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Spin-flip excitations and Stoner ferromagnetism in a strongly correlated quantum Hall system
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Spin-flip excitations in a quantum Hall electron system at fixed filling factor ν = 2 are modeled and studied
under conditions of a strong Coulomb interaction when the “Landau level mixing” is a dominant factor deter-
mining the excitation energy. The “one-exciton” approach used for the purely electronic excitations in question
allows us to describe the Stoner transition from the unpolarized/paramagnet state to the polarized/ferromagnet
one. The theoretical results are compared with the available experimental data.
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I. INTRODUCTION

Most quantum-Hall (QH) systems created in modern ma-
terials, for instance, graphene and MgZnO/ZnO structures,
are characterized by large Wigner-Seitz parameter rs – ratio
of characteristic Coulomb energy e2/κlB(∼10–20 meV) to
relevant single electron energy h̄ωc. (Here κ , lB, and ωc are the
static dielectric constant, magnetic length and cyclotron fre-
quency, respectively.) The strong Coulomb correlation should
inevitably result in essential “mixing” of different Landau
levels. Such a feature, however, does not smooth out, but
rather strengthens the quantum Hall properties of the system.
Indeed, experimentally, the two-dimensional (2D) electron
plasma in a perpendicular magnetic field in MgZnO/ZnO
heterostructures represents a typical QH system where the
characteristic properties are clearly manifested: for example,
there is a sharp dependence of the magnetotransport on the
value of the ν ∼ 1 filling factors [1]. This means that at least
in the ground state large rs (in MgZnO/ZnO we have typical
range 7< rs < 10) does not result in substantial smearing of
electron density over a large number of Landau levels. An-
other interesting fact is that by now all the theoretical studies
of QH systems have been based on the formal assumption of rs

smallness (see, for instance, Refs. [2,3]), this approach being
often fairly successful. Parameter rs under real experimental
conditions is still of the order of 1 even in GaAs/AlGaAs
quantum wells. However, the theory advances in microscopic
description of QH systems (for example, the very accurate
description given by Laughlin [2] of some fractional QH states
by using a combination of single-electron wave functions
of only the Landau zero level) indicate that the Coulomb
mixing of different Landau levels is often effectively very
small even if rs ∼ 1. Kohn’s theorem [4] also points to some
hidden relationship between the single-particle Landau states
in the magnetic field and the Coulomb interaction, preserving,
in a sense, the hierarchy of Landau levels regardless of the
magnitude of the interaction, i.e., at any rs.

In the present work, we study lowest-energy excitations
in a strongly correlated system as applied to the case of 2D
plasma in a MgZnO/ZnO heterostructure where, certainly,
parameter rs can in no way be considered a small value.

The QH system with filling factor ν = 2 is modeled with
the help of an approach based on experimental data and
some general assumptions. We find that breakdown of the
spin-unpolarized/paramagnet phase and Stoner transition to
the spin-polarized/ferromagnet state takes place due to short-
wave (with wave-length ∼2π lB/1.4) thermal single-spin-flip
fluctuations, when their energy vanishes or in fact becomes
lower than temperature T (�0.5 K). We do not consider back-
ward transition from the ferromagnet to paramagnet phase,
however, in the final part we discuss spin excitations in the
ν = 2 ferromagnet and the probable mechanism of “reverse”
Stoner transition.

Below in our calculations the energy is everywhere mea-
sured in e2/κlB Coulomb units, so the dimensionless cyclotron
and Zeeman gaps are wc = r−1

s = h̄ωc/(e2/κlB) and eZ =
gμBB/(e2/κlB), respectively. The numerical values are

wc = 0.057
√

B and eZ = 0.017
√

B (1)

if B is measured in tesla.

II. FORMALISM OF THE EXCITONIC REPRESENTATION

We present a formalism describing the electron QH system
by using the so-called excitonic representation (for more de-
tails, see Refs. [5,6]). The main idea of the excitonic represen-
tation is to abandon the basis of Fermi one-electron states and
switch to the basis of so-called exciton states that diagonalize
some essential part of the Coulomb interaction. The exciton
states in a purely electronic QH system are generated by
operators originally defined via Dirac electron operators: if
p is the undimensionalized (in 1/lB units) “intrinsic” quantum
number of a continually degenerated Landau level, and ap and
bp are annihilation operators corresponding to binary indexes
a and b [each designates both the Landau level number and the
spin sublevel, a = (na, σa)], then the exciton creation operator
is

