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Nanostructures in structured light: Photoinduced spin and orbital electron dynamics
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We study the coupled spin and orbital dynamics of electrons in one- and two-dimensional quantum dots
driven by few cycle pulses of polarization-structured terahertz vector fields. Emphasis is put on the use of
radially and azimuthally polarized, cylindrical vector beams for spin-flip processes caused by transitions between
electronic states characterized by spin-position entanglement and corresponding injection of spin currents. We
demonstrated how different topologies of the beams result in different selection rules and corresponding spin
and position dynamics. These results point to new possibilities for spatiotemporal control of the coupled spin
and orbital electron dynamics via polarization shaping of the driving electromagnetic pulse.
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I. INTRODUCTION

Many relativistic effects in the dynamics of itinerant carri-
ers in solids can be concisely described with various spin-orbit
coupling Hamiltonians. These Hamiltonians can be expressed
in terms of products of powers of momentum and spin opera-
tors corresponding to the symmetry of the crystal [1]. Exper-
imentally, current techniques for fabricating nanostructures
allow designing, to a large degree, the desired spin-orbit cou-
pling Hamiltonians [2]. One of the most exciting phenomena
resulting from the spin-orbit coupling is the ability to manipu-
late the spin state with electric fields [3–5]. The basic example
of this manipulation is the electric dipole spin resonance for
itinerant and localized electrons, where a linearly polarized
electric field produces Rabi-like spin rotation. Here, even at a
rather weak spin-orbit coupling, the effect of the electric field
on the spin dynamics can be much stronger than the effect
of the magnetic field. Other forms of the electric dipole spin
resonance are related to driven electron motion in a slanting
magnetic field [6] and to the hyperfine coupling in quantum
dots [7]. Another example of current interest is related to the
reciprocal use of spin and charge currents and densities to
produce spin polarization and spin currents by a static electric
field [8].

Further opportunities for spin manipulation in semicon-
ductors rely on quantum-mechanical optical processes [9,10],
including stimulated Raman scattering [11]. The efficiency of
the optical techniques strongly depends on the details of the
incident optical fields. In these studies, mostly linear and cir-
cular polarizations have been explored. As recent advantages
in nanotechnologies permitted modification of the spin-orbit
coupling, recent progress in optical technologies permitted
design of structured electromagnetic fields (see, e.g. Refs.
[12–15]), thus posing problems regarding both the efficiency
and novel features of spin dynamics induced by optical fields
in novel solid-state–based nanostructures.

For example, cylindrical vector beams (CVBs) [14–17]
can show efficient manipulation of the ratio of electric and

magnetic fields which may have consequences on the optical
EM-driven spin dynamics in spin-active quantum structures.
The charge dynamics driven by radially and azimuthally
polarized vector beams (RVB and AVB, respectively) was
recently studied in quantum rings and atoms [18]. The RVB
initiates a radial charge breathing as a result of quadrupole
transitions, while the irradiation with an AVB results in the
emergence of a time-dependent Aharonov-Bohm effect.

The scope of the paper is the extension of the theo-
retical investigation to the spin dynamics in a spin-active
quantum structure based on the analysis of the entangled
spin-position motion leading to spin-flip processes and spin
current injection. It will be demonstrated that the RVB acts
only on the charge position through electrically dominated
light-matter interaction. Due to symmetry, spin-flip transitions
and spin dynamics cannot be initiated. In contrast, the AVB is
characterized by a strong longitudinal magnetic component
which can drive spin currents and spin-flip transitions. Thus,
changing the topology of the incident light wave has drastic
consequences for the spin and charge dynamics.

II. THEORETICAL MODEL

A. Stationary electron states

The Hamiltonian of an electron confined to a quantum
structure in the presence of an external static magnetic field
is given by

Ĥ0 = 1

2m∗ (p − eAst )
2 + U⊥(x, y) + U‖(z)

+ αR

h̄
[σ̂ × p]z + 1

2
g∗μBB · σ̂, (1)

where m∗ is the effective mass, p is the momentum operator,
e is the electron charge, and we assume the speed of light
c ≡ 1. Further we introduce the spatially dependent potentials
U⊥(x, y) and U‖(z). In the following we assume that U‖(z)
is strong enough that only the lowest subband is occupied
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(also during the light-induced dynamics), mapping our system
effectively into a two-dimensional problem. The parameter αR

is the spin-orbit coupling strength, while σ̂ denotes the vector
of Pauli matrices. Note that [ ]z is a short notation for the
z component of the vector [σ̂ × p]. The vector potential de-
scribes the external uniform magnetic field via B = ∇ × Ast.

