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Manifestations of classical size effect and electronic viscosity in the magnetoresistance of narrow
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We develop a classical kinetic theory of magnetotransport of 2D electrons in narrow channels with partly
diffusive boundary scattering and apply it to the description of magnetoresistance measured in the temperature
interval 4.2–30 K in long mesoscopic bars fabricated from high-purity GaAs quantum well structures. Both
experiment and theory demonstrate a number of characteristic features in the longitudinal and Hall resistances
caused by the size effect in two dimensions owing to the high ballisticity of the transport. In addition to the
features described previously, we also reveal a change in the slope of the first derivative of magnetoresistance
when the cyclotron orbit diameter equals to half of the channel width. These features are suppressed with
increasing temperature as a result of the electronic viscosity due to electron-electron interaction. By comparing
theory and experiment, we determine the characteristic time of relaxation of angular distribution of electrons
caused by electron-electron scattering.
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I. INTRODUCTION

In past years, numerous experimental and theoretical stud-
ies have revealed interesting effects in transport of two-
dimensional (2D) electron systems under conditions when
electron movement is affected by internal friction due to
interaction between the particles and resembles the dynamics
of viscous fluids [1–28]. Such effects become important even
in the linear transport, provided that the electron system is
spatially inhomogeneous and electron-electron interaction is
sufficiently strong. The hydrodynamic transport regime can
be detected, in particular, in narrow conducting channels (2D
wires), when the mean free path of electrons with respect to
momentum changing scattering by impurities and phonons,
l1, is larger than the channel width L, while the mean free
path with respect to momentum conserving electron-electron
scattering, le, is much smaller than both l1 and L. Due to
the dominance of electron-electron scattering over the other
scattering processes, the standard Drude picture of transport
becomes invalid. As it was found in the pioneering theoretical
study by Gurzhi [1], in these conditions the ohmic resistivity
should decrease with increasing temperature T in a certain
interval of T and depend on the channel width. In 2D systems,
a temperature-induced decrease of resistivity, attributed to the
Gurzhi effect, was observed under conditions when electrons
were heated by the current [2] and in a special (H-shaped)
bar geometry [21]. More manifestations of electron viscosity
in narrow 2D channels can be found in the presence of a
transverse magnetic field B.

The features of narrow channel resistance associated with
hydrodynamic transport are easier to observe in the systems
with a large mean free path l1, such as graphene and high-

purity GaAs quantum wells with large electron densities ns ∼
1012 cm−2, though in both cases one requires elevated electron
temperatures T ∼ 100 K to enable strong electron-electron
scattering. At lower temperatures, the transport regime is in-
termediate between hydrodynamic and quasiballistic regimes.
A purely hydrodynamic approach to transport, implying a
solution of the linearized Navier-Stokes equation with bound-
ary conditions for electron current or drift velocity [10],
is insufficient in this case. Thus, a description of transport
properties should be based on a more detailed approach
assuming solution of the Boltzmann kinetic equation com-
plemented with the boundary conditions for the electron
distribution function. The kinetic equation approach is valid
for an arbitrary hierarchy of the characteristic lengths le, l1,
and L, so the standard diffusive (Drude), ballistic (Knudsen),
and hydrodynamic (Poiseuille) transport regimes follow as
limiting cases of the general description. With a simplifying
relaxation-time approximation for the electron-electron colli-
sion integral, the kinetic equation is reduced to a differential
equation and allows for either analytical or numerical solution
[2,3,14,17,19,24–26,28]. In the presence of a magnetic field,
however, the problem still remains complicated, as the kinetic
equation is a partial differential equation involving the deriva-
tives over both spatial coordinates and electron momentum.
This problem has been recently solved in the geometry of
an infinitely long 2D channel, when the distribution function
depends only on one spatial coordinate. A numerical solution
has been obtained by using the method of characteristics
together with the boundary conditions for fully diffusive
scattering on the edges (boundaries) [14]. An approximate
perturbative solution with similar boundary conditions has
been found for the case of small magnetic fields [24,25]. A
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numerical solution by the method of characteristics has also
been obtained for a more realistic case of partly diffusive
scattering at the edges [28]. However, the boundary conditions
proposed in Ref. [28] are not justified from a microscopic
consideration of electron scattering at the edge and do not
guarantee the necessary requirement of zero flux of electrons
through the edge.

In this paper, we further develop the theory of magneto-
transport in narrow conducting channels by applying reliable
boundary conditions for the solution of the kinetic equation.
Then we carry out a detailed comparison of the results of
theoretical calculations with experimental magnetotransport
data, which has not been done in previous works. Such a
comparison allows us to investigate both the classical size
effect and the influence of viscosity on magnetotransport
properties in a wide temperature range on an equal footing.
This leads us to a deeper understanding of the roles of bound-
ary scattering and electron-electron interaction in transport of
bounded 2D fermion systems and provides an estimate for
electron-electron scattering time characterizing momentum
relaxation of electron distribution.

The paper is organized as follows. In Sec. II we describe
the theoretical model and present some results of its ap-
plication. Section III contains description of measurements,
presentation of experimental and theoretical results, and their
comparison and discussion. More discussion and concluding
remarks are given in the last section. The Appendix provides
the details of the solution of the kinetic equation by the
method of characteristics.

II. THEORY

The classical kinetic equation for the distribution function
fp(r) in the electric field E(r) = −∇�(r) (� is the electro-
static potential) and homogeneous magnetic field B directed
perpendicular to the 2D plane is

v · ∇ fp(r) +
(

eE(r) + e

c
[v × B]

)
· ∂

∂p
fp(r) = Jp(r), (1)

where r = (x, y) and p are the coordinate and momentum
of electrons, e is the electron charge, and c is the light
velocity. For electrons with isotropic and parabolic spectrum,
the velocity is given by v = p/m, where m is the effective
mass. The right-hand side of Eq. (1) contains the collision
integrals specified below. Instead of two components of p, it
is convenient to use energy and angle variables according to
p = mvε(cos ϕ, sin ϕ) so that fp(r) ≡ fεϕ (r), where ϕ is the
angle between the x axis and the direction of momentum.

Assume that there is a boundary y = y0 and electrons
occupy the region above the boundary, y > y0. If boundary
scattering of electrons is elastic and not influenced by the
magnetic field, the most general boundary condition for the
distribution function fεϕ (r) at the boundary r = (x, y0) takes
the form

fεϕ = rεϕ fε2π−ϕ +
∫ π

0

dϕ′

π
sin ϕ′Pε(ϕ, ϕ′) fε2π−ϕ′ ,

rεϕ = 1 −
∫ π

0

dϕ′

π
sin ϕ′Pε(ϕ, ϕ′), ϕ ∈ [0, π ]. (2)

The left-hand side of this equation presents the distribution
function of reflected electrons, for which ϕ ∈ [0, π ]. The
right-hand side is expressed through the distribution function
of incident electrons, part of which is reflected specularly.
The probability of specular scattering is characterized by the
reflection coefficient rεϕ . The function Pε(ϕ, ϕ′) is determined
by the properties of boundary scattering. It is symmetric with
respect to permutation of variables, Pε(ϕ, ϕ′) = Pε(ϕ′, ϕ), and
goes to zero at ϕ = 0 and ϕ = π because the boundary
does not affect the electrons moving parallel to it. Equation
(2) can be obtained by a direct adoption of the boundary
conditions derived for three-dimensional electrons [29–31] to
the case of 2D electrons. This equation automatically guaran-
tees zero particle flux through the boundary,

