal bipartite conductor whose transport leads
are contacted to A points. In some specific circumstances,
TAA = 0 between any pair of A leads, a result that is left
invariant by the presence of a perturbation at any A sites. Later,
this property is used as a building block in constructing new
connected systems, also bipartite, in which the existence of

TAB zeros is studied. Our theory is then applied to a graphene
quantum dot at half-filling, when the two leads are connected
to armchair edges. The robustness of such conductance zeros
is studied in the presence of lattice defects.

II. THE LANDAUER FORMALISM

The general Hamiltonian of a bipartite lattice considers all
the hopping terms between sublattice A and B points,

H =
∑

iA, jB

tiA, jB |iA〉〈 jB| , (1)

as shown in Figs. 1 and 2.
This is a known appropriate representation of nano-

sized graphene sheets (also called graphene quantum
dots) [12,14], artificial molecules composed of connected
quantum dots [15–17], or alternant chemical molecules de-
scribed by the Hückel Hamiltonian [1,18,19].

In the following considerations we are interested in the
general multiterminal case of a QD connected to a number
of Nl one-channel transport leads, indexed by α or β =
1, . . . , Nl . The leads are described by a one-dimensional tight-
binding or discrete chain Hamiltonian [19–21] and the contact
points between them, and the QD are individual sites denoted
by iα and iβ .

Within the Landauer formalism, the transmission ampli-
tude between leads α and ᾱ at energy E [20,22],

tα,ᾱ (E ) = −δα,ᾱ + 2i
τατᾱ

τl
sin k Geff

iα,iᾱ (E ), (2)

determines the conductance between the same leads,

Gα,ᾱ (E ) = e2

h
Tα,ᾱ (E ) = e2

h
|tα,ᾱ (E )|2, (3)

with Tα,ᾱ the transmittance. The argument of the transmission
amplitude is denoted by arg t (E ) = φ(E ). Note that in Eq. (2)
the effective Green’s function,

Geff (E ) = 1

E − H eff
, (4)
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FIG. 1. A zero-transport bipartite conductor with all terminals
connected at A sites. The system exhibits zero transmission at E = 0:
tα,ᾱ (0) = 0 for any pair of leads α �= ᾱ. This is realized when the
bipartite Hamiltonian is nonsingular such that it has no zero-energy
eigenstate. The TAA zeros are invariant under any A-site perturbation,
but they can be modified by B-site impurities, as discussed in the text.

depends on the energy E = 2τl cos k, with k the wave number.
τl is the lead hopping energy and τα the constriction parameter
or the hopping energy between QD and lead α. For simplicity,
we assume throughout the paper that τα = τᾱ = τc.

The effective Hamiltonian that determines Eq. (4) incor-
porates, in addition to the bipartite Hamiltonian, Eq. (1), the
potential at the contacts V such that H eff = H + V , where

V = τ 2
α

τl
e−ik

Nl∑

α=1

|iα〉〈iα| . (5)

Although the effective Hamiltonian is non-Hermitian, since V
is complex, it has proven to be a useful tool in describing the
transport properties of open mesoscopic systems [23,24].

III. THE TAA ZEROS

We apply the formalism described above to the case of a
multilead quantum conductor, as depicted in Fig. 1. All the
external leads are connected to the same sublattice of the
bipartite system, A. External perturbations may be present at
A sites, εi �= 0 with i ∈ A.

In this case, we show that the transmission amplitude tα,ᾱ

with α �= ᾱ satisfies

tα,ᾱ (0) = 0 with iα, iᾱ ∈ A, (6)

regardless of how many other leads are connected to the
same sublattice points A. This result is derived by using the
Dyson expansion for the effective Green’s function Geff (E ) in
Eq. (4). For the matrix blocks that contain matrix elements
between A sites, Geff

AA(E ) and GAA(E ), we write

Geff
AA(E ) = GAA(E ) + GAA(E )VAGeff

AA(E ), (7)

where the potential matrix VA contains only the A-site terms
from Eq. (5) and the A-site impurities, as we have consid-
ered. We note that on account of the chiral symmetry of
the Hamiltonian, the matrix elements of the bare Green’s
function G(E ) = 1/(E − H ) between points of the same
sublattice at zero energy cancel, as previously discussed in
Refs. [13,16,25]. Therefore,

Gi,i′ (0) = 0 for i, i′ ∈ A or i, i′ ∈ B . (8)

With GAA(0) = 0 in Eq. (7) and from Eq. (2) one obtains the
cancellation from Eq. (6).