Here we used the Landau gauge, i.e., A(r) = xB‖ε̂y + yB⊥ε̂z,
which yields B = B⊥ε̂x + B‖ε̂z.

To compute the ground-state electronic spectrum we trans-
form Ĥ0 into matrix representation in the basis of eigenfunc-
tions |↑〉, |↓〉 of the Pauli matrix σz. The diagonal matrix
elements read

Hnn = − h̄2

2m∗ ∇2
⊥ + ieh̄

m∗ Ast · ∇⊥ + e2

2m∗ A2
st

+ U⊥(x, y) − (−1)n 1

2
g∗μBB‖,

(2)

with n = 1, 2, while the nondiagonal elements are

Hnm = ±αR(∂x ± i∂y) + 1
2 g∗μBB⊥. (3)

The diagonalization leads to our basis states with the wave
functions �n(r) = ϕ↑

n (r)|↑〉 + ϕ↓
n (r)|↓〉 and the correspond-

ing energies εn. Further, for a qualitative analysis, it is con-
venient to characterize the electron states by the sign of the
expectation value 〈�n|σz|�n〉. Note that in the presence of
spin-orbit coupling, |〈�n|σz|�n〉| < 1.

B. Vector beam-matter interaction

The time-dependent Hamiltonian Ĥint (t ) characterizes the
light-matter interaction between the quantum structure con-
fined electrons and the external spatially inhomogeneous laser
field. In its most general form, it is given by the minimal
coupling scheme

Ĥint (t ) = Ĥ1(t ) + Ĥ2(t ) + Ĥ3(t ),

Ĥ1(t ) = ieh̄

2m∗ [∇ · A(r, t ) + 2A(r, t ) · ∇] − e	(r, t ),

Ĥ2(t ) = e2

2m∗ A2(r, t ),

Ĥ3(t ) = −eα

h̄
[σ̂ × A(r, t )]z,

(4)

where A(r, t ) and 	(r, t ) are the space and time-dependent
vector and scalar potentials, respectively.

Cylindrical vector beams (CVBs) are characterized by their
exotic polarization states and can be represented mathemati-
cally by a superposition of optical vortices [17,19]. Since the
dimension (submicrometer scale) of our quantum structure
is much smaller than the typical THz wavelength of the
pulses, the quantum dot is well localized near the optical axis.
Hence, for the radial distribution, it is not essential which
exact mathematical mode (Bessel, Laguerre-Gaussian, etc.)
is used for the description. In all cases, the near-optical axis
transversal electric field amplitude is increasing linearly with
the axial distance to it, i.e., E⊥ ∼ ρ, where ρ =

√
x2 + y2.

In the following calculations, we use Bessel modes since
they represent solenoidal vector fields, i.e., ∇ · Ai = 0 (i =
RVB, AVB) [13]. The radial polarized vector beam (RVB)
is described by the following vector potential in cylindrical

coordinates r = {ρ, ϕ, z}:

ARVB(r, t ) = A0�(t )

[
− J1(q⊥ρ) cos(q‖z − ωt )ε̂ρ

+ q⊥
q‖

J0(q⊥ρ) sin(q‖z − ωt )ε̂z

]
, (5)

with the scalar potential 	RVB(r, t ) = 0. The azimuthally
polarized variant (AVB) is given by

AAVB(r, t ) = A0�(t )J1(q⊥ρ) sin(q‖z − ωt )ε̂ϕ, (6)

and 	AVB(r, t ) = 0. Here, we introduce the wave vector q =
ω/c and its transversal (longitudinal) projection q⊥ = q sin β

(q‖ = q cos β), where β is the opening angle of the Bessel
beam cone (typically below 10◦) relative to the optical axis,
which is identical to the z axis of the quantum structure.
Further, the field amplitude is A0 while the temporal en-
velope function reads explicitly �(t ) = cos[πt/Tp]2, with
t ∈ [−Tp/2, Tp/2], where the pulse length is given in opti-
cal cycles np, i.e., Tp = 2πnp/ω. For np → ∞ we obtain a
continuous wave pulse (purely harmonic perturbation). Since
∇ · A = 0 in both cases, the scalar potential vanishes in the
Lorenz gauge. Hence, electric and magnetic fields can be
evaluated via E(r, t ) = −∂t A(r, t ) and B(r, t ) = ∇ × A(r, t ).

