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Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness
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We study the optical reflectivity of real three-dimensional (3D) photonic band-gap crystals with increasing
thickness. The crystals consist of GaAs plates with nanorod arrays that are assembled by an advanced stacking
method into high-quality 3D woodpile structures. We observe intense and broad reflectivity peaks with stop
bands that correspond to a broad gap in the photonic band structures. The maximum reflectivity quickly reaches
high values, even for a few crystal layers. Remarkably, the bandwidth of the stop bands hardly decreases with
increasing crystal thickness, in good agreement with finite-difference time domain (FDTD) simulations. This
behavior differs remarkably from the large changes observed earlier in weakly interacting 3D photonic crystals.
The nearly constant bandwidth and high reflectivity are rationalized by multiple Bragg interference that occurs
in strongly interacting photonic band-gap crystals, whereby the incident light scatters from multiple reciprocal
lattice vectors simultaneously, in particular, from oblique ones that are parallel to a longer crystal dimension and
thus experience hardly any finite-size effects. Our insights have favorable consequences for the application of 3D
photonic band-gap crystals, notably since even thin structures reveal the full band-gap functionality, including
devices that shield quantum bits from vacuum fluctuations.

DOI: 10.1103/PhysRevB.101.235303

I. INTRODUCTION

There is a worldwide interest in three-dimensional (3D)
photonic crystals that radically control both the propagation
and the emission of light [1–8]. In photonic crystals the
dielectric function varies spatially with a periodicity on length
scales comparable to the wavelength of light. Due to the
long-range periodic order, the photonic dispersion relations
are organized in bands, analogous to electron bands in a
semiconductor [9]. When the frequency of light lies in a gap
in the dispersion relations for a certain wave vector tending
from the origin to the Brillouin zone boundary, light cannot
propagate in the corresponding direction as a result of Bragg
diffraction [9]. Such a directional gap or stop gap is usually
probed with reflection or transmission experiments where a
reflectivity peak or transmission trough occurs, also known as
a stop band [10–27]. To first order, the width of a stop band is
proportional to the ratio of the dominant Fourier component
of the dielectric function and the average dielectric constant
[28,29]. The width thus serves as a gauge of a generalized
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photonic interaction strength between the light and the pho-
tonic crystal nanostructure [30] that notably depends on the
dielectric contrast, the volume fraction of high-dielectric ma-
terial, and a relevant structure factor [29].1 When the photonic
interaction strength exceeds a certain threshold, a 3D photonic
band gap can emerge, a frequency range for which light modes
are forbidden for all wave vectors and all polarizations [1–8].
Since the local density of states also vanishes, the photonic
band gap is a powerful tool to radically control spontaneous
emission and cavity quantum electrodynamics (QED) of em-
bedded quantum emitters [1,4,29,32]. Applications of 3D
photonic band-gap crystals range from dielectric reflectors for
antennae [33] and for efficient photovoltaic cells [34–36], via
white-light-emitting diodes [37,38], to elaborate 3D waveg-
uides [39] for 3D photonic integrated circuits [40–42], and
to low-threshold miniature lasers [43] and devices to control
quantum noise for quantum measurement, amplification, and
information processing [29,44,45].

1The photonic interaction strength S is formally defined as the
polarizability α per volume V of each building block (or scatterer):
S ≡ α/V [29,31].
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Although considerable progress has been made in ex-
perimental studies on real 3D photonic crystals, physical
understanding of photonic band gaps is mostly based on
theories that pertain to infinite and perfect crystals [6,7]. This
theoretical situation is obviously different from real photonic
crystals and photonic crystal devices that are finite in extent
and surrounded by free space, also known as a crystal with
finite support [46]. Remarkably, the understanding of photonic
crystals with finite support is much less developed. Regarding
densities of states, it has been reported for 3D photonic band-
gap crystals that the local density of states (LDOS) in the gap
at the center of the crystal seems to decrease exponentially
with crystal size [47,48]. The scaling of the volume averaged
LDOS (the DOS) has been studied by Hasan et al., who found
it to decrease linearly with increasing crystal size L [49].