Q†
ab q = N−1/2

φ

∑
p

e−iqxp b†
p+ qy

2

ap− qy
2
, (2)

where Nφ is the number of magnetic flux quanta in the
system in question. (Note also that Qab q ≡ Q†

ba−q.) These
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Q-operators have a very important property: when acting on
the state of the QH system, they add value h̄q/lB to total
momentum of the system since there occurs commutator
equality [P̂,Q†

abq] = qQ†
abq [where P̂ describes the dimen-

sionless (with h̄ = lB = 1) “momentum” operator [6]]. In
particular, if |0〉 is the ground state, then the exciton state
Q†

ab q|0〉, if not zero, is the eigenstate of momentum operator P̂
with eigenquantum number q. Thus, exciton states, in contrast
to single electron states, possess a natural quantum number,
namely the 2D momentum whose existence is a consequence
of the translational invariance of the QH system.

The general expression of the total Coulomb Hamiltonian
of the 2D electron system can be presented in terms of the
excitonic Q-operators [5,6]:

ĤCoul =
∑

q,a,b,c,d

F (q)

2q

(
hnanbqδσa,σbQ†

abq

)(
hncnd −qδσc,σdQ†

cd −q

)

−
∑
q,a,b

Fee(q)

2q

∣∣hnanb (q)
∣∣2B†

0. (3)

In this equation, B†
0 is the q = 0 “intra-sublevel” operator:

B†
q ≡ N−1/2

φ Q†
bbq [Bq = B†

−q]; F (q) is the effective form
factor [7]:

F (q)=
∫∫

dz1dz2e−q|z1−z2|/lB |χ (z1)χ (z2)|2, (4)

where χ (z) describes the electron size-quantized function
in the quantum well; the h-functions, the factors at the Q-
operators in Eq. (3), are

hknq =
(

k!

n!

)1/2

e−q2/4(q−)n−kLn−k
k (q2/2) (5)

[q± = ± i√
2
(qx ± iqy), Lk

n is the Laguerre polynomial, and
δ...,... is the Kronecker delta]. They satisfy identity hknq ≡
h∗

nk −q. The one-particle part of the Hamiltonian is presented
by cyclotron and Zeeman terms, which in the excitonic repre-
sentation are

Ĥ (1) = wcNφ

∑
a

(
na + 1

2

)
A0

− 1

2
ezNφ

∑
a

A0
(
δσa,↑ − δσa,↓

)
(6)

(see the definition of operator Bq above; Aq means the b →
a replacement), where we consider that the positive spin is
regarded as in the opposite direction to the magnetic field.

Certainly, the Q-operators (2) do not belong to Bose or
Fermi types; they form a proper Lie algebra with commutation
rules, [

Q†
cd q1

,Q†
abq2

] ≡ N−1/2
φ

(
e−iq1×q2/2δb,cQ†

ad q1+q2

− eiq1×q2/2δa,dQ†
cbq1+q2

)
. (7)

For a fixed pair of different indices (a, b), we have[
Q†

abq1
,Q†

abq2

] = [
Qabq1 ,Qabq2

] ≡ 0

and[
Qabq1 ,Q†

abq2

] = eiq1×q2/2Aq1−q2 − eiq2×q1/2Bq1−q2 , (8)

where a �= b. In addition,

eiq1×q2/2
[
Aq1 ,Q†

abq2

] = −e−iq1×q2/2
[
Bq1 ,Q†

abq2

]
= −N−1

φ Q†
abq2−q1

. (9)

Let |0〉 be the ground state of an integer QH system
where the sublevel a is completely occupied and the sub-
level b is completely empty. Then we have Aq|0〉 = δq,0

and Bq|0〉 ≡ 0, and commutator (8), if averaged over the
ground state, represents a common permutation identity for
Bose states. As a result, exciton states Q†

ab|0〉 obey Bose-
Einstein statistics despite being collective excitations in a QH
fermionic (purely electronic) system. If all Q-excitations were
usual Bose particles, then the first two-operator term of the
Coulomb Hamiltonian (3) would represent a combination of
different components of their density operator, where, after
appropriate diagonalization, an interparticle coupling might
be effectively excluded. Generally, this does not occur: in
particular, the action of the Coulomb operator on a single-
exciton state provides, due to the exact commutation rules (7),
a quantum fluctuation to a double-exciton state, although with
total momentum preserved.