From the formal definitions alone, it is impossible to
estimate the impact of the space-dependent polarization state
on the dynamics in a spin-active quantum structure. Hence,
it is more convenient to introduce different gauge potentials
by exploiting the gauge freedom [18,20]. A practical choice is
given by electromagnetic potentials in the Poincaré form:

A′(r, t ) = −r ×
∫ 1

0
dλ λB(λr, t ),

	′(r, t ) = −r ·
∫ 1

0
dλ E(λr, t ). (7)

They simplify the interaction Hamiltonian Ĥint (t ) to a high
degree, as we see in the following steps. In the case of the
RVB we find the potentials in the plane z = 0 and near the
optical axis (see Appendix):

A′
RVB(r, t ) = q⊥q2

6q‖
A0ρ

2�(t ) sin(ωt )ε̂z,

	′
RVB(r, t ) = 1

4
eE0q⊥ρ2�(t ) sin(ωt ),

(8)

with E0 = A0ω. Interestingly, the gauge-transformed vector
potential A′(r, t ) points at the z direction, which means that
after insertion in the interaction Hamiltonian in Eq. (4), it
has no impact on the electron dynamics confined to the plane
z = 0, since [A′(r, t ) × σ̂]z ≡ 0 and A(r, t ) · ∇ act out of
plane. Physically, the interaction with the RVB acts only on
the position of charge carrier via the electric scalar potential.
Hence, due to the symmetry no spin dynamics can be initiated,
which is in contrast to the conventional electric dipole spin
resonance realization.

The same procedure on the AVB reveals the following
electromagnetic potentials:

A′
AVB(r, t ) = − 1

2 q⊥A0ρ�(t ) sin(ωt )ε̂ϕ,

	′
AVB(r, t ) = 0 (r · ε̂ϕ ≡ 0). (9)
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In strong contrast to the RVB, we have no electric coupling
to the charge carries due to the vanishing scalar potential.
However, we find an in-plane vector potential which couples
to vector of Pauli matrices in Eq. (4). Moreover, A′(r, t )
coincides with Eq. (6), representing the equivalence of the
gauges [note that J1(q⊥ρ) � q⊥ρ/2 near the optical axis].

III. LIGHT–QUANTUM DOT INTERACTION

As an application, we model the quantum structure based
on GaAs semiconductor material. The effective mass is m∗ =
0.067me (me is the electron mass), while the Rashba con-
stant αR is given in units of α0 = 1.5 meV × 10−6 cm. The
electron Landé factor of GaAs is g∗ = −0.44. The con-
finement potentials are modeled according to U⊥(x, y) =
m∗(�2

xx2 + �2
yy2)/2. The ratio of �y to �x dedicates the pre-

ferred direction of the electron dynamics: for instance, �y �
�x effectively freezes the motion in y direction and generates
a “nanowire-based”-like [21] one-dimensional (1D) quantum
dot. In the following we fix the confinement strength in the
x direction to h̄�x = 10 meV, with �y being an adjustable
parameter.

The time evolution of the corresponding density matrix is
given by

∂tρnm = −iωnmρnm − i

h̄
[Ĥint (t ), ρ]nm,

− γnm
(
ρnm − ρeq.

nm

)
. (10)

Here, ρ
eq.
nm is the unperturbed density matrix operator, and

γnm is the phenomenological set of parameters describing
the damping occurring in quantum dots mainly due to the
electron-phonon interaction. It is assumed that γnm is a di-
agonal matrix and its elements are equal to the inverse of
relaxation time τrel.. In what follows we neglect relaxation
and assume γnm = 0. In equilibrium ρnm(t → −∞) = ρ

eq.
nm =

δn,1δm,1, meaning the ground state is fully occupied. To reach
convergence and accuracy to a high degree, we use a total
number of N = 100 electron states for the construction of
the density matrix ρnm. Hence, any (realistic) multiphoton
transitions are captured by the numerical propagation of the
density matrix.

The analysis of the Poincaré gauge potentials revealed
that the RVB would not initiate spin dynamics since it
can be reduced to the action of an electromagnetic scalar
potential in the case of a two-dimensional (2D) structure.
Further, the interaction is a quadrupole-type, meaning we
find transitions between quantum states characterized by both
the same spin projection and spatial parity. An analysis of
the electron spectrum shows that only the states |�i〉 with
the same sign{〈�i|σz|�i〉} as the initial state can be occu-
pied (which turns out to be a “selection rule” for first-order
transitions). As a consequence, spin-flip transitions and the
emergence of spin currents do not occur. Hence, in the fol-
lowing analysis we concentrate solely on the azimuthal vector
beam, which is characterized by an in-plane Poincaré vector
potential.
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FIG. 1. Electron states in the 1D quantum dot. The spatial depen-
dencies of the confinement potential U⊥(x, 0) (gray), initial (blue)
and target (orange) state wave functions are shown. Thick horizontal
lines denote the energy levels of the lowest lying states. The number
corresponds to expectation of the spin projection, i.e., 〈�i|σz|�i〉.
The photon energy of the laser field is tuned to the quadrupole
transition between the initial (1) and final state (4) where the spin-
projected wave functions have the same parity.