∫ 2π

0 dϕvy fεϕ =
vε

∫ π

0 dϕ sin ϕ( fεϕ − fε2π−ϕ ) = 0. Under certain conditions,
the symmetry of the distribution function makes the integral
term in Eq. (2) equal to zero, and the boundary condition
takes a simple form, fεϕ = rεϕ fε2π−ϕ , similar to that proposed
by Fuchs [32]. Such a case is realized, for example, in the
geometry of a long and narrow channel at zero magnetic
field [2,29]. The case of fully specular boundary scattering
corresponds to Pε(ϕ, ϕ′) = 0 so that rεϕ = 1. A fully diffusive
boundary scattering means rεϕ = 0 (except for the angles ϕ =
0 and ϕ = π ) and Eq. (2) takes the form [33]

fεϕ = 1

2

∫ π

0
dϕ′ sin ϕ′ fε2π−ϕ′ , 0 < ϕ < π. (3)

The function Pε(ϕ, ϕ′) can be representable as a product
of two functions of ϕ and ϕ′, so the kernel in Eq. (2) is
degenerate. Physically, this case corresponds to uncorrelated
boundary scattering, when the scattering probability does not
depend on the difference between the momenta of incoming
and reflected particles. The boundary condition then can be
written in terms of the reflection coefficient rεϕ only:

fεϕ = rεϕ fε2π−ϕ + (1 − rεϕ )M, ϕ ∈ [0, π ], (4)

where M is a constant,

M = 1

N

∫ π

0
dϕ sin ϕ(1 − rεϕ ) fε2π−ϕ,

N =
∫ π

0
dϕ sin ϕ(1 − rεϕ ). (5)

Naturally, the limiting transition rεϕ → 0 transforms Eq. (4)
into Eq. (3). The boundary condition Eq. (4) will be applied
below in the calculations.

In this paper, we consider infinitely long 2D channels of
width L (0 < y < L, −∞ < x < ∞), Fig. 1. Such a model
can be applied to samples whose length is much larger than
their width. In these conditions, the electron system is homo-
geneous along the x direction so that the distribution function
depends only on the y coordinate, and the electrostatic poten-
tial is representable in the form �(r) = −Ex + �(y), where
E ≡ Ex is a homogeneous electric field. Considering the linear
response problem, it is convenient to write the distribution
function as

fεϕ (r) = fε − ∂ fε
∂ε

[gεϕ (y) − e�(y)], (6)
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FIG. 1. Illustration of electron motion in the 2D channel. The
diffusive boundary scattering of electrons increases the resistance.
A deflection of ballistic electron paths (dashed lines) by magnetic
field decreases the probability of boundary scattering. At Rc < L/2,
some electrons are moving in cyclotron orbits and do not hit the
boundaries. At Rc < L/4, all the electrons whose ballistic paths
pass through the region 2Rc < y < L − 2Rc (shaded) do not hit the
boundaries.

where fε is the equilibrium Fermi distribution and gεϕ de-
scribes a small nonequilibrium part of the distribution func-
tion. Substituting Eq. (6) into Eq. (1), one gets the linearized
kinetic equation for gεϕ :[

sin ϕ
∂

∂y
gεϕ (y) + R−1

cε

∂

∂ϕ
gεϕ (y) − eE cos ϕ

]

×
(

∂ fε
∂ε

)
+ Jεϕ (y)

vε

= 0, (7)

where Rcε is the classical cyclotron radius for an electron with
energy ε and

Jεϕ (y) = −∂ fε
∂ε

[
Jim
εϕ (y) + J ph

εϕ (y) + Jee
εϕ (y)

]
is the linearized collision integral describing interaction of
electrons with impurities (im) and phonons (ph) as well as
electron-electron (ee) interaction. In the transformations, we
have used the equality Ey(r) = −∂�(y)/∂y and divided the
kinetic equation by the velocity vε. It is easy to observe that
gεϕ is governed by the same boundary condition, Eq. (4),
since any angular-independent part of fεϕ (r) satisfies Eq. (4)
automatically.

Further, we consider the case of degenerate electron gas,
which means that the factor −(∂ fε/∂ε) in Eq. (7) represents
a narrow peak around the Fermi energy εF . Assuming that
scattering times in the bulk and the boundary reflection coeffi-
cients do not change appreciably within the temperature-size
energy interval around εF , one can replace −(∂ fε/∂ε) by the
delta function δ(ε − εF ) and integrate Eq. (7) over energy,
which is equivalent to substitution of ε by εF , so the energy
index below will be omitted. The relative corrections to the
resistance caused by the thermal broadening of the Fermi
distribution are of the order (T/εF )2 and, therefore, are not
significant. The electron-electron part of the linearized colli-
sion integral is written in the relaxation-time approximation
[2,3,14,17,19,28]:

Jee
ϕ (y) = −gϕ (y) − g0(y) − g1(y) cos ϕ − g̃1(y) sin ϕ

τe
, (8)

where τe is the effective electron-electron scattering time, and

g0 = gϕ, g1 = 2gϕ cos ϕ, g̃1 = 2gϕ sin ϕ. (9)

Here, Fϕ ≡ (2π )−1
∫ 2π

0 dϕFϕ denotes angular averaging. The
quantities g1(y) and g̃1(y) are proportional to local electric
currents along x and y directions. Note, however, that in the
geometry under consideration the current flows only in the x
direction, because only in this case the requirement of zero
flux through the boundary is compatible with the continuity
equation, so g̃1(y) = 0. A similar relaxation-time approxima-
tion is applied for the momentum changing (electron-impurity
and electron-phonon) parts of the collision integral:

Jim
ϕ (y) + J ph

ϕ (y) = −gϕ (y) − g0(y)

τtr
, (10)

where τtr is the transport time. The times τtr and τe char-
acterize relaxation of nonequilibrium distribution over the
angle of electron momentum. As follows from Eqs. (8) and
(10), τtr describes relaxation of all angular harmonics of
the distribution function except the zero one (g0), while τe

describes relaxation of all angular harmonics except the zero
and the first ones. Though the introduction of the unified times
for all harmonics is a crude approximation, it enormously
simplifies solution of the kinetic equation.

Combining Eqs. (7), (8), and (10), we introduce charac-
teristic mean free path lengths l1 = vτtr , le = vτe, and l =
(1/l1 + 1/le)−1 and write the linearized kinetic equation in the
form [

sin ϕ
∂

∂y
+ R−1

c

∂

∂ϕ
+ 1

l

]
gϕ (y)

= g0(y)

l
+ g1(y) cos ϕ

le
+ eE cos ϕ ≡ Fϕ (y). (11)

This partial differential equation describes the distribution
function in the channel 0 < y < L with the boundary condi-
tions [see Eq. (4)] written below for ϕ ∈ [0, π ]:

gϕ (0) = r0
ϕg2π−ϕ (0) + (

1 − r0
ϕ

)
M0, (12)

g2π−ϕ (L) = rL
ϕgϕ (L) + (

1 − rL
ϕ

)
ML. (13)

The two boundaries, in general, can be different, so they are
characterized by different reflection coefficients, r0

ϕ for y = 0
and rL

ϕ for y = L. The constants in Eqs. (12) and (13) are

M0 = 1

N0

∫ π

0
dϕ sin ϕ

(
1 − r0

ϕ

)
g2π−ϕ (0),

ML = 1

NL

∫ π

0
dϕ sin ϕ

(
1 − rL

ϕ

)
gϕ (L),

N0,L =
∫ π

0
dϕ sin ϕ

(
1 − r0,L

ϕ

)
. (14)

The cyclotron radius at the Fermi level is determined by the
magnetic field and electron density ns, since Rc = 	2kF , where
	 = √

h̄c/|e|B is the magnetic length, kF = √
4πns/g is the

Fermi wave number, and g is the band degeneracy factor
(g = 2 for GaAs quantum wells). Thus, Eqs. (11)–(14) do not
contain parameters related to band dispersion and can be ap-
plied to any kind of fermion, including electrons in graphene
(where g = 4 due to both spin and valley degeneracy).