III. THE ONE-EXCITON MODEL USED TO DESCRIBE
EXCITATIONS FROM THE UNPOLARIZED

GROUND STATE

We formulate the properties of the model used for calcu-
lating the spectrum of spin-flip excitations from the ground
state. Recall that we study an ν = 2 spin-unpolarized QH
system. The set of various single-electron states of Landau
levels is quite complete. It is obvious that the Ne-electron
wave function can always be represented as a combination of
Ne-fold products of one-electron functions corresponding to
states of degenerate Landau levels. The simplest way to “ar-
range” Ne = 2Nφ electrons with total spin S = 0 is to model
the ground state |0〉 by a fully occupied zeroth Landau level.
Thus, even taking into account that the electronic functions
of the lowest Landau level should be renormalized due to
the strong Coulomb interaction, we assume that the structure
of the ground state of this Fermi system remains basically
the same as in the absence of an interaction (see the above
discussion concerning the features of quantum Hall systems).

In addition, to support the chosen approach, one can
roughly analyze the situation in which the ground state is
modeled by Landau-level partial fillings νa satisfying the
total condition

∑
a νa = 2, and the occupied p-states on ev-

ery degenerate Landau level are uniformly distributed. Then,
when calculating ground-state energy within the framework
of the Hartree-Fock approach, we come to the following
result: depending on magnetic field, the energy minimum is
always reached at integer partial filling factors, namely either
at ν0 = ν0 = 1 (the unpolarized state) or at ν0 = ν1 = 1 (the
ferromagnet state). [Here and below, we use new notations for
the spin-sublevel indexes: n = (n,↑) and n = (n,↓).]

Excitations from the unpolarized state corresponding to the
S = 1 spin represent a triplet with Sz = −1, 0, 1 where the
spin-components at any fixed q are energetically equidistant
and separated by the Zeeman gap. So, it is sufficient to study
only one lowest component with Sz = 1. It is remarkable
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that the previous calculations performed in terms of the rs

expansion show that the minimum energy of this excitation
is in the vicinity of finite q = q0 � 1 resulting in a gap that
is narrower than the single-electron value h̄ωc − gμBB [3]. In
addition, the gap tends to decrease with the growth of rs (with
magnetic-field weakening).

The energy should be counted from the ground-state level
〈0|H|0〉, where

H = Ĥ (1) + ĤCoul (10)

is the total Hamiltonian. An essential feature of our model
consists in a limitation of the basic set for the S = Sz = 1 ex-
citations: assuming that the excitation with the lowest energy
should be arranged in the simplest way, we will consider it
only within the framework of the one-exciton approach. That is,
as basis states, only single-exciton states Q†

abq|0〉 are used, and

for the spin-flip excitations, a = (0,↓)≡ 0 and b = (n,↑)≡
n with n > 0. Generally, it is a reduced basic set. We ignore,
for example, double-exciton states where the spin-flip mode
occurs along with a magnetoplasma one, namely states of type
Q†

0mq1
Q†

0n q2
|0〉 or Q†

0m q1
Q†

0n q2
|0〉, where m = 1, 2, 3, . . . and

n = 1, 2, 3, . . . .
Another interpretation of our model can be formulated as

follows: in the Hamiltonian H we keep only the exciton-
ically diagonalizable part HED which, acting onto a basis
state Q†

0nq
|0〉, results in a combination of basis one-exciton

states: ∼ ∑
m C(m, q)Q†

0mq
|0〉. (The same spin and momen-

tum quantum numbers are preserved due to the properties
of the total Hamiltonian.) The operator Ĥ (1) and one-exciton
terms (∼ ∑

b · · ·B0) in ĤCoul are definitely included in HED.
The other “nondiagonalizable” members of the Hamilto-
nian Hnon-ED = H − HED, when acting on the basis state,
result, for instance, in two-exciton states (or even three-
exciton ones) with additional magnetoplasma modes. Pro-
jection of these states onto any single spin-flip exciton is
equal to zero due to vanishing three-operator expectation,
〈0|Q0kqQ†

0mq−q′Q†
0nq′ |0〉 ≡ 0, which occurs at any nonzero

numbers n, m and k. At the same time, basically, the energy
of the two-exciton state |m, n, q, q′〉 = Q†

0mq−q′Q†
0nq′ |0〉, if

interexcitonic coupling is neglected, is determined by the
expectation 〈q′, q, n, m|[H,Q†