We note that the validity of this result is conditioned by
the absence of the eigenvalue E = 0 from the bipartite lattice

TAB’ = 0
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FIG. 2. A quantum conductor with TAB zeros: T13, T14, T23, and
T24. The system is composed from two serially connected quantum
dots, QD1 and QD2, each of them having zero conductances between
any pair of leads, as explained in Fig. 1. The TAB zero is invariant
under any perturbation applied to A or B′ sites. Particularly, it can be
modified by a selected pair of B and A′ site perturbations.

spectrum [1,13], which assures that the perfect conductance
cancellation at E = 0 occurs between resonances. Such a
“perfect” zero is independent of the coupling strength with
the leads, since it is decided by the zeros of the bare Green’s
function. In this respect it is different from the usual low
conductance between resonances, which is never a perfect
zero and is, in general, coupling dependent.

The invariance of TAA zeros in Fig. 1 to any A-site per-
turbations underlies the destructive interference in the “off”
states for naphthalene or perylene when the contact points
of Büttiker probes and source and drain electrodes belong to
the same sublattice [19]. In general, the invariance of the TAA

zeros is removed only by at least one B-site perturbation. The
multiterminal conductor with TAA = 0 in Fig. 1 can be used to
explain the occurrence of conductance zeros in bigger systems
that incorporate it as a building block, as shown in the next
section.

IV. THE TAB ZEROS

To prove the existence of the transmission zeros that appear
when the leads are connected to different sublattices, one at an
A site and the other at a B site, we consider a quantum conduc-
tor composed of a sequence of two serially connected quan-
tum dots QD1 and QD2, described in Fig. 2. Each quantum
dot is a bipartite lattice, described by Hamiltonians H1(A, B)
and H2(A′, B′), respectively, with no zero-energy eigenvalue
and with all leads connected to the same sublattice points as in
Fig. 1. The coupling potential between the two dots is realized
only between A points of the first dot with B′ points of the
second, as depicted Fig. 2, leading to an additional interaction
term of the form V12(A, B′) = |A3〉〈B′

1| + |A4〉〈B′
2| + H.c.

The resulting Hamiltonian of the composed system H1 +
H2 + V12 is bipartite too, with A + A′ and B + B′ designating
the two sublattices.

In the composed bipartite system the tunneling amplitude
is zero between points in the A and B′ sublattices,

tα,β (0) = 0 with iα ∈ A and iβ ∈ B′. (9)

This is the main result of this section and will be proven below.
The effective Hamiltonian H eff that determines the trans-

mission amplitude in the composed system, in agreement with
Eq. (5), is written as

H eff = H1(A, B) + H2(A′, B′)

+V12(A, B′) + V1(A) + V2(B′), (10)
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where H1, H2 describe the two independent QDs, while V12

describes the coupling between them. V1(A) and V2(B′) are the
non-Hermitian terms from (5) associated with the coupling to
the leads.

The matrix elements Geff
iα,iβ (0) of Geff

AB′ (E ) for two lattice
points iα ∈ A and iβ ∈ B′ are calculated from the Dyson
equation written for the total interaction potential in Eq. (10),

Geff (E ) = G(E ) + G(E )[V12(A, B′)

+V1(A) + V2(B′)]Geff (E ) . (11)

Since the initial system H in (10) is decoupled, its Green’s
function matrices GAB′ and GAA′ are equal to zero in the
expansion of the Dyson equation, leading to

Geff
AB′ (E ) = GAAV 1

AAGeff
AB′ + GAAV 12

AB′Geff
B′B′ . (12)

V 1
AA and V 12

AB′ are the matrices of the operators V1(A) and
V12(A, B′) in (10). Since QD1 as a bipartite system does
not have an E = 0 eigenstate and GAA(0) = 0 in Eq. (8),
Geff

AB′ (0) = 0. Then, with input from (2) the cancellation (9)
follows.