The problem described by Eqs. (11)–(14) is solved by the
method of characteristics as described in the Appendix. Such
a solution allows us to reduce the problem to a pair of coupled
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Fredholm integral equations for the functions of one variable,
g0(y) and g1(y):

g0(y) = eEL0(y) + 1

l

∫ L

0
dy′K00(y, y′)g0(y′)

+ 1

le

∫ L

0
dy′K01(y, y′)g1(y′), (15)

g1(y) = eEL1(y) + 1

l

∫ L

0
dy′K10(y, y′)g0(y′)

+ 1

le

∫ L

0
dy′K11(y, y′)g1(y′), (16)

where the four kernels Knn′ and the functions Ln are given
in the Appendix. If electron-electron interaction is neglected,
le → ∞, the terms with K01 and K11 disappear, and the
first equation decouples from the second one. In this limit,
the theory describes a classical size effect without viscosity
corrections. In the limit B = 0, the terms with K01, K10, and
L0 disappear so that g0(y) = 0 and only one integral equation
remains:

g1(y) = eEL1(y) + 1

le

∫ L

0
dy′K11(y, y′)g1(y′). (17)

This equation is identical to the one derived in Ref. [2], see
the Appendix for details. It describes effects of viscosity on
the transport at zero magnetic field.

A numerical solution of Eqs. (15) and (16) determines
g0(y) and g1(y) as a response to the electric field E . Such a
solution is obtained by a direct application of linear algebra
(200-point discretization of the variable y/L is sufficient in
most cases). A solution by the method of iterations gives
the same output. To control the accuracy of the procedure,
the quantity g̃1(y) = 2gϕ (y) sin ϕ, which is proportional to
the current along the y axis and must be zero, is calculated
simultaneously. At the edges y = 0 and y = L, g̃1(y) is exactly
zero, as dictated by the boundary conditions, while in the bulk
it is finite because of computational errors but always stays
several orders of magnitude smaller than g1(y).

The quantity g1(y), as already noted, describes spatial
distribution of electric current density j(y). On the other hand,
the quantity g0(y) describes spatial distribution of the electro-
chemical potential, i.e., the local voltage V (y). To show this,
we note that the latter is defined as V (y) = �(y) + δμ(y)/e,
where δμ is the nonequilibrium part of the local chemical
potential. By definition, δμ(y) = δns(y)/ρ2D, where δns is
the nonequilibrium part of local electron density and ρ2D =
m/π h̄2 is the density of states for 2D electrons. Thus, δμ(y) =∫

dε( fεϕ (y) − fε ) 
 g0(y) − e�(y), according to Eq. (6). In
summary,

j(y) = emvg1(y)/2π h̄2, V (y) = g0(y)/e. (18)

These two variables is all we need to find both the longitudinal
and the Hall resistance. Though the presence of electric field E
along the channel induces y-dependent electrostatic potential
�(y) and the nonequilibrium part of electron density δns(y),
which can be determined by involving the Poisson’s equation,
we do not need them for description of the resistance within
the approximations used: the classical transport regime, the

FIG. 2. Distribution of the Hall field dV (y)/dy (a) and current
density (b) at l1/L = 3 for several values of magnetic field, Rc/L =
0.6 (1), 0.3 (2), 0.25 (3), 0.15 (4), in the absence of electron-electron
scattering. The current density is expressed in units of the bulk
current density j0. Sharp features of the distributions associated with
ballistic transport appear at y = 2Rc and y = L − 2Rc. The bold lines
show the case of fully diffusive boundary scattering, r0

ϕ = rL
ϕ = 0,

while the thin lines correspond to weakly diffusive boundaries, r0
ϕ =

rL
ϕ = exp(−α sin2 ϕ) with α = 1.

linear response regime, and the case of degenerate electron
gas.

In the homogeneous case (far away from the boundaries of
a wide sample), the solutions of Eqs. (15) and (16) are g1(y) =
eEl1 and g0(y) = C + eEl1y/Rc (here C is a constant), cor-
responding to the bulk Drude conductivity and constant Hall
electric field (see the final part of the Appendix for details).

The examples of calculation of the current and Hall voltage
distributions across the 2D channels with a high ballisticity,
l1/L = 3, are shown in Figs. 2 and 3. Instead of V (y), its
derivative (Hall field) is plotted in order to emphasize sharp
features of the distributions appearing at 2Rc < L [28]. These
features are associated with ballistic motion of electrons
in cyclotron orbits. They become weaker with increasing
specularity of the boundary scattering and tend to disappear
when electron-electron interaction becomes strong so that the
transport enters the hydrodynamic regime [28]. As shown in
Fig. 3, the distributions approach the ones calculated in the
hydrodynamic approximation [10]:

j(y) = j0{1 − λ cosh[κ (y − L/2)]},
dV (y)

dy
= El1

Rc
{1 − (1 + 2l/l1)λ cosh[κ (y − L/2)]},

κ = 2

√
1 + (2l/Rc)2

ll1
, λ = 1

cosh κL
2 + κls sinh κL

2

,

(19)

where j0 is the bulk current density and ls is the slip length
entering the boundary conditions j(y) = ±ls∂ j(y)/∂y at y =
0 and y = L. The distributions become closer to the hydrody-
namic ones as the magnetic field increases. However, near the
boundaries the Hall field is still considerably different from
that following from the hydrodynamic theory.
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FIG. 3. Distribution of the Hall field dV (y)/dy (a) and current
density (b) at l1/L = 3 for several values of magnetic field, Rc/L =
0.6 (1), 0.3 (2), 0.25 (3), 0.15 (4), when the electron-electron scatter-
ing is strong, l1/le = 10. The solid lines correspond to calculations
for fully diffusive boundary scattering. The dashed lines show the
result of application of hydrodynamic approximation under the “no-
slip” boundary condition, j(0) = j(L) = 0 (ls = 0), see Eq. (19).
The sharp features of the distributions are suppressed by the viscosity
effect.

When the current and the voltage distributions are found,
one can determine the total current I = ∫ L

0 dy j(y) and the
Hall voltage VH = V (L) − V (0) as linear functions of the
electric field E and to find the longitudinal resistance Rxx and
the Hall resistance Rxy. A comparison of the results of such
calculations to experimental data is described in the next sec-
tion. In Figs. 4–7, we present some results demonstrating the
general features of the behavior of Rxx and �Rxy = Rxy − R(0)

xy ,
expressed in units of classical bulk resistances R0 and R(0)

xy =
B/|e|cns. The magnetic field B is expressed through the ratio
L/Rc ∝ B. We consider the dependence of magnetoresistance
on the boundary reflection properties, ballisticity ratio l1/L,

FIG. 4. Longitudinal (a) and Hall (b) resistance at l1/L =
3 for angular-dependent boundary reflection coefficient rϕ =
exp(−α sin2 ϕ) with α = ∞ (fully diffusive, 1), α = 3 (2), α = 1
(3), and α = 0.5 (4). Bold lines: l1/le = 0 (no electron-electron
scattering), thin lines (plotted for 1 and 2 only): l1/le = 10.