Finite crystal size is also known to affect the propaga-
tion of light. In previous work, the stop band widths of
weakly interacting photonic crystals (in absence of band gaps)
was found to decrease with increasing the crystal thickness
[50,51]. Remarkably, however, such finite-size effects for stop
band widths has hardly been discussed in strongly interacting
photonic crystals with photonic band gaps. From numerical
work, it is inferred that stop bands hardly shift with angle of
incidence (or incident wave vector) [52], but the dependence
of the widths of stop bands on the size of 3D photonic crystals
has, to the best of our knowledge, not been investigated.
Therefore, we present here a combined experimental, numer-
ical, and theoretical study of the stop bands of 3D photonic
band-gap crystals with different thicknesses.

II. METHODS

A. 3D GaAs woodpile crystals

Figure 1(a) shows a schematic of the structure of the
3D photonic crystals studied here. The crystals have the
well-known woodpile structure where four different arrays
of nanorods are stacked along the z direction [53], as shown
in the right panel of Fig. 1(a). In each array, the rectangular
nanorods with width w and thickness t are arranged with
(x, y) lattice parameter d (left panel). In the z direction, the
nanorods in neighboring layers are perpendicular to each
other. Nanorods in second-nearest-neighbor layers are parallel
and shifted by half a period d/2.

Compared to the conventional cubic (nonprimitive) unit
cell of the diamond structure [9], the (x, y, z) coordinate
system of our 3D photonic crystal, shown in Fig. 1, has a face-
centered-tetragonal (fct) lattice with x-axis unit vector a1 =

1√
2
[d d 0], y-axis a2 = 1√

2
[d̄ d 0], and z-axis a3 = [0 0 a].

Since the lattice parameter d in the (x, y) directions turns out
to be equal to d = dhkl=110 = D × d001 = D × a/

√
2, with

D �= 1, the crystals have a small tetragonal distortion from cu-
bic symmetry (where D = 1) that hardly affects the band gap.

The crystals are made of GaAs and have d = 470 nm,
w = 178 nm, and t = 150 nm, hence D = 1.11, resulting in
gaps in the near-infrared and telecom ranges. Figure 1(b)
shows the photonic band structure calculated for the wood-
pile crystal structure using the plane-wave expansion method
[7,54]. The number of plane waves used in this calculation
is 262 144, namely, 32 × 32 × 32 reciprocal lattice vectors
in all three dimensions, times 23 for the two polarizations
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FIG. 1. (a) Schematic of the woodpile 3D photonic band-gap
crystal structure. Left: View down the z axis. Right: x-z cross section
perpendicular to the rod layers at the dashed line in the left image.
The (x, y) lattice parameter d , rod width w, thickness t , and z lattice
parameter a are shown. The four different colors serve to indicate the
four different arrays that are stacked consecutively in the z direction.
The dashed lines indicate the position of the cross-sectional planes
in the neighboring schematics. (b) Photonic band structures for our
3D woodpile photonic band-gap crystal with frequency reduced by
the in-plane lattice parameter (d/λ). The wave vector runs between
high-symmetry points where the range has been expanded to include
in-plane wave vectors. The arrow shows the width of the �Z stop
gap. The inset shows the first Brillouin zone and the relevant high-
symmetry points.

at each lattice vector. The structure was taken to have the
parameters (w, t, d, a) from the design, and the dielectric
constant was taken as ε = 11.56, typical for GaAs in the
telecom range. The 3D photonic band gap shown in Fig. 1(b)
ranges from reduced frequency d/λ = 0.318 to 0.376, which
corresponds to wave numbers between ν/c = 6770 cm−1 and
8000 cm−1, corresponding to wavelengths between 1480 nm
and 1250 nm, which overlaps with the telecom O-band. The
stop band width in the �Z direction, that is probed in the
experiment, appears between d/λ = 0.303 and 0.428, which
corresponds to ν/c = 6450 cm−1 and 9110 cm−1.