0mq−q′Q†
0nq′ ]|0〉 (energy is con-

sidered to be counted from the ground-state level), and hence
it is the sum of energies of the spin-flip and magnetoplasma
modes. The previous calculations [3] show that at q ∼ 1 the
energy of the magnetoplasma mode is significantly higher
than that of the spin-flip mode. The reason is related to the
exchange energy arising from the terms of the Hamiltonian
(3), where the electron-“hole” pair constituting the magneto-
plasma exciton annihilates at one point in the K-space and
is simultaneously created at another point. This exchange
contribution is absent in the case of a spin-flip exciton [3].
Thus, there is an argument in favor of the chosen model: the
two-exciton states at q ∼ 1 are energetically distant from the
spin-flip one-exciton states [13].

Before presenting the results of the calculations, one fur-
ther comment should be made on the form factor used. The
latter is found within an approach repeatedly used in previous
works [8,9]. The electron motion in the z-direction is assumed

FIG. 1. Form factor F (q) for different electron densities (see the
text).

to be independent of the magnetic field but governed, except
for the external potential, by the e-e Coulomb interaction.
The single-electron function χ (z) in the expression (4) is
calculated self-consistently and becomes dependent on the
electron density. When the filling factor is fixed, the form
factor turns out to be dependent on the magnetic field not only
artificially (due to the presentation of the wave vector q in
l−1
B units) but parametrically through the dependence of χ on

electron density. It is interesting that both dependencies com-
pensate each other well. The form factors F (q) calculated for
quantum wells [10] for different electron densities, ns = 4.9×
1010(B/T) cm−2, are shown graphically in Fig. 1 as functions
of wave vector q measured in units of appropriate values of
l−1
B = 3.9 × 105√B/T cm−1. These curves are fairly close to

each other, and as a fitting function we use the simple formula
F (q) = (1 + 0.368q)−1 (see the black line in Fig. 1). So, the
Coulomb part of the Hamiltonian, if measured in Coulomb
units, becomes independent of B. The dependence, however,
is present in operator Ĥ (1) [see Eqs. (6) and (1)].

IV. RESULTS

Now we find the matrix elements of the Hamiltonian (10):
Mnm(q) = 〈Q0m|[H,Q†

0n]〉 (m, n = 1, 2, 3, . . . ; the angular
brackets 〈· · · 〉 indicate averaging over the ground state |0〉;
here and elsewhere below, we omit the “q” subscript at Q in
the angular brackets). This calculation is performed with the
help of formulas (3)–(9), and it represents a routine algebraic
manipulation. As a result, in terms of h-functions we obtain
diagonal matrix elements

Mnn(q) = 
n +
∑

q1

F (q1)

q1Nφ

[h00(q1)2 − |h0n(q1)|2

− eiq×q1 h00(q1)hnn(q1)
]
, (11)

where 
n =nwc − eZ. Calculating the nondiagonal elements,
we note that the sum N−1

φ

∑
m′,q [F (q)/q]hnm′ (q)h∗

mm′ (q)
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vanishes if n �= m, and then we obtain

Mnm(q) = −
∑

q1

F (q1)

q1Nφ

h00(q1)hnm(q1) e−iq1×q (12)

(here m �= n). Using Eq. (5) and performing summations,∑
q ... = Nφ

∫ · · · qdqdϕ/2π , we get

Mnn = 
n +
∫ ∞

0
dq1 F (q1)e−q2

1/2

[
1 − 1

n!

(
q2

1

2

)n

− Ln(q2
1/2)J0(q1q)

]
(13)

and

Mn �=m = −im−n

√
n!

m!

∫ ∞

0
dq1 F (q1)e−q2

1/2

×
(

q1√
2

)m−n

Lm−n
n (q2

1/2)Jm−n(q1q), (14)

where Jn(x) is the Bessel function. Within the framework of
our approach, we come to the secular equation∣∣Mnm(q) − E (q)δn,m

∣∣, n, m = 1, 2, 3, . . . . (15)

Taking into account the restricted application of our model,
we will limit ourselves only to considering the lowest-energy
root. Higher spin-flip modes should be rather mixed with
double-exciton states [13], and our approach becomes invalid.
Certainly, when solving the secular equation we have to limit
the order of the determinant (15) by a finite number. The
latter is not a meaningful parameter in the case; we present
calculation for the five-order determinant (nmax = mmax = 5)
noting that even the second-order one actually gives a very
close result for the lowest energy. At the same time, it is
important that the trivial case, when nmax = mmax = 1 (i.e.,
the basic set is reduced to the single state [3,6]), results in an
essentially different spin-flip dispersion curve. In particular,
the spin-flip energy is always positive—the gap does not
vanish at any q.