FIG. 5. The same as in Fig. 4 for constant (angular-independent)
boundary reflection coefficient rϕ = r with r = 0 (fully diffusive, 1),
r = 0.2 (2), r = 0.4 (3), and r = 0.8 (4).

and relative strength of electron-electron scattering l1/le. The
boundaries are assumed to be equivalent, r0

ϕ = rL
ϕ ≡ rϕ .

The basic features of the plots are the manifestations of
the classical size effect due to quasiballistic propagation of
2D electrons in the channel in the presence of a magnetic
field. They include peaks of both Rxx and −�Rxy/R(0)

xy , whose
maxima are placed at finite magnetic fields, and a sharp
decrease of the magnetoresistance slope when the cyclotron
diameter 2Rc becomes smaller than L. The behavior of Rxx

was initially described for three-dimensional thin films [34]
and also observed in submicron-wide 2D channels [35], while
the behavior of Rxy was described recently within the model
of fully diffusive boundary scattering [14]. At small B, the
resistance increases because the magnetic field deflects the
electrons which move at sliding angles (ϕ close to 0 or π )
and provide a significant contribution to the current. A further
increase of B, on the contrary, decreases the probability of
electron collisions with the boundaries, thereby leading to a
rapid decrease of the resistance. When 2Rc becomes smaller
than L, there appear electrons which do not collide with
boundaries during their cyclotron motion, while the electrons
scattered by one boundary cannot reach the other one unless
they are scattered in the bulk. As a result, the decrease of the
resistance with B slows down considerably.

Figures 4 and 5 correspond to two different models of
boundary reflection. They show a decrease of the resistance
peaks as the specularity increases. The model of angular-
dependent boundary reflection, rϕ = exp(−α sin2 ϕ) [29],
gives deeper local minima of both Rxx and −�Rxy/R(0)

xy at B =
0 because it provides larger probabilities of specular scattering
at sliding angles. In the model of angular-independent reflec-
tion, the Hall resistance at 2Rc > L is almost insensitive to r
in the region r < 0.5, if electron-electron scattering is absent.
Figure 6 demonstrates a rapid decrease of the resistance peaks
when the ballisticity ratio l1/L goes down. The increasing
specularity and decreasing ballisticity suppress the peaks but
do not lead to broadening of these peaks and do not remove
the local minimum at B = 0. On the other hand, the increase
in electron-electron scattering probability, which takes place
with increasing temperature, not only decreases the height of
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FIG. 6. Longitudinal (a) and Hall (b) resistance for the case of
angular-dependent boundary reflection with α = 3: l1/L = 6 (1), 3
(2), 1 (3), and 0.5 (4). Bold lines: l1/le = 0 (no electron-electron
scattering), thin lines (plotted for 1 and 2 only): l1/le = 10.

the peaks, but also considerably increases the peak width and
leads to a weakening and eventual disappearance of the local
minimum at B = 0. Notice also that the peak of −�Rxy/R(0)

xy is
suppressed more rapidly than the peak of Rxx. This influence
is shown in detail in Fig. 7, which also demonstrates a
nonmonotonic dependence of zero-B longitudinal resistance
on l1/le. As the electron-electron scattering increases, the
electron system shifts towards the hydrodynamic regime,
when the Gurzhi effect [1] is possible at B = 0 and the
dependence of Rxx on B correlates with the corresponding
dependence of the kinematic viscosity [10]. Thus, one can
say that the modifications of the resistance shown in Fig. 7
are manifestations of viscosity effects; see also similar results
[14] obtained within the model of fully diffusive boundary
scattering. Our experimental data are in a good agreement
with the behavior discussed above, as presented in more detail
in the following section.

FIG. 7. Longitudinal (a) and Hall (b) resistance at l1/L = 3, for
angular-dependent boundary reflection with α = 3: l1/le = 0 (1), 1
(2), 3 (3), 6 (4), and 12 (5). The inset shows the resistance at B = 0
vs l1/le for angular-dependent boundary reflection with α = 3 (solid)
and for angular-independent boundary reflection with r = 0.4 (dash).

FIG. 8. Experimental (points) and calculated (lines) longitudinal
resistance in the 5-μm-wide mesoscopic Hall bar (see the parameters
in the text), measured between contacts 4 and 5 at different tempera-
tures T = 4.2, 11.3, 16.6, 22.9, and 27.9 K. Results of calculations in
the parts (a) and (b) correspond to two different models of boundary
reflection, rϕ = r = 0.35 and rϕ = exp(−α sin2 ϕ) with α = 3.

III. COMPARISON OF THEORY WITH EXPERIMENT

We have investigated several samples in the form of long
mesoscopic Hall bars of several micron widths with eight
symmetrically placed voltage probes (see the inset in Fig.
8). The samples were fabricated from high-quality GaAs
quantum wells with a width of 14 nm. The measurements were
carried out in a VTI cryostat, using a conventional lock-in
technique to measure the resistances with a sufficiently low ac
current of 0.1–1.0 μA passed through contacts 1 and 6. Figure
8 shows a series of plots of longitudinal resistance versus
magnetic field B in the region of small B, where classical
magnetotransport is expected. The resistance is measured
between contacts 4 and 5 (the distance between the centers
of the corresponding side arms of the Hall bar is 9 μm, the
width of the side arms is 3 μm at the entry to the channel) in
the sample with the channel width L = 5 μm, electron density
ns = 6.6 × 1011 cm−2, and mobility 2.1 × 106 cm2/V s at
T = 4.2 K. The density remains constant in the range of tem-
peratures studied, and the corresponding Fermi energy, wave
number, and velocity are 23.6 meV, 0.20 nm−1, and 3.52 ×
107 cm/s. The temperature dependence of resistance at B = 0
in macroscopic 2D samples (before shaping the mesoscopic
Hall bars) was linear, R ∝ 1 + βT , with β 
 0.09 K−1 above
4.2 K, due to the contribution of electron-phonon scattering
into the transport. For these parameters, a high ballisticity is
achieved, when the mean free path l1 is larger than L even at
T 
 30 K. Figure 9 shows the temperature dependence of l1
for this sample and also for another sample described below.

All the experimental plots show characteristic peaks in the
region of small B. An abrupt decrease of the peak slope at low
temperatures occurs near B 
 0.05 T, which corresponds to
2Rc = L (B = 0.053 T). With increasing T , the relative height
of the peak becomes smaller and the peak width increases.
The maximum of the peak is placed at B 
 0.02 T. The local
minimum at B = 0 tends to disappear at high temperatures.
The observed weakening of the local minimum at B = 0, the
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FIG. 9. Dependence of characteristic lengths l1 and le (a) and
of the ratios l1/L and l1/le (b) on temperature for the samples
with L = 5 μm (bold lines) and L = 6 μm (thin lines). The length
l1 is extracted from the experimental dependence of bulk zero-B
resistance on temperature, while the length le is evaluated according
to Eq. (20) (solid and dashed lines correspond to A = 5 and A = 6,
respectively).

decrease of the relative height of the peak, and the increase
of the peak width with increasing T cannot be explained
solely by a decrease of the transport mean free path length
l1 with increasing T . The contribution of electron-electron
scattering turns out to be crucially important for description
of the experiment.