A. AVB-driven 1D quantum dot

1. Spin-flip transition

A one-dimensional quantum dot can be produced [21]
by a rapid increase of U⊥(x, y) with |y|, effectively freezing
the electron dynamics in the y direction. The confinement
has interesting consequences for the AVB-matter interaction:
obviously, ε̂x · ε̂ϕ = 0 for y = 0, i.e., A′

AVB(r, t ) · ∇ = 0 so
that Ĥ1(t ) = 0. Further, for moderate intensities, Ĥ2(t ) =
e2A′2(r, t )/2m∗ can be safely ignored in the interpretation
(it is nevertheless included in our numerical treatment but
its impact is negligibly small). The physical meaning is that
we can turn off the quadrupolar spin (projection) conserving
interaction Ĥ1(t ) = 0 by exploiting the unique topology of the
vector beam.

The remaining nonvanishing part is the spin
(projection) nonconserving part given by Ĥ3(t ) =
q⊥eA0αR�(t ) sin(ωt ) xσx/2. Here, we used again the
localization of the quantum wire close to ρ = 0, i.e.,
J1(q⊥ρ) � (1/2)q⊥ρ, while ρε̂ϕ = (−y, x)T [cf. Eq. (6)],
where T denotes transposition. Hence, the combination of
system and light field topologies causes the light-matter
interaction to be directly proportional to the spin-orbit
coupling constant αR. As a consequence, for αR → 0
the whole interaction Hamiltonian Ĥint is reduced to the
ponderomotive potential given by Ĥ2(t ), which is negligibly
small for the considered field intensities.

The first-order transitions in a spin-active 1D quantum
dot can be understood by studying the electronic structure
shown in the composite Fig. 1. In a finite magnetic field, |�1〉
(〈σz〉 = −0.94) represents the ground state where the spin-up
(down) projection 〈x,↓(↑)|�1〉 is an odd (even) function. The
only nonvanishing light-matter Hamiltonian Ĥ3(t ) allows only
mixing between the spin projections. Further, Ĥ3(t ) is clearly
an odd function so that the target spin projection of the final
state has to be of opposite parity: in other words, an odd
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FIG. 2. Interaction of a quantum wire with an azimuthally polar-
ized vector beam. (a) Time-dependent spin polarization for different
SOC coupling strengths. Here α0 = 1.5 meV × 10−6 cm. (b) Time-
dependent spin polarization for different field strengths at αR = α0.
The basis value A0 corresponds to the electric field of 700 kV/cm at
the first maximum of the Bessel function J1(q⊥ρ ), which is located
at ρ0 = 50 μm. Such strong THz fields are feasible nowadays [22].
(c) Time-dependent occupation numbers of the states |�1〉 (ground
state), |�4〉 (target state), and |�8〉 (accessible via multiphoton
process). In addition, the sums c1 + c4 and c1 + c4 + c8 are shown.

spin-up projection transitions into an even spin-down
projection, and vice versa. Hence, the only possible
(first-order) final state dedicated by the AVB-matter
interaction is |�4〉, characterized by 〈�4|σz|�4〉 = 0.7.
Consequently, we identified a “selection rule” for AVB-driven
first processes, i.e., sgn{〈� f |σz|� f 〉} = −sgn{〈�i|σz|�i〉},
where f (i) denotes the final (initial) state.

As we already mentioned above, the striking feature of the
AVB-matter interaction (at moderate intensity) is the direct
proportionality with the spin-orbit coupling (SOC) constant
αR, since only Ĥ3(t ) is nonvanishing. In Fig. 2(a) we present

the time variation of the spin polarization 〈�(t )|σz|�(t )〉
in dependence on the Rashba SOC coupling constant αR.
As expected, a larger αR increases the transition probability
|�1〉 → |�4〉, resulting in a change of the spin polarization of
|�(t )〉. Starting from 〈�(t )|σz|�(t )〉 = −0.94 (mediated by
the ground state |�1〉), the spin polarization increases during
the interaction with light fields, since the final state |�4〉 is
characterized by a positive 〈�4|σz|�4〉. For instance, at αR =
α0 (red curve), we find a time-averaged (over oscillations
corresponding to free propagation) 〈σz〉 of 0.05 directly after
the vector beam light pulse is off. However, we find also a
saturation, meaning that increasing αR does not result neces-
sarily in a higher spin polarization. As shown for αR = 1.8α0

(black curve), the value of 〈�(t )|σz|�(t )〉 immediately after
the pulse is lower than for the case of the “maximal” effect
at αR = α0. This can be explained by the stronger internal
mixing between |↑〉 and |↓〉 projections of the electronic states
with the consequence that 〈�4|σz|�4〉 decreases for a larger
αR. Hence, the maximal effect at αR = α0 characterizes a
compromise between mixing of the spin projection within the
eigenstates of Ĥ0 (decreases expectation value of σz) and the
spin-flip transition probability, since both are determined by
αR.