We have fabricated the 3D photonic crystal structures using
a micromanipulation method [55–57]. The fabricated crystals
are shown in Fig. 2. The two-dimensional (2D) arrays of
nanorods are fabricated in plates within an area of 11.3 ×
11.3 μm2 by dry etching following e-beam lithography.2 The
plates with the rod arrays are stacked one by one in the

2Effectively, such a single layer of nanorods looks like a high-
refractive-index contrast grating [58].
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FIG. 2. SEM images of several GaAs 3D photonic band-gap
crystals. (a) Four woodpile structures are shown with increasing layer
thicknesses L = 1d002, 2d002, 3d002, and 4d002 that reside next to the
trenches used to stack the crystal layers. The scale bar is 10 μm
long. (b) Magnified view of the woodpile structure with a thickness
L = 2d002 [lower left in panel (a)]. The scale bar is 1 μm long. The
rods have widths w = 168 ± 9 nm, thickness t = 151 ± 5 nm, and
(x, y) lattice parameter d = 480 ± 10 nm, where the error bars are
estimated from multiple SEM measurements.

trenches that are also shown in Fig. 2(a) under scanning-
electron-microscope (SEM) observation [42]. After stacking
a desired number of plates to form a 3D crystal, the whole
crystal is removed from a trench and carefully laid next to it,
as shown in Fig. 2(a). The substrate below the crystals consists
of several layers: first a 225-nm-thick GaAs top layer, next a
3-μm-thick AlGaAs sacrificial layer, and finally a bulk GaAs
substrate.

A magnified SEM image of stacked rod arrays is shown
in Fig. 2(b). In this particular structure, four layers are suc-
cessfully stacked in the woodpile structure. The 3D crystals in
Fig. 2(a) have increasing crystal thicknesses L = d002, 2d002,
3d002, and 4d002. Here d002 = a/2 = 2t = 302 ± 10 nm is the
spacing of the hkl = 002 lattice planes in the z direction that
corresponds to two layers of nanorods (see Fig. 1).

B. Optical setup

Optical reflectivity was measured using a home-built mi-
croscope setup that employs reflective optics and operates in
the near-infrared range at wavelengths beyond 800 nm, see
Refs. [23,59]. The main components are a supercontinuum
white light source (Fianium), a Fourier-transform interferom-
eter (Biorad FTS-6000) that operates with 8 cm−1 spectral
resolution, and a reflecting objective (NA = 0.65) to focus the
beam to a few microns inside the photonic crystal domains
over the large required range of frequencies. Signals were col-
lected in the near-infrared spectral range between about 4000
and more than 12 500 cm−1, corresponding to wavelengths
between 2500 and 800 nm. Reflectivity was calibrated by
taking the ratio of a sample spectrum with the spectrum mea-
sured on a clean gold mirror. In the spectra, a narrow range
near 9300 cm−1 is omitted, since it is disturbed by the pump
laser of the supercontinuum source. Following Ref. [27], we
estimate the error margins in the stop band edges and therefore
the stop band width. We estimate the standard deviation in
the minimum reflectivity at frequencies below the stop band,

and the standard deviation of the maximum reflectivity, which
both propagate into the determination of the gap edges.