Figure 8 also shows the results of calculations based on the
parameters (L, ns, mobility, aspect ratio, and coefficient β)
of the sample described above. The boundaries are assumed
to be equivalent, r0

ϕ = rL
ϕ ≡ rϕ . The plots in Figs. 8(a) and

8(b) differ only by the model of boundary reflection. We
have applied the models of a constant reflection coefficient
rϕ = r (a) and the angular-dependent one, in the form rϕ =
exp(−α sin2 ϕ) (b). The values of r and α have been con-
sidered as fitting parameters. The temperature dependence
of the effective time of electron-electron scattering has been
described by the formula

τe = A
h̄εF

T 2
. (20)

We emphasize that τe, according to its introduction in Eq. (8),
is the time of relaxation of electron distribution over the angles
of electron momentum, and it is different from the quantum
lifetime of electrons with respect to electron-electron scatter-
ing, though follows the same T −2 dependence. The numerical
constant A is treated as another fitting parameter. The two
fitting parameters, r and A (or α and A), have been varied to
describe the heights and the shapes of the magnetoresistance
peaks for the entire family of magnetoresistance curves plot-
ted at different temperatures. The aspect ratio Lx/L, which is
a constant scaling factor for all Rxx plots, was also adjusted
by varying the effective distance Lx between the side arms of
the Hall bar within the interval of the width of these arms, with
the best fit for Lx = 7.5 μm. Since the magnetoresistance peak
width is sensitive to τe and almost insensitive to r or α, such
fits allow one to estimate the value of A with a good accuracy.

FIG. 10. Experimental (points) and calculated (lines) longitudi-
nal resistance in the 6-μm-wide mesoscopic Hall bar (see the geom-
etry in the inset to Fig. 8 and the parameters in the text), measured
between contacts 3 and 4 at different temperatures indicated in the
plot. The calculations correspond to the model of constant reflection
coefficient, with r = 0.35 and A = 6 [the same as in Fig. 8(a)]. The
dashed lines for T = 28.7 K are calculated with r = 0.47 and A = 6
and with r = 0.35 and A = 2.

The best fits are achieved for reasonable values r = 0.35 and
α = 3, with A = 6 for constant reflectivity and A = 5 for
angular-dependent reflectivity. Decreasing A (i.e., increasing
the contribution of electron-electron scattering) below these
values leads to broader peaks and, consequently, to a worse
agreement with the experiment at high T . An example of
variation of r and A is shown in Fig. 10 (for the other sample)
by the dashed lines.

In the region of low temperatures, T < 12 K, the T depen-
dence of Rxx in the mesoscopic bars turns out to be slower than
that for macroscopic samples. We attribute this effect to the
mesoscopic nature of the contacts. Indeed, although in theory
one can formally define the electrochemical potential (i.e., the
local voltage) in each point of the 2D channel, it is not clear
whether the voltage measured at the contact connected to the
arm of the mesoscopic Hall bar corresponds to the voltage at
the edge of the channel, especially when temperature is low.
As a consequence, there are vertical shifts between calculated
and experimental plots, since the calculations are based on the
linear T dependence of Rxx obtained for macroscopic samples.
Such shifts can be eliminated by proper scaling factors. As
concerns the shape of magnetoresistance curves, the agree-
ment between theory and experiment is reasonably good at
all temperatures. The model of angular-dependent boundary
reflection, which is apparently more realistic, gives a better
agreement. However, this model strongly overestimates the
depth of the observed local minima at B = 0, for which a
better agreement is given by the model of constant reflection
coefficient. The deep local minima similar to those in Fig. 8(b)
have been found in earlier experiments on 2D channels with
lower mobility and submicron widths [35].
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FIG. 11. First derivatives of the experimental (points) and calcu-
lated (lines) magnetoresistance in the 6 μm-wide mesoscopic Hall
bar indicate a modification of transport behavior near the point
Rc = L/4 (vertical line).

In addition to the sample described above, we also studied
a slightly wider mesoscopic bar, L = 6 μm, with density
ns = 6.8 × 1011 cm−2, made from a structure with a higher
mobility, 3.2 × 106 cm2/V s at T = 4.2 K. For this sample,
we have measured the resistance Rxx between contacts 3 and
4 (see the inset in Fig. 8) separated by 20 μm, and also
the Hall resistance in the region of small B. Figure 10 presents
the results of measurements together with theoretical plots
for the model of angular-independent boundary scattering,
calculated for the same parameters as those used in Fig. 8(a),
r = 0.35 and A = 6. Again, we have a reasonable agreement
between theory and experiment. For the high-temperature
plot, the agreement can be improved by increasing r, which
changes the relative height of the magnetoresistance peak
without changing its shape, while a decrease of A makes the
peak broader than the experimental one, see the dashed lines
in Fig. 10.

Apart from the discussed manifestations of size effect,
both the experimental and theoretical magnetoresistances at
low temperatures demonstrate a weak modification of their
slopes at B = 0.091 T, which corresponds to the condition
Rc = L/4. As shown in Figs. 2 and 3, at this particular point
both the current and the Hall field distributions exhibit sharp
cusps at the center of the conducting channel. The cusps
of the distributions recently became a subject of discussion
[28], but their connection to magnetoresistance has not been
examined either theoretically or experimentally. Meanwhile,
a modification of magnetoresistance is expectable, because
at Rc < L/4 there opens a region 2Rc < y < L − 2Rc con-
taining the electrons whose ballistic trajectories do not reach
any of the boundaries, see Fig. 1. To study the behavior
of magnetoresistance in the vicinity of Rc = L/4, we have
plotted the first derivatives of Rxx, shown in Fig. 11. The
theoretical plot at low T shows a sharp change of the slope at
Rc = L/4, which is equivalent to a sharp change of the second
derivative of Rxx. The experimental plot demonstrates an even

FIG. 12. Experimental (bold lines) and calculated (thin lines)
normalized Hall resistance in the 6 μm-wide mesoscopic Hall bar
(see the geometry in the inset to Fig. 8 and the parameters in the
text) at different temperatures. The calculations correspond to the
model of constant reflection coefficient, with r = 0.35 and A = 6,
the dashed line shows the result for T = 28.7 K with A = 2.

stronger feature: a change in the slope of dRxx/dB includes an
interval of nonmonotonic dependence near Rc = L/4. These
features are apparently of the ballistic origin, and they are
washed out by temperature when the transport approaches
to the hydrodynamic regime, as shown by both theory and
experiment. Similar modifications of the resistance are also
present in the case when the resistance is measured between
contacts 2 and 5 separated by 40 μm, but they are not seen
in the measurements shown in Fig. 8, where the distance
between the voltage contacts is close to L.