Figure 2(b) shows the spin-flip process for different field
amplitudes at a SOC strength αR = α0. Since we are still in
the regime of the dominating single-photon processes, we
find a proportionality between the spin flip (occupation of
the target state 4) and the field amplitude. These results are
assisted by panel (c), where we plotted explicitly the time
dependence of the occupation numbers ci = |〈�i|�(t )〉|2 for
αR = α0 and the field amplitude A0: single-photon processes
are characterizing mainly the spin-flip process, since the sum
c1 + c4 is ∼0.9 after the end of the pulse. We also have
a minor contribution of the state |�8〉 which is accessible
only by multiphoton processes. Hence, a further increase of
the amplitude or the SOC coupling strength αR will lead to
dominating multiphoton processes.

2. Spin current injection

Let us turn to the tensor operator for the spin current
density given by [23]

ĵ
s
i, j = 1

4 [|r〉〈r|v̂iσ̂ j + (σ̂ j v̂i )
T |r〉〈r|], (11)

with the matrix elements[
js
i, j (r)

]
nm

= 1
4 [〈n|r〉〈r|v̂iσ̂ j |m〉 + 〈n|(σ̂ j v̂i )

T |r〉〈r|m〉], (12)

where 〈r|m〉 ≡ �m(r). Here, we introduce the velocity oper-
ator v̂ = (i/h̄)[Ĥ0, r]−. The volume-integrated spin current is
given by

[
Is
i j

]
nm

=
∫

dr3
[

js
i, j (r)

]
nm

. (13)

The expectation values of both operators are given
by js

i j (r, t ) = ∑
nm [ js

i, j (r)]
nm

ρmn(t ) and Is
i j (t ) =∑

nm [Is
i j]nm

ρmn(t ). Note that in our case, due to confinement
only the dynamics in x direction is allowed, which reduces our
spin current operators to 〈Î s

x,i〉(t ), where the index i = x, y, z
indicates the Pauli matrix σi. In our case the velocity operator
reduces to v̂x = px/m∗ + ασy/h̄. As presented in Fig. 3(a),
an analysis of the volume-integrated spin currents reveals
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FIG. 3. Time evolution of the spin currents Is
i,z (i = x, y, z) in

panel (a) and spin current density js
x,z in panels (b)–(e). The insets

in (b)–(e) show the temporal profile of the incident laser field where
the black dot represents the time moment of the shot (and the
corresponding field strength). All curves belong to the parameters
αR = α0 and A0.

Is
xz(t ) is zero over the whole time since our vector beam

cannot induce spatial imbalances into the electron wave
functions. Moreover and related to it, it can be shown that
〈x〉(t ) ≡ 0 (not shown for brevity). Surprisingly, even in
equilibrium Is

x,y = −Is
y,x �= 0, which is a consequence of

the nonconservation of the electron spin in the presence of
spin-orbit coupling [24].

In Figs. 3(b)–3(e) we present the time evolution of the
spin current density js

x,z for αR = α0 and the amplitude A0,
which belongs to the red curve in Fig. 2(a). Although the
volume-integrated current is zero, the action of the azimuthal
vector beam clearly initiates a nonzero current density with an
oscillatory behavior. Further, the current density persists and
keeps the oscillations in time once the light-matter interaction
is off as presented by Fig. 3(d). The reason is the semioccu-
pation of the ground and the excited states driving the spin
polarization and therefore, the spin current back and forth.

For possible applications, the applied vector beam may
take the role of a local spin (current) pump. For a
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FIG. 4. Spin pumping with a local azimuthal vector beam.
(a) Geometry of potential, ground-state density, and laser field fo-
cused on a subwavelength scale. (b) Driven spin current density js

x,z

for different times during the pulse of duration Tp. (c) Evolution of
first moment 〈 js

x,z〉x in Eq. (14) during the application of the laser
field.

demonstration of this effect, we enlarge the system size by
a factor of 3, while focusing the beam down to a waist w0