C. Numerical modeling

To compute the optical properties of the finite crystals,
we employ the finite-difference time domain (FDTD) method
using commercially available code (Synopsis Rsoft FULL-
WAVE). In the simulations, the structure has one period size
in both x and y directions, and periodic boundary conditions
are imposed in both the x and y directions; in the stacking
direction z perfectly matched layers are inserted at 10 μm
far from the surface of the substrate. The grid size was set
as dx × dy × dz = d/16 × d/16 × d002/8. The incident light
consists of plane waves propagating along the z direction with
a range of frequencies parallel to the sample normal, with
the same polarization as in the experiments. The incident
light is pulsed with a single-cycle pulse duration in order
to cover a broad frequency range, with a central frequency
8500 cm−1. At this time, it is not feasible to take into account
the finite numerical aperture, since adding coherently many
fields with many different incident wave vectors (as is the
case in a focus) is computationally prohibitively expensive.
The time-dependent electric fields of the reflected light are
recorded, and we analyze the spectral response using a Fourier
transform. The reflectivity is calculated as the ratio of the
computed reflected intensity and the incident intensity. In
our simulations, we set the structural parameters of our 3D
photonic crystal to be d = 470 nm, w = 178 nm, and t =
150 nm, according to the SEM images of our samples, to
get the best match with the experiments. We also included
the substrate in the simulations. The refractive index for
GaAs was taken to be n = 3.4 in absence of dispersion. In
the presence of GaAs dispersion, the refractive index varied
from n = 3.34 at 5000 cm−1 to n = 3.65 at 12 000 cm−1, and
the extinction coefficient monotonically increased from 0 at
11 700 cm−1 to 0.0662 at 12 000 cm−1 [60]. The simulations
were done with a standard personal computer and took about
24 hours per spectrum.

To model the effect of disorder, we multiplied the reflectiv-
ity output by the FDTD code with an exponential extinction
factor exp(−�/L) for each wavelength. For the extinction
length � we employ the analytical model by Koenderink et al.
for a 3D photonic crystal [61]. The underlying root-mean-
square structural variation is taken to be �r = 5 nm, which is
a reasonable estimate of typical roughness and size variations
in semiconductor nanophotonic structures.

III. RESULTS

A. Experiment

Figure 3 shows a measured reflectivity spectrum for the
3D photonic crystal of thickness L = 2d002 together with
the spectrum for the substrate. The reflectivity spectrum of
the substrate varies between 20% and 30% with clear fringes
with a period of about 500 cm−1, and a second, much longer
fringe spacing of about 6000 cm−1. The fringes are caused
by two interference phenomena: The 500 cm−1 fringes are
caused by interference between the top GaAs layer and the
GaAs substrate that are spaced by the 3-μm-thick AlGaAs
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FIG. 3. Reflectivity vs wave number for a 3D photonic crystal
with a thickness L = 2d002 (black circles) and for the substrate (gray
circles). The range near 9200 cm−1 is excluded, as it is disturbed by
the pump laser of the supercontinuum white light source. The green
horizontal arrow indicates the width of the 3D photonic band gap and
the red arrow the width of the �Z stop gap.

sacrificial layer [62]. Secondly, the 6000-cm−1 fringes are
due to interference inside the 225-nm thin top layer. The
3D photonic crystal reveals an intense and broad reflectivity
stop band at frequencies between 6000 and 10 000 cm−1 that
corresponds to the �Z stop gap in the band structures (cf.,
Fig. 1). The full width at half maximum is about 3300 cm−1,
corresponding to a relative bandwidth �ω/ωc = 41%, which
is typical of a strongly interacting photonic crystal [29] and
fairly comparable to results obtained for a silicon woodpile
structure [63], which makes sense in view of the similar
refractive index contrasts of GaAs-air and of Si-air structures.

Figure 4 shows reflectivity spectra measured for
the 3D photonic crystals with increasing thickness
L = d002, 2d002, 3d002 and 4d002. It is gratifying that all
four spectra show a stop band between about 6800 and

FIG. 4. Reflectivity vs wave number for the crystals with L =
d002 (red circles), L = 2d002 (black squares), L = 3d002 (green tri-
angles), and L = 4d002 (blue inverted triangles). The range near
9200 cm−1 is excluded, as it is disturbed by the pump laser of the
supercontinuum white light source.

