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Interaction of charged impurities and Rydberg excitons in cuprous oxide

Sjard Ole Krüger ,* Heinrich Stolz, and Stefan Scheel
Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, D-18059 Rostock, Germany

(Received 19 March 2020; revised manuscript received 11 May 2020; accepted 3 June 2020;
published 16 June 2020)

We investigate the influence of a static, uncorrelated distribution of charged impurities on the spectrum of
bound excitons in the copper oxide Cu2O. We show that the statistical distribution of Stark shifts and ionization
rates leads to the vanishing of Rydberg resonances into an apparent continuum. The appearance of additional
absorption lines due to the broken rotational symmetry, together with spatially inhomogeneous Stark shifts,
leads to a modification of the observed line shapes that agrees qualitatively with the changes observed in the
experiment.
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I. INTRODUCTION

Semiconductor Wannier excitons are quasiparticles com-
prising an electron and a hole bound by their mutual Coulomb
interaction [1]. These states have first been observed in the
1950s in Cu2O [2,3], where they appear as a series of reso-
nances below the band gap and show remarkable resemblance
to the hydrogenic Rydberg series. Recently, excitons with
large principal quantum numbers of up to n = 25, termed
Rydberg excitons, have been observed in Cu2O [4]. These
Rydberg excitons are very sensitive to perturbations of their
surroundings, just as their atomic counterparts. For example,
an intensity-dependent bleaching of the resonances has been
observed [4], which has been interpreted as an excitonic Ryd-
berg blockade. Furthermore, the deviations of the spectrum
of Rydberg excitons from a purely hydrogenic series can
be combined into a (phenomenological) quantum defect δn,�

that is induced by the nonparabolic hole dispersion and other
central-cell corrections [5–7].

Since their first observation, the influence of electric and
magnetic fields on Rydberg excitons [8–12], the mutual
dipole-dipole interaction between them [13], their fluores-
cence [14], and interexcitonic transitions [15] have been
studied. Additionally, proposals have been put forward to use
them for the implementation of masers [16,17] as well as the
realization of topological spin phases in lattice potentials [18].

Another effect that has sparked substantial interest is the
perturbation by free carriers, i.e., the electron-hole plasma
[19,20]. It has been observed that the introduction of an
electron-hole plasma by pumping above the band gap leads
to a Mott transition for the Rydberg excitons. There, the
band gap is lowered but the positions of the excitonic res-
onances are almost unaffected until the band gap crosses
them, and the resonances vanish into the ionization contin-
uum [19]. The apparent suppression of the highest exciton
resonances follows a similar phenomenology as the Rydberg
blockade mechanism. In addition to this plasma-induced shift
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of the band gap, the experiments revealed a static shift that
is already present without the introduction of free charge
carriers.

It has long been proposed that disorder introduced, e.g.,
by charged impurities might lead to the appearance of an
exponential decay of the absorption coefficient below the band
gap, as well as a shifted band gap [21]. Charged impurities
may form in a compensated semiconductor, containing both
acceptors and donors, as it can be energetically favorable for
donor-acceptor pairs to ionize if their binding energies are
sufficiently low, EA + ED < Eg (see Sec. 7.1.3 in Ref. [22]).
The main point defects present in a typical Cu2O crystal are
Cu and O vacancies [23,24] fulfilling this condition and acting
as acceptors and donors, respectively. Depending on the den-
sity of these defects, however, the oxygen vacancies may form
stable charged compound defects W + with copper vacancies
[23,25] deep inside the band gap. In order for charge neutrality
to be upheld, they would have to be compensated by an excess
of charged copper vacancies V −

Cu or free electrons. These
charged impurities introduce a static electric field in which
the exciton resonances may shift or ionize. This can result
in a downward shift of the edge of the absorption continuum
which can be interpreted as a reduction of the band gap. The
influence of the static charged impurities can, at least for low
densities of the impurities, be modeled by methods originally
derived for atomic systems in ionic plasmas, the microfield
distributions. These describe the statistical distribution of lo-
cal electric fields which in turn induce statistically distributed
Stark shifts and ionization broadening for the excitonic states.
In the absence of a screening plasma, the suitable microfield
distribution is the one derived by Holtsmark in 1919 [26] as all
assumptions [static, uncorrelated, and (locally) homogeneous
charge distribution] should be fulfilled. We will therefore use
it in this work to assess the influence of charged impurities on
the absorption spectra of the Rydberg excitons in Cu2O.