A slightly less general result is obtained by considering a
single incoming and a single outgoing lead. One lead is on
an A-site coupling to the point iα , and the other lead is at
a B′-site coupling to the point iβ ∈ B′. For this two-terminal
conductor one can prove that the transmission zero tα,β (0) has
no π phase lapse. In the formula (12) of Geff

AB′ (E ) we introduce
the Dyson expansion for Geff

B′B′ (E ) and retain only the lowest
order term in the limit of E → 0± when the bare functions
GAA → 0 and GB′B′ → 0. We then obtain

Geff
AB′ (0±) � GAA(0±)V 12

AB′GB′B′ (0±). (13)

The transmission tα,β (0±) in Eq. (2) becomes a summation
of products GiA, jA GiB′ , jB′ with iA, jA ∈ A and iB′ , jB′ ∈ B′.
Since every product term GiA, jA or GiB′ , jB′ describes a π

phase lapse process [13], an overall 2π phase is obtained
and consequently, no observable phase variation occurs. From
these considerations one obtains

	 arg tαβ (0) = 0. (14)

The stability of the TAB zero obtained in (9) is now inves-
tigated in the presence of a disorder potential represented by
impurity energies located at various sites of the lattice. The
effective total Hamiltonian becomes

H ′eff = H eff +
∑

i

εi|i〉〈i| . (15)

From the Dyson expansion for G′eff
AB′ , straightforward calcu-

lations lead to

G′eff
AB′ (0) = Geff

AB(0)εBG′eff
BA′ (0)εA′Geff

A′B′ (0) , (16)

where εB and εA′ are the matrices of B and A′ located impu-
rities. Equation (2) generates the lowest order terms of the
tunneling amplitude between contact points iα = A1, A2 and
iβ = B′

3, B′
4,

tα,β (0) = εBCBA′εA′ + O(ε3). (17)

CBA′ is a matrix containing Green’s function products derived
by the perturbative method. For instance, for the output lead

FIG. 3. Zero transmission in graphene: tAout ,Bin (0) = 0 for all
Bin ∈ QD1 and Aout ∈ QD2 for any constriction τc.

connected at iα = A1 and the input one with iβ = B′
3 it is writ-

ten CBA′ = GA1BGBAV 12
AB′GB′A′GA′B′

3
, with all Green functions at

E = 0 calculated for H1 + H2 from Eq. (10).
This result shows a significant difference between the TAB

and TAA zeros. The cancellation TAB′ = 0 in Fig. 2 is invariant
in the presence of any single-site impurity and could be
modified only by at least a selected pair of A′, B located
impurities. In contrast, the existence of a same sublattice
zero, TAA = 0 in Fig. 1, is invariant in the presence of any
A-site-located impurities but can be modified by one B-located
impurity.

To predict the general features of the DQI processes we
consider here only noninteracting electron systems [1,6,22].
As discussed in other works, the presence of interaction terms
(onsite or long range) may lead to energy shifts, small de-
creases, or splitting of the DQI dips [6,26–28]. One can there-
fore expect that the obtained DQI processes remain robust
even in the presence of interaction, as long as the adiabatic
turning on of the interaction terms does not induce new energy
levels (or a density peak) between adjacent QI resonance en-
ergies. This is discussed on the basis of the Friedel sum rule in
Ref. [29]. Moreover, the electron-hole symmetry (specific to
bipartite lattices) survives interaction models such as Hubbard
or extended Hubbard (the PPP model [30,31]). Remarkably,
electron-hole symmetry was also proven experimentally in a
carbon nanotube [32].