10 000 cm−1 as taken at half height. There are a number
of features that are characteristic of a high crystal quality.
First, in the stop band the maximum reflectivity is overall
quite elevated up to 70% or even 80%. Secondly, since all
spectra reveal the 500-cm−1 fringes of the sacrificial layer
interference, the transmission of light through the crystals is
hardly attenuated by scattering from random disorder. Thirdly,
all spectra reveal a minimum reflectivity near 0% below the
stop band, which is part of the Fabry-Pérot interference
due to interference between crystal’s front and back surface
reflections (see, e.g., Ref. [52]), whereas such interference
would disappear if the interference would be perturbed by
random scattering or by nonplanar back surfaces.

When we zoom in on the spectra in Fig. 4, we note
several features and differences. For the thinnest crystal (L =
d002), the stop band is both the broadest (from 6400 cm−1 to
10 800 cm−1) and the reflectivity the lowest, with a maximum
of about 60% at the stop band center. A broadened and less
intense spectrum is reasonably expected for a thin crystal. In
comparison to the spectrum for L = d002, higher reflectivity
within the stop bands was observed for the other 3D photonic
crystals with larger thicknesses. In addition, the interference
fringes which are clearly observed for L = d002 within the
range of stop band becomes obscure in other thicker crystals.
This result indicates that, for the case of large thicknesses,
incident light is mostly reflected by the 3D photonic crystals
without reaching the substrate underneath, suggesting strong
interactions with photons in those 3D photonic crystals. In ad-
dition to the above-mentioned spectral features which indicate
strong interactions with photons, we can also observe several
other features originating in unintentional reasons. One is that
a peak at around 5000 cm−1 is observed only for the crystal of
L = 4d002. The reason for this peak would be a stacking order
in this 3D crystal (see Appendix) that inadvertently differs
from the other crystals. Another one is that at higher wave
numbers in the stop band around 9000 cm−1, the reflectivity
of the L = 3d002 crystal becomes lower than for other thick-
nesses. This is tentatively attributed to inadvertent errors in
our 3D crystals, such as misalignment between the stacked
layers.

B. Numerical simulations

To interpret our experiments, we have computed reflec-
tivity spectra using FDTD simulations. In Fig. 5, calculated
reflectivity spectra are compared with the measured one for
a crystal thickness L = 2d002. For a first set of simulations
where the GaAs refractive index is constant and nondispersive
(black dotted curve in Fig. 5), the width of the reflectivity peak
matches well with the measured one, which indicates that the
peak originates in a stop band of our 3D photonic crystal.
The fringes due to the interference in our substrate also match
well in period with the measured fringes. On the other hand,
it is apparent that the simulated spectrum has a substantially
higher reflectivity (up to 99%) than the measured one. To
interpret this marked difference in reflectivity, we explored
the roles of dispersion of the GaAs refractive index and of
structural disorder.

When we incorporate dispersion in the FDTD simula-
tions, the reflectivity spectrum hardly changes as shown in
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FIG. 5. Reflectivity vs wave number calculated for a thickness
L = 2d002 by 3D finite-difference time-domain simulations for the E
field parallel to the x axis. The blue dashed curve takes into account
GaAs dispersion, the black dotted curve is in absence of dispersion,
and the red drawn curve takes into account both dispersion [60] and
disorder [61]. Experimental data for L = 2d002 are shown as black
connected squares for comparison.

Fig. 5 (blue curve). Therefore, we reject the hypothesis that
dispersion is important. In contrast, when the disorder was
taken into account, the reflectivity is reduced around the
higher frequency side of the stop band, which results in close
matching between experiment and simulation at the higher
frequency range. This result suggests that the disorder in our
3D photonic crystals is a dominant reason for the reduction
in the reflectivity at the high-frequency side of the stop band.
Although the lower frequency side of the stop band is still
mismatched, this may be caused by other factors excluded in
our simulation, such as the effect of finite numerical aperture
of our reflection objective and the misalignment between
stacked layers.