The spin-flip spectra within the framework of our model
corresponding to different electron densities ns(B) are demon-
strated in Fig. 2. [The dispersion curves are not shown for q <

0.25 since somewhere in this region mixing with two-exciton
modes becomes fairly strong [13] (the exchange energy sep-
arating the spin-flip and magnetoplasma states becomes zero
at zeroth q), and the applicability of the one-exciton model
obviously fails.] Note that at ns = 2.8 × 1011 cm−2 and q ≈
1.4 the spin-flip gap vanishes. This points to Stoner insta-
bility, and the calculation for lower densities/fields becomes
meaningless. Experimentally the Stoner transition to the ferro-
magnet phase is observed at ns ≈ 1.8 × 1011 cm−2 [1,11,12].
The dispersion curve calculated within the approximation of
the single-state basis [actually a graph of the matrix element
M11(q)] is shown in black for ns = 2.8 × 1011 cm−2. Note
that any value of Mnn(q) is always positive, and therefore
an approach that ignores mixing Landau levels forbids the
transition. One can see a clear difference in shape between the
color curves and the black one. Thus, the model used implies
the existence of Stoner instability, and qualitatively correlates
with the experimental data.

FIG. 2. Spectra of spin-flip (solid lines) and magnetoplasma
(dashed lines) modes at densities 2.8 × 1011 cm−2 (in red), 3.6 ×
1011 cm−2 (in green), and 4.5 × 1011 cm−2 (in blue). The black line
shows the result of calculation of M11(q). Inset: the inclination angle
θ = arctan (B‖/B) at which the Stoner transition occurs, as a function
of density ns(B). Black circles represent experimental data [11].

For comparison, we demonstrate the results for the spectra
of the spinless magnetoplasma mode obtained also within
the one-exciton approximation. The calculation is performed
in the same way. The only difference is that now we
use a basic set consisting of spin-symmetric states R†

n q|0〉,
where R†

n q = 2−1/2(Q†
0n q + Q†

0 n q
) with n = 1, 2, 3, . . . [14].

We find the lowest-energy root using an equation similar
to Eq. (15), where now the matrix elements are Mmp

nm =
〈Rm q[H,R†

n q]〉 ≡ Mnm if n �= m [see Eqs. (12) and (14)], or
in the n = m case,

Mmp
nn = nwc +

∑
q1

F (q1)

q1Nφ

[h00(q1)2 − |h0n(q1)|2

− eiq×q1 h00(q1)hnn(q1)] + 2F (q)|h0n(q)|2/q,

(16)

which is specifically rewritten as

Mmp
nn = nwc +

∫ ∞

0
dq1F (q1)e−q2

1/2

[
1 − 1

n!
(
q2

1

2
)n

− Ln
(
q2

1/2
)
J0(qq1)

]
+ (q2n−1/2 n−1)F (q)e−q2/2,

takes the form convenient for numerical calculations. These
Mmp

nn and Mmp
nm expressions have to be substituted in Eq. (15)

instead of Mnn and Mnm. The result is also demonstrated in
Fig. 2. Note that the last term in Eq. (16) (vanishing if q → 0)
is precisely the term responsible for the exchange gap between
the spin-flip and magnetoplasma spectra. In addition, there
is a q-independent shift nwc− 
n =eZ. At the same time, in
accordance with the Kohn theorem [4], there is no Coulomb
contribution to magnetoplasma energy at q = 0.

The Stoner transition from the spin-unpolarized to the
ferromagnetic state may also be provoked by an artificial
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increase in the Zeeman energy. This occurs when the magnetic
field B‖ parallel to the (x, y) plane is applied to the system
in addition to the fixed perpendicular field B. By ignoring
any change of form factor F (q) related to the appearance
of the B‖ component [15], the recalculation of the spin-flip
and magnetoplasma energies reduces simply to the eZ →
eZ/ cos θ replacement, where θ is the inclination angle of the

total field
√

B2 + B2
‖ relative to the ẑ direction. Within the

relevant range of electron densities ns >2.8 × 1011 cm−2, one
can find angle θ as a function of ns (or of B) corresponding to
the vanishing spin-flip gap. See the inset in Fig. 2.