V. THE ARMCHAIR ZEROS IN GRAPHENE

In this section we study the existence of the TAB zeros for a
two-terminal graphene QD at E = 0. In Fig. 3 the graphene
sheet has the incoming lead connected at the site i1 = Bin,
which belongs to the B sublattice on the left armchair bound-
ary while the contact point of the outgoing lead i2 = Aout

belongs to the A sublattice on the right armchair boundary. In
order to apply the above-discussed formalism, the graphene
is formally separated into two smaller dots QD1 and QD2

that are serially connected through Nzz lines B1A1,..., B5A5

that play the role of connection leads between them. Each
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FIG. 4. Zero transmission and no phase lapse in a graphene
quantum dot at E = 0. T(0)=0 for any τc is proven in the text.
The lattice picture and the contact points are in Fig. 3. τl = 2. The
lead-dot constriction parameters τc are written on the figure. E , τl ,
and τc are in units of t. In the inset the transmission phase is in π

units.

smaller dot behaves like a zero-conductance device described
in Fig. 1. QD1 has leads connected to the B sublattice and
QD2 to the A sublattice. Both of them have no zero-energy
eigenstate [33]. In this instance, Eq. (9) applies and the
conductance cancels at E = 0.

From Ref. [33] the rectangular graphene lattice has pairs of
zigzag edge states 
zz+ and 
zz− with the wave numbers ξ j =
π j/(Nzz + 1) and δ j that satisfy the characteristic equation

sinh δ jNac = 2 cos (ξ j/2) sinh δ j (Nac + 1/2). (18)

Nzz counts the zigzag points, and Nac is the number of hexag-
onal cells in the armchair direction. The two zigzag state
energies are

Ezz± = ± sinh(δ j/2)

sinh δ j (Nac + 1/2)
. (19)

For graphene in Fig. 3 we have Nzz = 5 and Nac = 5. From
Eq. (18) we obtain only one pair of zigzag edge states
having wave numbers ξ5 = 5π/6 and δ5 = 1.317. Their
zigzag energies calculated with Eq. (19) are Ezz± = ±0.001t .
t is the nearest-neighbor hopping, equal to 2.7 eV for
nanographene [28].

In Fig. 4 we show numerical results of transmittance T(E )
and the transmission phase φ(E ) when two transport leads are
contacted to points Aout and Bin, as explained in Fig. 3.

The maxima with T(E ) = 1 for tunneling energies is ob-
tained at the two resonance energies equal to the zigzag eigen-
states calculated above, E � Ezz+ and E � Ezz−. Between the
two resonances the system shows a zero transmittance at E =
0 with no phase lapse of the transmission phase between them.
At resonances the phase φ(E ) increases with π as expected.

The TAB zeros have an increased robustness. Two different
impurities, such as εB located in QD1 and εA located in QD2,
do not modify the TAB(0) = 0 of Fig. 3. In order to lift the
conductance zero, one needs at least one εA impurity in QD1

and one εB impurity in QD2. This results from Eq. (17) and
can be applied to design an AND logical gate by using the
graphene QD. In this case the two control parameters εA and
εB can be simulated by external perturbations applied on the
two selected sites as in the case of Büttiker probes [19].

Furthermore, the transmission cancellation proven in this
paper explains the DQI in molecular systems that contain
a series of subsystems. If, for instance, the building block
is a metabenzene, we can obtain the zero conductance in
biphenyl [7], and if we use a T shape as a building block,
we obtain the 2–3 hard zero in butadiene [34]. One can also
start with a multiterminal lattice as pictured in Fig. 1. As
an example, a three-terminal naphthalene, with all TAA =
0, determines the DQI in perylene-type lattices obtained in
Refs. [35] and [36]. Finally, we note that the second dot in
Fig. 2 can be chosen arbitrarily, allowing for the prediction of
DQIs in more complex systems.

VI. CONCLUSIONS

This paper discusses a particular transmission cancellation
property characteristic to bipartite lattices and molecules that
is potentially useful to nanoelectronics. We demonstrate the
existence of zero transmission at half-filling in bipartite sys-
tems, such as graphene quantum dots, when the two transport
leads are contacted to certain sites from the A and B different
sublattices. This perfect transmission cancellation, indepen-
dent of the coupling strength to the leads, is different from the
usual low conductance between resonances, and the property
can be used for on/off nanoswitches or logical gates. The
algorithm described in this paper is appropriate for bipartite
systems that can be separated in two subsystems, each of them
bipartite and lacking midspectrum (zero) energy. Then if the
two leads are connected to any A site of the first subsystem
and, respectively, to any B site of the second subsystem, the
transmission exhibits a cancellation.