Finally, we describe the results of the Hall resistance
measurements shown in Fig. 12. The theory predicts (see
Ref. [14] and the results shown in Figs. 4–7) that �Rxy in the
ballistic transport regime changes its sign in the region of low
B. This property has been recently confirmed experimentally
[22], and it is also seen in Fig. 12. The comparison of
the present theory with experiment shows that the general
behavior of the Hall resistance and the heights of the peaks
of −�Rxy/R(0)

xy are in agreement with theory. However, the
experimental peaks are positioned at smaller magnetic field
than the theoretical ones. We could not obtain a good fit to the
shape of �Rxy by varying the adjustable parameters within
the reasonable range. In any case, we find it more reliable
to concentrate on fitting of Rxx, since the data of �Rxy have
a considerably greater measurement error compared to Rxx,
because of relative smallness of �Rxy. The nonmonotonic
experimental and theoretical plots in Fig. 12 indicate that
even at T = 28.7 K the hydrodynamic transport regime is
not yet reached. Indeed, the hydrodynamic theory describes a
monotonic decrease of −�Rxy/R(0)

xy with increasing magnetic
field [14,28]; in particular, based on Eq. (19) one can find

�Rxy

R(0)
xy

= − (2l/l1)

(κL/2)/ tanh(κL/2) + κ2Lls/2 − 1
. (21)
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This dependence does not fit our experimental data at any
slip length ls, which is not surprising, since the hydrodynamic
regime requires l1/le � 1 and le/L 
 1 while our calcula-
tions give l1/le 
 2 and le/L 
 1 at T = 28.7 K (see Fig. 9).
Nevertheless, the temperature-induced effects such as a rapid
suppression of the peak of −�Rxy/R(0)

xy and the change of
sign of �Rxy at B → 0 confirm that the influence of electron
viscosity on transport properties is already significant.

IV. DISCUSSION AND CONCLUSIONS

Whereas the T −2 scaling of the effective electron-electron
scattering time τe given by Eq. (20) follows from the general
properties of Fermi liquids, the numerical coefficient A in this
dependence is a subject of discussion. Our observation of the
magnetoresistance behavior and its modification by tempera-
ture, together with a detailed comparison of experimental data
with theory, suggest A 
 5 − 6, which, at first glance, seems
to be an unexpectedly large value. Below we demonstrate
why A actually can be large. For degenerate 2D electron gas,
when (T/εF )2 
 1, the dominant electron-electron scattering
events are either “collinear” collisions, when the directions
of motion of colliding particles are nearly equal and the
scattering angle is small, or “head-to-head” collisions, when
the directions of colliding particles are nearly opposite and
the scattering angle is arbitrary. While the collinear collisions
determine the quantum lifetime of electrons [36–38], they are
not efficient in relaxation of the angular distribution of elec-
trons, and the main contribution to the electron-electron colli-
sion integral comes from the head-to-head collisions [39,40].
The latter, however, can be significantly suppressed for the
following reasons. First, the wave number transferred in the
head-to-head collisions is of the order of Fermi wave number
kF , so when kF exceeds either the inverse screening length
q0 = 2/aB (here aB is the Bohr radius) or the inverse quantum
well width 1/a [41], the scattering amplitude decreases. This
is the case of our high-density samples, where kF 
 3/a.
Second, the effect of Cooper-channel renormalization of the
scattering amplitude [42], applicable to head-to-head colli-
sions, can enhance the effective electron-electron scattering
time by a logarithmically large factor ln2(εF /T ) [43].

The suppression of electron-electron scattering described
above makes it difficult to attain the fully hydrodynamic
regime in GaAs samples, since an increase of temperature
over 40–50 K turns on a strong scattering of electrons
by optical phonons. Nevertheless, one may identify the in-
termediate regime, when l1 > le ∼ L and the influence of
electron-electron interaction on angular relaxation of electron
distribution, promoting the effects of electronic viscosity,
becomes considerable. In this regime, which is realized in
our samples at T = 20–30 K, all the features characteristic
for the quasiballistic (low-temperature) transport regime are
suppressed with increasing temperature. The manifestations
of the ballistic transport already described in the previous
studies are: the peaks of both the longitudinal resistance Rxx

and normalized Hall resistance −�Rxy/R(0)
xy , the sharp change

of the slope of these peaks at Rc = L/2, the local minimum
of Rxx at B = 0, and the negative sign of −�Rxy/R(0)

xy at small
B. To this list, we have added a previously unnoticed feature,
the sharp change of the slope of the derivative dRxx/dB at

Rc = L/4. By combining theory and experiment, we have
demonstrated that the kinetic equation approach, based on
the relaxation-time approximation for the electron-electron
collision integral, gives a reasonably accurate quantitative
description of magnetoresistance as the latter evolves with
temperature. A comparison of theory and experiment allows
one to probe the contribution of electron-electron interaction
into transport coefficients.

Whereas in the region of small magnetic fields the purely
classical approach used above is valid, the increase of the
magnetic field would lead to the quantum Hall regime [33]. A
connection between classical magnetotransport in a channel
with diffusive boundary reflection and quantum magneto-
transport in a channel with the quantum Hall edge is not yet
established theoretically, although some steps in this direction
are already taken [44]. This challenging and important prob-
lem deserves proper attention in future studies.
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APPENDIX: EQUATIONS FOR POTENTIAL AND
CURRENT DISTRIBUTION

This Appendix provides the details of derivation of
Eqs. (15) and (16) and specifies the functions Knn′ (y, y′)
and Ln(y) standing in these equations. Also, the limiting
transitions to the cases of zero magnetic field, semi-infinite
plane, and wide channel are described.

The general solution of Eq. (11) is written as a sum of the
general solution of homogeneous equation and a solution of
inhomogeneous equation (for brevity, Rc ≡ R below):

gϕ = D(u)e−pϕ +
∫ ϕ

0
dϕ′ep(ϕ′−ϕ)RFϕ′ (y′),

p ≡ R/l, u = y + R cos ϕ, y′ = u − R cos ϕ′, (A1)

where D(u) is an arbitrary function of its argument. To find
this function, it is necessary to apply the boundary conditions.
Before doing this, it is convenient to write the solution in the
regions 0 < ϕ < π and π < ϕ < 2π separately:

gϕ (y) = D0(y + R cos ϕ)e−pϕ +
∫ ϕ

ϕ0

dϕ′

× ep(ϕ′−ϕ)RFϕ′ (y′), 0 < ϕ < π,

gϕ (y) = D1(y + R cos ϕ)e−pϕ −
∫ 2π−ϕ0

ϕ

dϕ′

× ep(ϕ′−ϕ)RFϕ′ (y′), π < ϕ < 2π. (A2)

The requirement y′ ∈ [0, L] imposes restrictions on the range
of ϕ′. Here we introduce important variables:

ϕ0 = arccos(min{1, cos ϕ + y/R}),

ϕL = arccos(max{−1, cos ϕ + (y − L)/R}); (A3)

both of them are functions of y + R cos ϕ. If 0 < ϕ < π , then
ϕ0 = ϕ at the lower boundary, y = 0, and ϕL = ϕ at the upper
boundary, y = L. Inside the sample, ϕ0 < ϕ < ϕL.
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Application of the boundary conditions (12) and (13) defines D0 and D1. In the region 0 < ϕ < π , the solution takes the form

gϕ (y) = (
1 − r0

ϕ0

)
M0ep(ϕ0−ϕ)/d + (

1 − rL
ϕL

)
MLep(2ϕ0−ϕ−ϕL )r0

ϕ0
/d

+
∫ ϕL

ϕ0

dϕ′RFϕ′ (y′)
{
[θ (ϕ − ϕ′) + (1 − d)/d]ep(ϕ′−ϕ) + r0

ϕ0
ep(2ϕ0−ϕ−ϕ′ )/d

}
, (A4)

g2π−ϕ (y) = (
1 − rL

ϕL

)
MLep(ϕ−ϕL )/d + (

1 − r0
ϕ0

)
M0ep(ϕ+ϕ0−2ϕL )rL

ϕL
/d

+
∫ ϕL

ϕ0

dϕ′RFϕ′ (y′)
{
[θ (ϕ′ − ϕ) + (1 − d)/d]ep(ϕ−ϕ′ ) + rL

ϕL
ep(ϕ+ϕ′−2ϕL )/d

}
. (A5)