The article is structured as follows: In Sec. II, we describe
the modeling Hamiltonian used as well as the Holtsmark
microfield distribution and discuss the central assumptions. In
Sec. III, we will present the numerical spectra, analyze their
line parameters, and compare them to experimental spectra.
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Finally, we will provide a discussion of our results and an
outlook in Sec. IV.

II. THEORY OF STARK-SHIFTED EXCITONS

The real-space Wannier equation for an exciton perturbed
by external, static charges has the form[

H0 + e2

4πε

∑
i

si

{
1

|re − Ri| − 1

|rh − Ri|
}]

φ(re, rh)

= E φ(re, rh), (1)

where H0 is the unperturbed excitonic Hamiltonian, si = ±1
is the sign of the perturbing charge, and ε = ε0εr is the crystal
permittivity with εr = 7.5 [27]. Furthermore, re/h denote the
coordinates of the electron and hole that form the exciton, and
the Ri are the coordinates of the charged impurities. Focusing
on only one of the charges, introducing center-of-mass and
relative coordinates R and r, respectively, as well as �i = R −
Ri, gives, for the interaction Hamiltonian Hi,

Hi = e2

4πε
si

{
1

|�i − αr| − 1

|�i + βr|
}
, (2)

where α = me/(me + mh) and β = mh/(me + mh) are the rel-
ative electron and hole masses, respectively. A Taylor expan-
sion around r = 0 up to first order in r yields

Hi ≈ e2

4πε
si

�i · r
|�i|3

, (3)

and thus [
H0 + e2

4πε

∑
i

si
�i · r
|�i|3

]
φ(r)

= [H0 + eF · r]φ(r) = E φ(r), (4)

where

F =
∑

i

F i = e

4πε

∑
i

si
�i

|�i|3
(5)

is the total electric field of all charged impurities. Here, the
implicit assumption has been made that the length scale on
which F varies is large compared to the extension of excitonic
states. In this case, the center-of-mass and relative coordinates
can be separated if H0 also permits such a separation, and the
truncation of the Taylor expansion after the first nonvanishing
term is justified. We have tested this assumption via a Monte
Carlo ansatz, implying that within the range of interest (de-
fined by the radius of the largest observable excitons), the
median relative deviation from the linear approximation is
<10%.

Under the assumption of a static, uncorrelated, and homo-
geneous distribution of perturbing charges, the microfield dis-
tribution can be derived from Eq. (5), yielding the Holtsmark
distribution [26,28,29]

P(ξ )dξ = 2

π
ξ dξ

∫ ∞

0
dx x e−x3/2

sin(ξ x) (6)

of the normalized electric field ξ = |F|/F0. The normalization
factor F0 corresponds closely to the field induced by a single

impurity at a distance of R0 = 3
√

3/(4πρci ),

F0 = e

2ε

[
4ρci

15

]2/3

= e

4πεR2
0

(
8π

25

)1/3

≈ e

4πεR2
0

, (7)

where ρci denotes the density of charged impurities. R0 co-
incides roughly with the average distance of the nearest-
neighbor impurity at any point. The signs of the perturbing
charges si are irrelevant, as long as the Taylor expansion in
Eq. (3) is limited to the term linear in r. Microfield distribu-
tions for more involved scenarios have been derived includ-
ing, e.g., a screening plasma and charge-carrier correlations
[30,31].

We will focus on the simplest scenario of unscreened
charges interacting with hydrogenlike excitons fulfilling the
nonparabolic Wannier equation

H0 φ(r) =
[

p2

2μ
+ �Th(p2) − e2

4πε r

]
φ(r) = E φ(r), (8)

where �Th(p2) is the nonparabolic part of the hole dispersion
which is responsible for the excitonic quantum defects. The
approach to solve this equation based on reformulating it
as a Sturmian Coulomb problem [32] has been outlined in
Ref. [5]. The relative absorption coefficients of the Stark
spectra α0(ω, F ) are then derived by diagonalization of the
Wannier equation (4) in the basis of the eigenstates of H0.