IV. DISCUSSION

A. Multiple Bragg diffraction

In order to investigate finite-size effects in our 3D crystals,
we estimated the stop band widths from the reflectivity spec-
tra. Figure 6 shows the thickness dependence of the FWHM
of the stop band for both the measured and the simulated
reflectivity spectra. The stop band is slightly broader for the
thinnest crystal thickness of L = 2d002, and the bandwidth
only slightly decreases with increasing thickness. For a thick-
ness of only L = 3d002, the bandwidth seems to have saturated
to the infinite crystal limit. It is gratifying that the stop band
widths obtained from the FDTD simulations agree very well
with the experimentally obtained results, as shown in Fig. 6.

To obtain a physical intuition of the stop band widths of
the 3D photonic band-gap crystals, we start from the basic
notion that light propagation in photonic crystals is in essence
determined by Bragg diffraction interference [7]. The thick-
ness dependence of the stop band widths for the 3D photonic
crystals in Fig. 6 stems from intricacies in the Bragg condi-
tions. Figure 7(a) illustrates the well-known Bragg diffraction
[9], where incident light with a wave vector kin is diffracted
to outgoing light waves with wave vector kout by the crystal

FIG. 6. Bandwidth of the stop bands (FWHM of the reflectivity
peak) vs crystal thickness reduced by the lattice spacing (L/d002).
The red circles with error bars are the experimental observations; the
black triangles are calculated by 3D FDTD simulations. The green
curve is the model without free parameters given in Eqs. (2) and
(3) for weakly interacting photonic crystals with only one reciprocal
lattice vector g, as shown in Fig. 7(a).

periodicity that is described by a single dominant reciprocal
lattice vector g00l , such that

kout − kin = g00l . (1)

This simple Bragg condition leads to the formation of a stop
gap for light incident in the kin direction [28]. It appears
that for photonic crystals with a low photonic strength such
as opals and colloidal crystals [50,51,64], the observed total
relative stop band width �ω/ωc— where ωc is the center fre-
quency of the stop band—is well described by the following

FIG. 7. Schematic of Bragg conditions encountered in photonic
crystal reflectivity experiments with incident wave vector kin (blue)
and reflected wave vector kout (red). The crystal is drawn as an (x, z)
cross section. (a) In a weakly interacting photonic crystal, kin and
kout excite only Bragg waves with a reciprocal lattice vector (g00l )
parallel to the incident and reflected waves. (b) In a strongly inter-
acting photonic crystal, kin and kout excite multiple Bragg diffraction
conditions simultaneously with reciprocal lattice vectors that are not
only parallel to the incident and reflected waves (here g00l = g004)
but also in oblique directions, clockwise from left: g4̄00, g2̄02, g202,
g400.
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heuristic expression [51,65]:

�ω

ωc
=

√(
�ω

ωc

)2

phot

+
(

�ω

ωc

)2

fin

, (2)

where (�ω/ωc)phot is the purely photonic bandwidth that is
equal to the relative width of the dominant stop gap in a band
structure. Since a band structure pertains to an infinitely ex-
tended crystal (L → ∞),3 the relative bandwidth (�ω/ωc)phot
is constant. When the photonic width in Eq. (2) is taken to
only depend on one reciprocal lattice vector (n = 1), we refer
to it as a one-dimensional (1D) model. Secondly, (�ω/ωc)fin
is the relative bandwidth caused by the finite thickness of the
crystal; a practical expression for this thickness dependence
is well known in XRD theory and in grating theory to be
proportional to a sinc function that is proportional to the
inverse thickness, see Ref. [66], Eq. (3.6):(

�ω

ωc

)
fin

= C
d002

L
, (3)

where in case of the FWHM of a sinc function the constant
is to a very good approximation equal to C = 1.4. Figure 6
shows that the 1D model consisting of Eqs. (2) and (3) has a
much steeper dependence than both our measured data and our
simulated FDTD results. Therefore, we conclude that the 1D
Bragg model is not a suitable description of our observations.