Transforming the integrals over ϕ′ into the integrals over y′, one also obtains

gϕ (y) = (
1 − r0

ϕ0

)
M0ep(ϕ0−ϕ)/d + (

1 − rL
ϕL

)
MLep(2ϕ0−ϕ−ϕL )r0

ϕ0
/d +

∫ L

0
dy′Q0

ϕ (y, y′)Fϕ′ (y′), (A6)

g2π−ϕ (y) = (
1 − rL

ϕL

)
MLep(ϕ−ϕL )/d + (

1 − r0
ϕ0

)
M0ep(ϕ+ϕ0−2ϕL )rL

ϕL
/d +

∫ L

0
dy′Q1

ϕ (y, y′)Fϕ′ (y′). (A7)

In these expressions,

d = 1 − r0
ϕ0

rL
ϕL

e2p(ϕ0−ϕL ), (A8)

and

Q0
ϕ (y, y′) = {

[θ (ϕ − ϕ′) + (1 − d)/d]ep(ϕ′−ϕ) + r0
ϕ0

ep(2ϕ0−ϕ−ϕ′ )/d
} 1

sin ϕ′ , (A9)

Q1
ϕ (y, y′) = {

[θ (ϕ′ − ϕ) + (1 − d)/d]ep(ϕ−ϕ′ ) + rL
ϕL

ep(ϕ+ϕ′−2ϕL )/d
} 1

sin ϕ′ , (A10)

with

ϕ′ = arccos[cos ϕ + (y − y′)/R]. (A11)

It is implied that the kernels Q0 and Q1 are equal to zero outside the region u − R < y′ < u + R, since only in this region the
definition of ϕ′ makes sense. Since y − R < u < y + R, this also means that Q0 and Q1 are nonzero within the interval |y′ − y| <

2R, so that the actual upper and lower limits of the integration over y′ are y′
max = min{L, y + 2R} and y′

min = max{0, y − 2R},
respectively. The correlation length of 2R is characteristic for the case R < l . However, if R > l , the correlation length is of the
order of the mean free path length l , because Q0 and Q1 exponentially decrease with |y′ − y|/l .

At the boundaries,

g2π−ϕ (0) = 1

d0

[(
1 − rL

ϕL0

)
MLep(ϕ−ϕL0 ) + (

1 − r0
ϕ

)
M0(1 − d0)/r0

ϕ

] +
∫ L

0
dy′ Fϕ′

0
(y′)

d0 sin ϕ′
0

[
ep(ϕ−ϕ′

0 ) + ep(ϕ′
0−ϕ) 1 − d0

r0
ϕ

]
, (A12)

gϕ (L) = 1

dL

[(
1 − r0

ϕ0L

)
M0ep(ϕ0L−ϕ) + (

1 − rL
ϕ

)
ML(1 − dL )/rL

ϕ

] +
∫ L

0
dy′ Fϕ′

L
(y′)

dL sin ϕ′
L

[
ep(ϕ′

L−ϕ) + ep(ϕ−ϕ′
L ) 1 − dL

rL
ϕ

]
, (A13)

where ϕL0, ϕ′
0, and d0 denote ϕL, ϕ′, and d at y = 0, respec-

tively, while ϕ0L, ϕ′
L, and dL denote ϕ0, ϕ′, and d at y = L. The

expressions (A12) and (A13) can be used to find the constants
M0 and ML according to Eq. (14). This leads to the following
linear equations:

(N0 − α0)M0 − β0ML = κ0,

−βLM0 + (NL − αL )ML = κL, (A14)

where

α0 =
∫ π

0

dϕ

d0

(
1 − r0

ϕ

)2
rL
ϕL0

sin ϕe2p(ϕ−ϕL0 ),

αL =
∫ π

0

dϕ

dL

(
1 − rL

ϕ

)2
r0
ϕ0L

sin ϕe2p(ϕ0L−ϕ),

β0 =
∫ π

0

dϕ

d0

(
1 − r0

ϕ

)(
1 − rL

ϕL0

)
sin ϕep(ϕ−ϕL0 ),

βL =
∫ π

0

dϕ

dL

(
1 − rL

ϕ

)(
1 − r0

ϕ0L

)
sin ϕep(ϕ0L−ϕ), (A15)

and

κ0 =
∫ π

0
dϕ

(
1 − r0

ϕ

)
sin ϕ

∫ L

0
dy′ Fϕ′

0
(y′)

d0 sin ϕ′
0

×[
ep(ϕ−ϕ′

0 ) + ep(ϕ′
0−ϕ)(1 − d0)/r0

ϕ

]
,

κL =
∫ π

0
dϕ

(
1 − rL

ϕ

)
sin ϕ

∫ L

0
dy′ Fϕ′

L
(y′)

dL sin ϕ′
L

×[
ep(ϕ′

L−ϕ) + ep(ϕ−ϕ′
L )(1 − dL )/rL

ϕ

]
. (A16)
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If two boundaries are equivalent, the following relations are
valid:

αL = α0, βL = β0, κL = −κ0. (A17)

To prove the first two equalities, it is sufficient to substitute
ϕ → π − ϕ under the integrals in Eq. (A15). This transfor-
mation does not affect rϕ and sin ϕ, while leading to cos ϕ →
− cos ϕ and ϕL0 → π − ϕ0L so that cos ϕL0 → − cos ϕ0L. To
prove that κL = −κ0, one should also substitute y′ → L − y′
under the integrals over y′ in Eq. (A16), which leads to
ϕ′

0 → π − ϕ′
L, and to notice that Fϕ (y) = −Fπ−ϕ (L − y).