A high robustness is proven for the TAB conductance zeros
which survive to any single-site perturbation, and at least two
impurities (located in different sublattices) are necessary to
remove them. This is unlike the TAA zeros, which are invariant
to any A-site perturbations and can be lifted by a single
B-site impurity. In addition to the conductance cancellation,
no π lapse of the transmission phase occurs if the leads are
connected to different sublattices, contrary to the case when
the leads are connected to the same sublattice.

Our results can be used to predict the existence of DQIs and
to understand their robustness in various physical systems—
such as finite tight-binding lattices or molecules—that are
composed from various building blocks with certain bipartite
characteristics.
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[24] B. Ostahie, M. Niţă, and A. Aldea, Phys. Rev. B 94, 195431

(2016).
[25] H. Y. Deng and K. Wakabayashi, Phys. Rev. B 90, 115413

(2014).
[26] Y. Tsuji, R. Hoffmann, R. Movassagh, and S. Datta, J. Chem.

Phys. 141, 224311 (2014).
[27] Y. Tsuji and E. Estrada, J. Chem. Phys. 150, 204123 (2019).
[28] A. Valli, A. Amaricci, V. Brosco, and M. Capone, Phys. Rev. B

100, 075118 (2019).
[29] H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999).
[30] R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466 (1953).
[31] J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953).
[32] P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven,

and H. S. J. van der Zant, Nature (London) 429, 389 (2004).
[33] L. Malysheva and A. Onipko, Phys. Rev. Lett. 100, 186806

(2008).
[34] Y. Tsuji and K. Yoshizawa, J. Phys. Chem. C 121, 9621 (2017).
[35] D. Mayou, Y. Zhou, and M. Ernzerhof, J. Phys. Chem. C 117,

7870 (2013).
[36] T. Stuyver, S. Fias, F. De Proft, and P. Geerlings, J. Phys. Chem.

C 119, 26390 (2015).

235318-5

https://doi.org/10.1021/acs.chemrev.7b00733
https://doi.org/10.1002/chem.201704488
https://doi.org/10.1038/natrevmats.2016.2
https://doi.org/10.1038/nnano.2013.91
https://doi.org/10.1103/PhysRevE.71.046204
https://doi.org/10.1021/nl101688a
https://doi.org/10.1038/nchem.2314
https://doi.org/10.1088/1367-2630/aa6c23
https://doi.org/10.1021/acs.jpcc.6b11951
https://doi.org/10.1038/385417a0
https://doi.org/10.1038/s41467-017-01685-z
https://doi.org/10.1002/cphc.200290006
https://doi.org/10.1002/pssr.201409228
https://doi.org/10.1016/j.physleta.2019.04.018
https://doi.org/10.1103/PhysRevB.65.085324
https://doi.org/10.1103/PhysRevB.94.165103
https://doi.org/10.1016/j.physe.2018.01.021
https://doi.org/10.1007/BF01339530
https://doi.org/10.1007/BF01341953
https://doi.org/10.1007/BF01341936
https://doi.org/10.1007/BF01330865
https://doi.org/10.1021/acs.jpclett.8b01185
https://doi.org/10.1016/j.physe.2010.04.022
https://doi.org/10.1103/PhysRevB.99.115403
https://doi.org/10.1103/PhysRevB.62.7307
https://doi.org/10.1063/1.2804867
https://doi.org/10.1103/PhysRevB.94.195431
https://doi.org/10.1103/PhysRevB.90.115413
https://doi.org/10.1063/1.4903043
https://doi.org/10.1063/1.5097330
https://doi.org/10.1103/PhysRevB.100.075118
https://doi.org/10.1103/PhysRevLett.82.2358
https://doi.org/10.1063/1.1698929
https://doi.org/10.1039/tf9534901375
https://doi.org/10.1038/nature02568
https://doi.org/10.1103/PhysRevLett.100.186806
https://doi.org/10.1021/acs.jpcc.7b02274
https://doi.org/10.1021/jp3125389
https://doi.org/10.1021/acs.jpcc.5b10395