If the Hamiltonian of the unperturbed exciton has O(3)
symmetry as in our model, the quantization axis can be chosen
parallel to F. In this case, the excitonic quantization axes are
distributed statistically, which can be taken into account by
regarding the exciting light field as unpolarized with respect
to the quantization axis, which leads to spectra independent of
the field direction α0(ω, F ) = α0(ω, F ) = A h̄ω

∑
i Li(ω, F )

with some constant A.
The resonance line shapes are modeled by asymmetric

Lorentzians [33]

Li(ω, F ) = fi

π

i
2 + 2qi g

(
ω−ωi
i/2

)
(ω − ωi )

(ω − ωi )2 + (
i
2

)2 , (9)

where fi is the oscillator strength, i the full width at half
maximum (FWHM) linewidth, ωi the frequency, and qi the
asymmetry parameter of the ith resonance. For isolated P
excitons, the asymmetry can be linked to the frequency de-
pendence of the phononic scattering [33]. In the following,
however, the qi have to be interpreted as empirical parameters
used to describe and compare the shapes of the absorption
lines in the experimental and numerical spectra as the apparent
change in the asymmetry is induced by the superposition of
multiple lines. In our model, all of these parameters except
for the qi depend on the electric field F . The function g(x) has
been chosen as

g(x) =
{

1 if |x| � 4,

e
−

(
|x|−4

4

)2

else.
(10)

The corresponding line shape resembles an asymmetric
Lorentzian with a constant asymmetry parameter in the vicin-
ity of the resonance, and a symmetric Lorentzian far away
from it. This line shape has been chosen as the use of asym-
metric Lorentzians with constant asymmetry g(x) = 1 leads
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TABLE I. Input FWHM linewidths in μeV taken from Ref. [35].

n P F n P F

2 1896 3 648.4
4 268.5 8.162 5 139.8 7.489
6 81.68 5.024 7 51.74 3.75
8 34.79 2.974 9 24.5 2.369
10 17.89 1.89 11 13.46 1.516
12 10.38 1.226 13 8.17 1.001
14 6.545 0.825 15 5.325 0.687
16 4.389 0.577 17 3.66 0.488
18 3.084 0.416 19 2.623 0.358
20 2.249 0.31 21 1.943 0.27
22 1.691 0.236 23 1.48 0.208
24 1.303 0.184

to a linearly decreasing absorption at the band gap due to the
long-range decay ∝ − (ω − ωi )−1 of all resonances below it.
This behavior is not observed in the experiment, where the
absorption increases linearly at the band gap as predicted by
Elliot [34] and reproduced by symmetric Lorentzians with
their long-range decay ∝(ω − ωi )−2. With this choice of
g(x), the transition between the asymmetric and symmetric
Lorentzian happens at about 2i. The choice of the parameter
4 is somewhat arbitrary but the resulting spectra are not very
sensitive to its exact choice.

The optical transition matrix elements on,�,m from the
crystal vacuum to the eigenstates of H0 are proportional
to [34]

on,�,m ∝
{

∂
∂r Rn�(r)

∣∣
r=0

if � = 1,

0 else ,
(11)

for unpolarized light, where Rn,�(r) denotes the radial part
of the real-space envelope function. The relative oscillator
strengths of the Stark excitons can then be calculated via

fi ∝ |ci · o|2, (12)

where ci is the ith algebraic eigenvector of the Hamiltonian
in Eq. (4) and o is the vector of the relative transition matrix
elements in Eq. (11), expressed in the chosen basis. The os-
cillator strengths of the unperturbed P excitons scale as fn ∝
(n2 − 1)/n5 due to the second-class nature of the transition
from the crystal vacuum to the excitonic state [34] (i.e., the
transition between the pure Bloch states of the valence and
conduction band is dipole forbidden at the zone center due to
parity).

The linewidths were calculated as laid out in Ref. [35]
for the unperturbed P and F excitons1 (see Table I). They
contain all relevant phononic scattering paths into the yellow
1S and 2S excitons, namely, the scattering by longitudinal

1Here and in the following, {S, P, D, F } refers to states with the
orbital quantum numbers � = {0, 1, 2, 3}, respectively, as is common
in atomic physics. In general, � is only a good quantum number
if the Hamiltonian is invariant under the full rotation group SO(3),
which cannot be the case in a solid state environment. In the cubic
symmetry of Cu2O, however, a spherically symmetric approximation
is sufficiently good [5], as reflected by our choice of H0.