With N0 = NL ≡ N , α0 = αL ≡ α, β0 = βL ≡ β, η0 ≡ η,
and κ0 ≡ κ , one obtains

M0 = −ML = η + κ

N − α + β
. (A18)

In the general case, one may introduce numerical coefficients
Z = (N0 − α0)(NL − αL ) − β0βL, a00 = (NL − αL )/Z ,
aL0 = βL/Z , a0L = β0/Z , and aLL = (N0 − α0)/Z , and then

M0 = a00κ0 + a0LκL, ML = aL0κ0 + aLLκL. (A19)

The solutions presented above lead to the integral equa-
tions (15) and (16) with (n = 0, 1, n′ = 0, 1)

Knn′ (y, y′) =
∫ π

0

dϕ

2π
(2 cos ϕ)n(cos ϕ′)n′

Q+
ϕ (y, y′)

+ [
μn

0(y)a00 + μn
L(y)aL0

]
ζ n′

0 (y′)

+ [
μn

0(y)a0L + μn
L(y)aLL

]
ζ n′

L (y′), (A20)

Ln(y) =
∫ π

0

dϕ

2π

∫ L

0
dy′(2 cos ϕ)n cos ϕ′Q+

ϕ (y, y′)

+ [
μn

0(y)a00 + μn
L(y)aL0

] ∫ L

0
dy′ζ 1

0 (y′)

+ [
μn

0(y)a0L + μn
L(y)aLL

] ∫ L

0
dy′ζ 1

L (y′), (A21)

where Q+
ϕ (y, y′) = Q0

ϕ (y, y′) + Q1
ϕ (y, y′),

μn
0(y) =

∫ π

0
dϕ(2 cos ϕ)n

1 − r0
ϕ0

2πd

× [
ep(ϕ0−ϕ) + rL

ϕL
ep(ϕ+ϕ0−2ϕL )

]
, (A22)

μn
L(y) =

∫ π

0
dϕ(2 cos ϕ)n

1 − rL
ϕL

2πd

× [
r0
ϕ0

ep(2ϕ0−ϕ−ϕL ) + ep(ϕ−ϕL )], (A23)

ζ n
0 (y′) =

∫ π

0
dϕ

(
1 − r0

ϕ

) sin ϕ(cos ϕ′
0)n

d0 sin ϕ′
0

× [
ep(ϕ−ϕ′

0 ) + ep(ϕ′
0−ϕ)(1 − d0)/r0

ϕ

]
, (A24)

ζ n
L (y′) =

∫ π

0
dϕ

(
1 − rL

ϕ

) sin ϕ(cos ϕ′
L )n

dL sin ϕ′
L

× [
ep(ϕ′

L−ϕ) + ep(ϕ−ϕ′
L )(1 − dL )/rL

ϕ

]
, (A25)

The functions ζ n
0 and ζ n

L depend on y′ through ϕ′
0 and ϕ′

L.

A transition to the limit B = 0, when R → ∞, is carried
out by using the approximate expressions

ϕ − ϕ′ = (y − y′)/R sin ϕ, ϕ0 = ϕ − y/R sin ϕ,

ϕL = ϕ − (y − L)/R sin ϕ, (A26)

valid at R � |y − y′| (which always takes place at R � L)
provided that sin ϕ is not very small. In this limit, the differ-
ence between ϕ0, ϕL, ϕ, and ϕ′ goes to zero, but this difference
still has to be taken into account in the exponential factors in
order to compensate the large parameter p = R/l . Thus, in
the lowest order in L/R, the quantity R drops out from the
equations and the general solution is written in the form

gϕ (y) = gϕ (0)e−y/l sin ϕ + 1

sin ϕ

∫ y

0
dy′e(y′−y)/l sin ϕFϕ (y′),

(A27)

g2π−ϕ (y) = g2π−ϕ (L)e(y−L)/l sin ϕ

+ 1

sin ϕ

∫ L

y
dy′e(y−y′ )/l sin ϕFϕ (y′), (A28)

with ϕ ∈ [0, π ]. The boundary conditions are simplified
at B = 0, since the integral terms M0 and ML disappear.
From these conditions, we determine the constants gϕ (0) and
g2π−ϕ (L) and obtain

gϕ (y) =
∫ L

0
dy′Q0

ϕ (y, y′)Fϕ (y′),

g2π−ϕ (y) =
∫ L

0
dy′Q1

ϕ (y, y′)Fϕ (y′), (A29)

where

Q0
ϕ (y, y′) = {

[θ (y − y′) + (1 − d)/d]e(y′−y)/l sin ϕ

+ r0
ϕe−(y+y′ )/l sin ϕ/d

} 1

sin ϕ
, (A30)

Q1
ϕ (y, y′) = {

[θ (y′ − y) + (1 − d)/d]e(y−y′ )/l sin ϕ

+ rL
ϕe(y+y′−2L)/l sin ϕ/d

} 1

sin ϕ
, (A31)

with

d = 1 − r0
ϕrL

ϕλ2
ϕ, λϕ = e−L/l sin ϕ. (A32)

The integral equation (15) is reduced to

g0(y) = 1

l

∫ L

0
dy′K00(y, y′)g0(y′),

which has a trivial solution g0(y) = 0. Strictly speaking, an
arbitrary constant also satisfies this equation, but this is not
essential because g0(y) is defined with the accuracy up to a
constant. The integral equation (16) is reduced to Eq. (17) for
g1(y). There,

K11(y, y′) =
∫ π

0

dϕ

π

cos2 ϕ

sin ϕ

[
e−|y−y′ |/l sin ϕ

+ 2 cosh(|y − y′|/l sin ϕ)(1 − d)/d

+ r0
ϕe−(y+y′ )/l sin ϕ/d + rL

ϕe(y+y′−2L)/l sin ϕ/d
]

(A33)
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and

L1(y) = l
∫ π

0

dϕ

π
cos2 ϕ

[
2 − ξL

ϕ e(y−L)/l sin ϕ − ξ 0
ϕe−y/l sin ϕ

]
,

ξ 0,L
ϕ = [

1 − r0,L
ϕ (1 − λϕ ) − r0

ϕrL
ϕλϕ

]
/d, (A34)

in accordance with [2].
The formalism given above also allows for treatment of

a semi-infinite plane, when a single boundary at y = 0 is
present. In this case, one should formally put ϕL = π , rL

ϕL
= 1,

and extend the upper limit of the integration over y′ to infinity.
The factor ML does not enter the distribution function because
it always stands at 1 − rL

ϕL
, while M0, in view of β0 = βL = 0,

is given by M0 = a00κ0, a00 = 1/(N0 − α0). Notice that in
this case

N0 − α0 =
∫ π

0
dϕ

(
1 − r0

ϕ

)
sin ϕ(1 − e2p(ϕ−π ) )/d0,

d0 = 1 − r0
ϕe2p(ϕ−π ). (A35)

In Eqs. (A20) and (A21), only the parts containing Q+
ϕ (y, y′)

and a00 survive.
Far from the boundaries, the electrons are moving in the

cyclotron orbits and do not feel the boundaries. Formally, this
case is described by the substitutions ϕ0 = 0, ϕL = π , r0

ϕ0
= 1,

and rL
ϕL

= 1 so that

K00(y, y′) =
∫ π

0

dϕ

2π

�ϕϕ′

sin ϕ′ ,

�ϕϕ′ = 1

d
[e−p|ϕ′−ϕ| + ep(|ϕ′−ϕ|−2π )

+e−p(ϕ′+ϕ) + ep(ϕ′+ϕ−2π )], (A36)

where d = 1 − e−2π p is constant. The other kernels,
K10(y, y′), K01(y, y′), and K11(y, y′) are given by the
same expression with extra multipliers 2 cos ϕ, cos ϕ′, and
2 cos ϕ cos ϕ′ under the integral, respectively. As already men-
tioned, Knn′ (y, y′) are nonzero only at |y′ − y| < 2R. Using the
identity ∫ π

0
dϕ�ϕϕ′ =

∫ π

0
dϕ′�ϕϕ′ = 2

p
, (A37)

one can show that Eqs. (15) and (16) are satisfied for lin-
ear Hall voltage, g0(y) = C + eEyl1/R, and constant current,
g1(y) = eEl1. This means that in the bulk of the sample the
current and the Hall field are the same as in an infinitely
wide sample, while within the layers of widths 4R near
the boundaries the current and the Hall field are coordinate
dependent.
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