Here, we focus on 3D photonic crystals with a band gap
and therefore with a high photonic strength. In cases of high
photonic strength, as illustrated in Fig. 7(b), Bragg interfer-
ence becomes more complex compared to the situation in
Fig. 7(a). It appears that the first, simple, Bragg diffraction
[similar to that of Fig. 7(a)] is equivalent to multiple Bragg
conditions [67–69]:

kout − kin = g00l = g004 (4)

= g2̄02 + g202 (5)

= g400 + g2̄02 + g2̄02 (6)

= g4̄00 + g202 + g202 (7)

= g040 + g02̄2 + g02̄2 (8)

= g04̄0 + g022 + g022. (9)

Since our 3D photonic crystals have the diamond structure,
the first, simple, Bragg diffraction in the z direction is the one
with Miller indices hkl = 00l = 004. The vectorial sum of
the reciprocal lattice vectors in Eqs. (5)–(9) add up to that
of Eq. (4), as is appreciated from the sum of their Miller
indices adding up to those of the first one. Such equivalent
reciprocal lattice vectors in the diamond structure are illus-
trated in Fig. 7(b). The consequence from Eqs. (5)–(9) is that
the reciprocal vectors in the multiple Bragg processes are
not oriented in the direction of the thinnest crystal dimension

3The relative bandwidth of the stop band in the dominant crystal
direction is a practical measure for the photonic interaction strength
between the light and the photonic crystal [29,30].

(z direction) but are also oriented in oblique directions, in the
extreme case even in the perpendicular directions x and y. In
these directions, the crystal is much more extended. Therefore
these Bragg conditions are hardly affected by the finite-size
effects in the z-direction. Since the large number of oblique
Bragg conditions also contributes to the overall bandwidth of
the stop band that is observed in the kout direction, it is thus
sensible that the observed bandwidth depends only little on
the finite thickness in the z direction, in agreement with the
observed experimental results in Fig. 6.

In parallel to the bandwidth, the maximum reflectivity
of the stop band also hardly varies with increasing crys-
tal thickness. For the experiment, this is apparent from the
observations in Fig. 4. This result can also be rationalized
with the insight that interference of many oblique Bragg
conditions contribute to the observed reflectivity peak. Since
these oblique Bragg conditions experience only few finite-size
effects on account of the lateral extent of the crystal being
much larger than the Bragg length, they contribute maximal
amplitudes to the whole reflectivity peak, regardless of the 3D
crystal thickness. Therefore, we conclude that the diffraction
of strongly interacting photonic crystals—certainly those with
a complete 3D photonic band gap—is not only determined by
the reciprocal lattice vectors in the direction of the incident
and diffracted wave vectors, but by all reciprocal lattice
vectors.

B. Practical consequences

Our work aims to contribute to a deeper understanding
of real 3D photonic crystals with finite size. The conclusion
so far is that thin 3D photonic band-gap crystals with high
photonic strength already yield potent transport behavior,
thanks to multiple incidences of Bragg interference, which
is highly useful from an application point of view. The
underlying reason why thin photonic band-gap crystals are
potent is the bandwidth of the band gap: broad band gaps
are sustained by thin structures (whereas narrow band gaps,
as with inverse opals, require thick structures). Such broad
3D photonic band gaps are extremely useful for applications
for a number of reasons: Firstly, broad photonic band gaps
serve to process broad signal bandwidths, which is useful
for optical communication purposes. Secondly, in quantum
information applications, elementary quantum systems such
as two-level systems are more strongly shielded from external
vacuum noise [44] when a surrounding 3D photonic band
gap is broader. Thirdly, a broader band gap is more robust
to disorder [61,70–72], thus making a band-gap device more
robust to inadvertent fabrication errors. Fourthly, a smaller
photonic band-gap device is still functional with a broader 3D
band gap, since the Bragg length is then even shorter, thus
permitting smaller sizes. Thus, we believe that our present
study on finite-size effects for broad band gaps is relevant
for various applications using 3D photonic crystals. Future
work could address the local density of state (LDOS) and the
density of states (DOS) [73] in a 3D photonic band gap, as
they play central roles in spontaneous emission control and
the control of blackbody processes.
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V. SUMMARY AND OUTLOOK