(distance intensity maximum to optical axis) of λ/20 (h̄ω =
100 meV), as shown in Fig. 4(a). As a consequence, the
spatially inhomogeneous vector potential component Ay(x) is
about the size of the ground-state width. The result is the ex-
citation of very high states, n ≈ 60, via the interaction Hamil-
tonian Ĥ3(t ), in the spectrum. The charge densities in these
high semiclassical states peak near the classical turning points
far away from the symmetry axis. The resulting effect on the
light-driven spin current density is remarkable. In Fig. 4(b),
we present the spatially dependent js

x,z for different times
during the laser application as received from our numerical
propagation of the density matrix. The considered duration
of the external light field amounts to 20 optical cycles, i.e.,
Tp = 0.83 ps. For short times (t < 0.2Tp, blue curve), the
current density is strongly localized near the symmetry axis
x = 0. However, at later times we see that the maximum
of js

x,z wanders to outer regions in the potential landscape,
providing a clear proof that higher-lying states in the spectrum
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are occupied. During the course of time, the spin current
density oscillates in a known fashion and is characterized by
an (spatially) odd function similar to Fig. 3. Interestingly, the
major spin current dynamics happens at regions where the
incident light wave is not present. See panel (c) of Fig. 4,
where the corresponding first moment, defined as

〈
js
x,z

〉
x
=

∫ ∞

−∞
dx x

(
js
x,z(x)

)
, (14)

is shown. The maximum increases drastically during the laser
interaction and reaches distances of more than 4w0 to the
symmetry axis. Further, due to the coherence of the laser
field, the spin current density peaks for x ≶ 0 are strongly
correlated. Hence, we demonstrated that the vector beam may
act as a (local) spin current pump.

B. Elliptic 2D quantum dot structure

In a next step we reduce the confinement in y direction to
�y = 1.8�x, meaning the transverse profile of the quantum
dot takes the form of an ellipsis, as presented in panel (a) of
Fig. 5. In contrast to the 1D case, AAVB(r, t ) · ∇ �= 0, meaning
Ĥ1(t ) = i(eh̄/m∗)A · ∇ of the interaction Hamiltonian does
not disappear.

The structured light field initiates quadrupole transitions,
i.e., the Hamiltonian Ĥ1(t ), which conserves the spin orienta-
tion (with respect to projection on |↑,↓〉 of σz) and are also
symmetry-conserving: an even (odd) wave function ϕ↑(↓)

n (r)
couples with an even (odd) wave function ϕ

↑(↓)
n′ (r) via Ĥ1(t ).

Consequently, the spin nonconserving Hamiltonian Ĥ3(t ) =
eαR[A(r, t ) × σ̂]z flips the spin orientation and couples an
even (odd) wave function ϕ↑(↓)

n (r) with an odd (even) ϕ
↓(↑)
n′ (r)

(see discussion in the 1D case).
To account for these symmetry conditions for the initial

and target states, we set the laser field resonant to the lowest
allowed (by first-order transitions) pair |1〉 and |4〉〉, which
are characterized by the spin polarization numbers 〈1|σz|1〉 =
−0.92 and 〈4|σz|4〉 = 0.79. As a consequence, we expect a
partial flip of the total z component of the spin of the driven
electron wave function due to the structured light-matter
interaction.

Indeed, the temporal dependencies of the spin polarizations
presented in Fig. 5(b) reveal such a spin-flip characterized by
the transition |�1〉 → |�4〉. In the case of the z projection
it stabilizes at a (time-averaged) value of 0.27 after laser
excitation (field indicated by the gray, dashed curve). Inter-
estingly, in comparison to the 1D case shown in Fig. 2, the
additionally allowed dynamics in the y direction seem to boost
the strength of this spin-flip. To complete the physical picture,
we mention that the spin polarizations in x and y directions
remain zero at any time. As above, we are in the perturbation
regime where first-order processes dominate, as emphasized
by the time-dependent occupation numbers in panel (c) of
Fig. 5. The sum of the numbers c1 + c4 (green curve) is
larger than 0.9 for the whole propagation time. Hence, only
a small fraction of the initial wave function is splattered to
higher states via multiphoton processes. In this vein, the sum
c1 + c4 + c7 (black curve), where |7〉 is accessible via two-
photon transitions, is 0.99 after the light-matter interaction.
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0 1 2 3 4 5 6
0.0
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0.4
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0.8
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(b)

(c)

(a)

FIG. 5. (a) Geometry of the potential landscape and vector beam
(indicated by red arrows). (b) Time-dependent spin polarization
〈�(t )|σi|�(t )〉 i = x, y, z extracted from the propagation of the
density matrix. The dotted gray line indicates the temporal profile
of the RVB. (c) Time-dependent occupation numbers of the initial
and target states |1〉 and |4〉, respectively. The green curve c1 + c4

is almost unity, indicating a single-photon process. Additionally,
c1 + c4 + c7 is shown where c7 indicates access by a second-order
process. All curves belong to the parameters αR = α0 and A0.