FIG. 1. Comparison of the linewidths derived from spectrum S1
with the theoretically expected scaling (see Sec. III for details about
the experimental spectra). The deviation can be explained by an
additional broadening of 5.55 μeV for all lines.

optic (LO) phonons via the Fröhlich mechanism and the
deformation potential scattering by the −

3/5 phonons. For the
S and D excitons, the experimental linewidths are not well
described by this theory. We did therefore use extrapolated
experimental results from second-harmonic generation (SHG)
spectra [36] for the 3S and 3D state, respectively, giving nS =
2 meV n−3 and nD = 3 meV n−3. In addition, the complete
experimental spectra seem to be broadened by 5–6 μeV.
Figure 1 shows the experimental linewidths of one particular
absorption spectrum. The deviation from the theoretically
expected scaling ∝(n2 − 1)/n5 already observed in Ref. [4]
could be explained by the convolution of the spectrum with
a broadening Lorentzian, whose origin is unknown to us. We
modeled it by adding 5.55 μeV to all input linewidths.

The asymmetry of the lines was taken to be qi = −0.24 for
all lines, derived from fits to experimental spectra. Clearly, the
model Hamiltonian in Eq. (4) evaluated in a basis of bound
excitonic states can only be a reasonable description for Stark
excitons that are themselves bound. This problem could be
addressed by complex scaling techniques [11] or the intro-
duction of a complex absorbing potential [37]. Fortunately,
the states above the classical ionization threshold [38]

Eion(F ) = −
√

e3 F

πε
(13)

tend to be broadened by the ionization as well as the averaging
over the microfield distribution as they are very sensitive to
variations of the electric field. Our assumption is thus that
the ionized states only contribute to a continuous background
to the absorption spectrum but do not account for prominent
absorption lines. Once the Stark spectra are calculated, the
Holtsmark spectra can be derived via

α(ω, ρci ) = 1

F0(ρci )

∫ ∞

0
dF P

(
F

F0(ρci)

)
α0(ω, F ). (14)

The integration was performed on a logarithmic grid in F
with Fn/Fn−1 = 1.001 for field strengths from 1 mVm−1 to
100 kVm−1 via the finite difference summation

∫
dF f (F ) ≈∑

n �Fn f (Fn) where �Fn = (Fn+1 − Fn−1)/2.
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FIG. 2. Comparison of experimental spectra (dashed red lines)
and numerical spectra (solid blue lines). (a) Comparison of spectrum
S1 to the numerical spectrum for ρci = 1.2 × 109 cm−3. (b) S2 vs
numerical spectrum for ρci = 1011 cm−3. The vertical lines represent
the (numerical) positions of the unperturbed P excitons.

To summarize this section, the central assumptions of our
model are as follows: (1) The charged impurities are static and
their distribution is homogeneous and uncorrelated. (2) The
electric field induced by the impurities varies on length scales
considerably larger than the extension of the excitonic states
of interest. (3) The spectral structure is dominated by bound
excitons below the classical ionization threshold.

III. NUMERICAL RESULTS AND COMPARISON TO
EXPERIMENTAL DATA

We will now apply our numerical method to the resonance
spectrum of Rydberg excitons and compare with two exper-
imental absorption spectra with maximum observable princi-
pal quantum numbers of nmax ≈ 25 (hereafter S1) and nmax ≈
13 (hereafter S2). The spectrum S1 measured at 1.2 K is the
one used in the Ref. [4] and S2 was measured at 1.3 K. The
quantity nmax denotes the principal quantum number above
which the resonances form an apparent absorption continuum
and no individual lines can be resolved. There is, of course,
some uncertainty in the definition of the highest observable
principal quantum number nmax(ρci ). In our analysis, a reso-
nance was considered to have vanished as soon as its spectral
range could not be reliably fitted with the line shape in Eq. (9).
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FIG. 3. The line parameters of Eq. (9) derived by fits to the
numerical and experimental spectra for different impurity densities:
(a) the oscillator strength, (b) the FWHM linewidths, and (c) the
asymmetry parameter. The error bars denote one standard deviation.

Figure 2(a) compares S1 with a numerical spectrum derived
for ρci = 1.2 × 109 cm−3 which was chosen to reproduce nmax

while Fig. 2(b) compares S2 to a numerical spectrum for ρci =
1011 cm−3. The numerical spectrum in Fig. 2(b) shows weak
additional lines corresponding predominantly to the S, D, and
F excitons, which become dipole allowed due to the broken
rotational symmetry (see inset). The original experimental
spectra contain a background induced by the phonon-assisted
absorption into the 1S and 2S states [39]. This background
has been subtracted for the comparison with the numerical
spectra, leading to the appearance of a negative absorption
coefficient on the high-energy side of the lower resonances.