In this study we have investigated the optical reflectivity of
3D photonic band-gap crystals with increasing thickness. The
3D crystals with the so-called woodpile structure are assem-
bled by stacking GaAs plates with nanorod arrays using an
advanced micromanipulation method. We observe broad and
intense stop bands originating in a stop gap along the stacking
direction, typical of strongly interacting photonic crystals.
The bandwidth and the maximum reflectivity of the stop
band hardly increase with increasing crystal thickness. This
weak thickness dependence differs remarkably from previous
reports on weakly interacting 3D photonic crystals where stop
band widths and peaks show a strong thickness dependence.
Our current results are well matched by FDTD simulations.
Therefore, we conjecture that multiple Bragg interference
relevant to several reciprocal lattice vectors, including oblique
ones, contribute to the formation of the stop band in our
3D crystals, which demonstrates a finite-size effect in the
strongly interacting photonic crystals. This work contributes
to a deeper understanding of strongly interacting 3D photonic
crystals with finite size and paves the way to applications of
3D photonic band-gap crystals.

ACKNOWLEDGMENTS

We thank Diana Grishina, Pepijn Pinkse, and Ad Lagendijk
for useful discussions. We acknowledge funding by JSPS
KAKENHI (Grants No. 15H05700, No. 15H05868, and No.
17H02796), the FOM-NWO program Stirring of Light!, the
STW-Perspectief program Free-Form Scattering Optics, and
the MESA+ section Applied Nanophotonics (ANP).

APPENDIX

Our 3D photonic crystal [shown in Fig. 1(a)] does not
have mirror symmetry with respect to any x-y plane. Thus,

in addition to the thickness, the order of stacked layers in the
3D crystals also affects reflectivity spectra, although the effect
is relatively minor. Here, we note the stacking order of all 3D
crystal samples with the thicknesses L = d002, 2d002, 3d002,
and 4d002, shown in Fig. 2(a).

As explained in Sec. II A, the design of the 3D crystals is
composed of the periodically stacked four layers with arrays
of nanorods. In two of these four layers, the nanorods are
parallel to the x axis and the other two parallel to the y axis.
Also, the nanorods are spatially shifted by d/2 between the
two layers with parallel nanorods. We label these four layers
layer 1, 2, 3, and 4. The rod patterns of these layers are defined
below:

Layer 1: without shift and parallel to the y axis.
Layer 2: without shift and parallel to the x axis.
Layer 3: with shift and parallel to the y axis.
Layer 4: with shift and parallel to the x axis.
We fabricated these rod patterns in square regions of plates

as shown in Fig. 2(a). In the square region, the pattern without
the shift corresponds to having a rod at the center of the
square region and that with the shift a rod at the position
shifted by d/2 from the center along the direction perpen-
dicular to the nanorods. These layers are stacked, following
the order below for making samples with different thickness
L:

L = 1d002: 1-4
L = 2d002: 1-4-3-2
L = 3d002: 1-4-3-2-1-4
L = 4d002: 2-3-4-1-2-3-4-1

These numbers represent the layer number and are shown
in order from left to right for layer numbers from the top
to the bottom of the structure. The order of stacking was
inadvertently modified for thickness L = 4d002, resulting in
the nanorods of the top layer perpendicular to the electric field
of the incident light.
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