It is interesting to study the transformation of the wave
function under the action of the laser field in more detail. In
Fig. 6(a), we present the projections of the time-dependent
wave function (starting from |�1〉) onto the eigenstates of σz.
For t = 0 (left panels), the spin-down projected wave function
is much more pronounced than its counterpart, which corre-
sponds to 〈1|σz|1〉 = −0.92. With time, the spin-up channel is
more and more populated as a signature of the |�1〉 → |�4〉
transition. Further, we see transversal dynamics relative to the
major axis of the potential ellipse due to the action of the
azimuthal polarization of the incident light field (indicated by
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FIG. 6. (a) Time evolution of the wave function projected on
eigenstates of σz during the laser propagation. The arrows mark
direction of the local and temporal polarization direction. (b) Cor-
responding spin current densities jx,z

s and jy,z
s . Blue (red) color

marks here indicate negative (positive) sign. The system and laser
parameters are the same as in Fig. 5.

the white arrows in the panel). Hence, the charge density is
slightly pushed in the transverse (y) direction. However, in the
whole propagation time frame, the position expectation values
〈x〉(t ) and 〈y〉(t ) are zero, which reflects the symmetry of the
incident laser field. Another consequence is the absence of any
volume-integrated charge current.

Similar to the 1D case, we do not find any volume-
integrated spin current but only spin current densities with
an odd spatial symmetry. In Fig. 6(b), we present the spin
current densities js

x,z and js
y,z graphically. Already shortly after

the pulse is switched on (left panels), spin currents emerge
and oscillate in time (right panels), hence changing their local
signs continuously. The reason is the partial occupation of
the initial and final states, enabling spin dynamics with an
oscillatory behavior.

C. Radially symmetric quantum dot

After inspecting a 2D structure with different confinement
strengths in the x and y directions, we turn our interest to a
radially symmetric quantum dot, i.e., h̄�x = h̄�y. In such a
structure, the symmetry coincides with that of the intensity
profile of both considered vector beam classes. Although both
vector beam classes show the same intensity pattern, their
physical action is entirely different. As shown in Ref. [18],
the light-matter interaction with the RVB is strongly electric,
while the AVB shows a strong magnetic-type interaction in
cylindrical symmetry: the electric field component of the
AVB is azimuthally directed, and thus, the coupling EAVB · r
disappears in a radially symmetric quantum dot. Nevertheless,
in a spin-active physical system, the electromagnetic vector
potential provides an effective AVB-matter interaction via
Ĥ2(t ) and Ĥ3(t ). A symmetry analysis reveals the same “selec-
tion rules” for the first-order transitions as in the former cases.

In Fig. 7 we present the electron dynamics for a system
with a SOC strength αR = 0.8α0 and a ten-cycle laser field
with amplitude of 0.75A0. The laser frequency is resonant
with the next-higher-lying state corresponding to the allowed
first-order transition. As in the previous examples, we see
a direct response of the spin polarization (panel a) to the
AVB-matter interaction, which is emphasized by the time-
dependent occupation numbers shown in Fig. 7(b). The time-
averaged spin polarization—again, over oscillations during
the free propagation—after the pulse is off (and before sen-
sible relaxation kicks in) is 0.05. The spin polarization of the
initial state |�1〉 is −0.864, while the target state is charac-
terized by 〈�6|σz|�6〉 = 0.663. We chose the parameters on
purpose to achieve a quasi-spin-unpolarized state, because in
such a case the spin current density is highest in magnitude
and persists after the laser pulse is switched off. In principle,
other laser parameters enable a strongly pronounced spin-
flip, meaning the electron transitions to a large portion into
the final state |�6〉. Such a situation is shown in Fig. 7(c)
where we slightly adjusted system and laser parameters. As
presented by the time-dependent spin polarization, the tran-
sition |�1〉 → |�6〉 is much more pronounced, i.e., starting
from 〈σz〉 = −0.72, the polarization flips totally during the
AVB-matter interaction. After the pulses are turned off, it
stabilizes at a time-averaged value of 0.5, which is remarkable
considering it is mainly due to first-order processes.