For the numerical computation, we took into account all
states with � � 25, nr = n − � − 1 � 100, as well as m =
0,±1. This results in basis sets of dimension 2275 for m = 0
and 2175 for m = ±1. The calculation can be restricted to
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these three magnetic quantum numbers as the Stark Hamilto-
nian has cylindrical symmetry which ensures that m remains
a good quantum number (if the quantization axis is chosen as
z ‖ F) and the optically active P states can only be mixed into
other states with m = 0,±1.

One observes the following: (1) Excitons with large prin-
cipal quantum numbers smear out and form an absorption
continuum while the total oscillator strength is conserved. (2)
The transition from negative asymmetry parameters qn for low
principal quantum numbers to positive ones for the highest n,
which have been observed in experimental spectra, is repro-
duced. (3) Due to the breaking of the rotational symmetries by
the Stark effect, additional absorption lines—corresponding to
initially dark states—appear in the numerical spectra for high
impurity densities. The strongest additional lines correspond
to the S, D, and F states.

Figure 3 shows the line parameters derived by fits to the
numerical spectra under the assumption that the underground
below each line is constant over its width. The oscillator
strength f [Fig. 3(a)] drops off steeply before the lines vanish
starting at n ≈ 2nmax(ρci)/3, an observation that could be
explained by neither plasma nor phonon interactions [20].
Compared to the experiment, however, the oscillator strength
follows the (n2 − 1)/n5 scaling for longer and drops off more
steeply for large n. Note that the experimental oscillator
strengths in Fig. 3(a) have been normalized to the numerical
ones at n = 5 as their absolute values cannot be compared.

The FWHM linewidths [Fig. 3(b)] start to deviate from the
linewidths of the unperturbed resonances n ≈ nmax(ρci )/2 and
drop off shortly before nmax(ρci). Additional inhomogeneous
broadening could be introduced by an inhomogeneous strain-
ing of the crystal, the ionisation of states below the classical
ionisation threshold [10] or the higher orders of the Taylor
expansion, Eq. (3), which will become relevant when the
electric field varies on the length scale of the exciton diameter.
Furthermore, there could be additional sources of microfields
with different microfield distributions, for example, optical
phonons [21] or surface charges. The asymmetry parameter q
[Fig. 3(c)] deviates from the value for the unperturbed lines
for large principal quantum numbers and changes sign for
n ≈ 4 nmax(ρci )/5.

From the numerical spectra, we can extract the maximally
observable principal quantum number as well as the shift of
the band gap. Figure 4 shows the dependence of this band-gap
shift on the density ρci of charged impurities. To a good
approximation, it follows a power law �Eg(ρci ) = −(0.71 ±
0.17) μeV(ρci/cm−3)0.254±0.011 ∝ ρ

1/4
ci . This scaling agrees

with the dependence of the band-gap shift on the plasma
density derived from many-body theory [20]. In our case,
however, this is a purely empirical observation. We have not
investigated whether this scaling holds outside the range of
impurity densities given here. Clearly, it will have to break
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FIG. 4. The band-gap shift �Eg(ρci ) (red diamonds) with a
power-law fit (dashed line) and the maximum observable principal
quantum number nmax(ρci ) (blue triangles).

down at some point for large ρci, as the assumptions made in
the derivation of the Holtsmark distribution break down.

IV. DISCUSSION AND OUTLOOK

In this work, we have numerically investigated the influ-
ence of charged impurities on the spectrum of (Rydberg)
excitons in Cu2O. Our calculations reproduce experimentally
observed phenomena such as the vanishing of the resonances
with high principal quantum numbers into an apparent ab-
sorption continuum, accompanied by a drop of the oscillator
strength of the discernible lines, a broadening as well as a
change of the line shape towards positive asymmetry parame-
ters q.

The breaking of the rotational symmetries inherent in our
model leads to the redistribution of oscillator strength to
initially dark states and the corresponding appearance of weak
additional absorption lines in the spectra for impurity den-
sities greater ∼1010 cm−3. In the experimental spectrum S2
[Fig. 2(b)] there are indeed some indications for such peaks,
however, the signal-to-noise ratio of the present spectrum
does not allow for a conclusive analysis. In every case, the
nonappearance of such peaks may be used to establish an
upper bound on the charged impurity density of given crystal
samples.
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