V. FERROMAGNET GROUND STATE: DISCUSSION

In accordance with ideas that are similar to those used
in the above approach, we model a ferromagnetic ground
state considering completely occupied (0,↑) and (1,↑) sub-
levels, and we study spin excitations from this state with the
help of one-exciton basis states Q†

0nq|0〉 and Q†
1nq|0〉 (n =

0, 1, 2, . . . ). The energy of single spin-flip excitations corre-
sponding to the δS = δSz = −1 change of the spin numbers is
found from the secular equation where the diagonal elements
are

M(0)
nn = 〈Q0n[H,Q†

0n]〉

= 
ferr
n +

∑
q1

F (q1)

q1Nφ

[|h00(q1)|2

+ |h01(q1)|2 − eiq×q1 h00(q1)hnn(q1)]

(
ferr
n = eZ + nwc) and

M(1)
nn = 〈Q1n[H,Q†

1n]〉

= 
ferr
n−1 +

∑
q1

F (q1)

q1Nφ

[|h11(q1)|2

+ |h01(q1)|2 − eiq×q1 h11(q1)hnn(q1)]

and the nondiagonal elements with m �= n are

M(0)
nm = 〈Q0mHQ†

0n〉

= −
∑

q1

F (q1)

q1Nφ

h00(q1)hnm(−q1)eiq1×q

and

M(1)
nm = 〈Q1mHQ†

1n〉

= −
∑

q1

F (q1)

q1Nφ

h11(q1)hnm(−q1)eiq1×q.

In addition, there are nondiagonal elements for which the m =
n case is valid:

M(01)
nm = 〈Q0mHQ†

1n〉

= −
∑

q1

F (q1)

q1Nφ

h01(q1)hnm(−q1)eiq1×q.

FIG. 3. Spin-flip spectra in the ferromagnet state (see the text).

Naturally, M(10)
nm = 〈Q1mHQ†

0n〉 ≡ M(01)
mn

∗. For the case of
the 6 × 6 determinant of the secular equation (for n, m
running over 0,1,2), two lowest energy-dispersion curves are
shown in Fig. 3. It is convenient to identify these modes
considering the q → 0 limit. In our approach, the soft-
est one (see the red line) is a spin wave

∑
nQ

†
nn 0|0〉, i.e.,

(Q†
00 0

+ Q†
11 0

)|0〉. In the long-wave limit, its energy is equal
to the Zeeman gap. The blue curve corresponds to the spin-flip
mode presented in the q = 0 case by the Q†

10q
|0〉|q→0 state and

energetically shifted by −wc + 1
4

∫ ∞
0 F (p)e−p2/2 p4d p from

the Zeeman level. One has to take into account that this
calculation performed within the framework of our model
is quite conventional—this mode should be significantly
mixed with two-exciton states, for instance with (Q†

00 q′ +
Q†

11q′ )Q†
12−q′ |0〉.

The energy-dispersion curves of the two lowest modes are
monotonically dependent on q. This is shown in Fig. 3 for two
electron concentrations, but the picture remains qualitatively
the same throughout the range of parameters ns/B relevant
for the experimental study. The corresponding gaps definitely
show no tendency to vanish at any q. So, the studied single
spin-flip excitations are obviously irrelevant to the Stoner
transition. However, the ν = 1 QH ferromagnet is known
to be very sensitive to the formation of massive spin flip.
For instance, skyrmion-antiskyrmion pairs for which the gap
is significantly reduced with increasing parameter rs and
becomes experimentally much lower than the characteristic
Coulomb energy [16]. It would be natural to assume that
the “reverse” Stoner transition from the ν =2 ferromagnetic
phase to the paramagnetic one is associated with long-wave
spatial fluctuations of the spin and charge densities. Due to
the large value of rs, the formation of such massive spin-
flip fluctuations, presumably destroying the ferromagnet state,
must occur with the participation of several Landau levels.
The study of this transition was not the purpose of this work,
but it could be the subject of future research.
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So, using the excitonic representation, we have considered
a one-exciton model for spin-flip excitations in the ν = 2
QH system that is able to describe Stoner transition from the
paramagnetic to the ferromagnetic phase. Our results are in
qualitative agreement with the experimental data [11]. The
quantitative discrepancy is not crucial and may be due not so
much to the unsuitability of the model used but to the primitive
estimation of form factor F (q).
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