Let us investigate the time evolution of the charge and
spin current densities for the laser parameters corresponding
to a final spin-unpolarized state [cf. Figs. 7(a) and 7(b)] in
detail, as presented in Fig. 8. The spin-projected charge den-
sities corresponding to the interaction with the AVB represent
nicely the polarization pattern of the vector beam, as the sum
|〈r,↑|�(t )〉|2 + |〈r,↓|�(t )〉|2 is always radially symmetric.
However, the individual projections are not necessarily radi-
ally symmetric, as a closer inspection of the right panels in
Fig. 8(a) reveals. Consequently, on the spin-polarized level,
the position-dependent polarization vector clearly breaks the
cylindrical symmetry. As in the previous examples, the pop-
ulation of the eigenstates with positive spin polarization in-
creases during the AVB-matter interaction, while the spin-
down projection is decaying continuously. After the pulse
is off, both projections are of equal intensity, which is in
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FIG. 7. Electron dynamics of a radially symmetric quantum dot
irradiated by an azimuthal vector beam. (a) Time dependence of the
spin polarizations in the three spatial directions. (b) Time-dependent
occupation numbers. The system and field parameters are αR =
0.8α0 and 0.7A0 and np = 10 optical cycles. (c) Time dependence
of the spin polarizations for αR = α0 and 1.2A0.

accordance with Fig. 7(a), and the reason for the (final) spin
unpolarized state for t > 3 ps.

The spin current densities show similar characteristics as in
the former case: they present spatially odd functions, resulting
in vanishing volume-integrated spin currents. The potential
confinement allows two spin current densities, i.e., js

x,z and
js
y,z, which are shown in Fig. 8(b). The panels reveal interest-

ing spatial structures with areas of highly positive and neg-
ative amplitude. As before, these structures are oscillating in
time so that the local sign of density is changing continuously.

IV. CONCLUSIONS

We studied coupled electron spin and position dynamics
induced by radially and azimuthally polarized cylindrical

FIG. 8. Time evolution of the charge and spin current density
initiated by an irradiated azimuthal vector beam: (a) spin-resolved
charge densities and (b) spin current densities js

x,z and js
y,z. Blue (red)

color indicates a negative (positive) current. The system and laser
parameters are the same as in Figs. 7(a) and 7(b).

vector beams in one- and two-dimensional quantum dots
of different symmetries. In general, this dynamics involving
spin-position entangled electron states includes spin-flip tran-
sitions, changes in the orbital states, and, correspondingly,
injection of spin currents. These processes strongly depend
on the topology of the fields, being prohibited for the radial
and allowed for the azimuthal vector beams. We analyzed the
evolution of the orbital and spin degrees of freedom driven
driven by the multicycle pulses of the azimuthal optical beams
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and produced patterns of the spin density and the spin current
tensors. These effects can be used for the design of the optical
beams for spin manipulation in nanostructures of various
geometries.
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APPENDIX

The electric and magnetic fields of the RVB are given by

ERVB(r, t ) = E0

(
J1(q⊥ρ) sin(q‖z − ωt )ε̂ρ

+q⊥
q‖

J0(q⊥ρ) cos(q‖z − ωt )ε̂z

)
, (A1)

and

BRVB(r, t ) =A0
q2

q‖
J1(q⊥ρ) sin(q‖z − ωt )ε̂ϕ, (A2)

where E0 = A0ω. Exploiting the localization of quantum
structure, we can expand the Bessel functions into J1(x) �
x/2 and J0(x) � 1. Building the Poincaré electromagnetic

potentials yields

A′
RVB(r, t ) = − q⊥q2

2q4
‖z2

ρ
[(

q2
z z2 − 2

)
cos(qzz − ωt )

+2 cos(ωt ) − 2qzz sin(q‖z − ωt )
]
ε̂ρ

+ q⊥q2

2q4
‖z3

ρ2
[(

q2
z z2 − 2

)
cos(q‖z − ωt )

+2 cos(ωt ) − 2qzz sin(q‖z − ωt )
]
ε̂z, (A3)

and

	′
RVB(r, t ) = E0q⊥

2q2
‖z2

[qzρ
2z cos(q‖z − ωt )

− (ρ2 + 2z2)( sin(ωt ) + sin(q‖z − ωt ))].
(A4)

In the transversal plane z = 0 we obtain A′(r, t ) =
(q⊥q2/6q‖)A0ρ

2�(t ) sin(ωt )ε̂z and 	′
RVB(r, t ) = (E0/4)

q⊥ρ2 sin(ωt ).
The electric and magnetic fields of the AVB are given by

EAVB(r, t ) =E0J1(q⊥ρ) cos(q‖z − ωt )ε̂ϕ (A5)

and

BAVB(r, t ) = A0(−q‖J1(q⊥ρ) cos(q‖z − ωt )ε̂ρ

+ q⊥J0(q⊥ρ) sin(q‖z − ωt )ε̂z ). (A6)

Building the Poincaré electromagnetic potentials yields, in the
plane z = 0,

A′
AVB(r, t ) = − 1

2 q⊥ρ sin(ωt )ε̂ϕ, (A7)

and

	′
AVB(r, t ) = 0. (A8)
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