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Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a
two-dimensional Fermi gas from multidimensional bosonization
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We revisit the computation of particle number fluctuations and the Rényi entanglement entropy of a two-
dimensional Fermi gas using multidimensional bosonization. In particular, we compute these quantities for a
circular Fermi surface and a circular entangling surface. Both quantities display a logarithmic violation of the
area law, and the Rényi entropy agrees with the Widom conjecture. Lastly, we compute the symmetry-resolved
entanglement entropy for the two-dimensional circular Fermi surface and find that, while the total entanglement
entropy scales as R ln R, the symmetry-resolved entanglement scales as

√
R ln R, where R is the radius of the

subregion of our interest.
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I. INTRODUCTION

In recent years, there has been a surge of interest in quan-
tum entanglement and its various measures, in the condensed-
matter as well as the high-energy physics communities [1–9].
One of the most profound results pertaining to entanglement
entropy in many-body systems is the area law for ground
states of gapped systems, where the entanglement entropy
is known to be proportional to the area of a subregion [1].
This area law underlies the simulatability of gapped ground
states by matrix product states [10]. Intuitively, degrees of
freedom in a system with local interactions are entangled only
with their neighbors, so the entanglement entropy receives
contributions primarily from the degrees of freedom situated
close to the boundary.

Even though the appearance of the area-law behavior in
ground states is ubiquitous, there are known exceptions where
the area law is violated, typically with a logarithmic correc-
tion. Some well-known examples are conformal field theories
in one spatial dimension, which describe quantum critical
points, and fermionic systems in higher spatial dimensions
with a Fermi surface [11,12].

While the von Neumann entropy and related measures are
important physical quantities, they are difficult to compute
analytically for generic many-body systems. Conformal field
theories in one spatial dimension are among the most an-
alytically tractable systems since the replica technique can
be applied there. In these cases, the computation of the
entanglement entropy boils down to the evaluation of the
correlation functions of twist operators. Another approach
for one-dimensional systems would be to use the Fisher-
Hartwig formula for free systems. There are, however, fewer
analytical calculations done in spatial dimensions greater
than one. Calculations for the entanglement entropy of a
higher dimensional Fermi surface can either be done by
applying the Widom conjecture or bosonization, or by simply
dividing up the multidimensional Fermi surface into many
one-dimensional pieces where one can use the known one-
dimensional results [5,13–15]. Another example where the

entanglement entropy and particle number cumulants can be
computed in two spatial dimensions is a case of noninteracting
fermions trapped in a harmonic potential [16].

In this paper, we apply the multidimensional bosoniza-
tion technique developed in Refs. [17,18] to calculate the
entanglement entropy and related quantities of a Fermi gas
analytically and nonperturbatively. First, we compute the par-
ticle number cumulants’ generating function. This quantity is
then used to carefully derive the entanglement entropy for
an isotropic Fermi gas, which is found to be in agreement
with Widom’s conjecture. This implies that the leading term
in the entanglement entropy of a Fermi gas comes primarily
from the modes near the Fermi surface. The calculations
presented in this paper can potentially be generalized to higher
dimensions or to systems with Fermi liquid interactions. Next,
the particle number cumulants’ generating function is also
used to compute the symmetry-resolved entanglement of a
two-dimensional Fermi gas [19]. We find that each particle
number sector contributes an entanglement of

√
R ln R, while

the total entanglement entropy scales as R ln R, where R is the
radius of the subregion of our interest.

II. REVIEW OF MULTIDIMENSIONAL BOSONIZATION

Before proceeding with the calculations, we review
the scheme of multidimensional bosonization developed in
Refs. [17,18]. Alternate formulations of multidimensional
bosonization can be found in Refs. [20,21]. Given a filled
Fermi sea, we can create and annihilate particle-hole pairs
with the following operators:

n�q(�k) = c†
�k− �q

2

c�k+ �q
2

, (1)

where c�k/c†
�k are the electron annihilation/creation operators

with momentum �k. Because they are quadratic in the fermion
operators, their commutators are almost bosonic. However,
they do not annihilate the Fermi sea. We need to normal
order the particle-hole operators relative to the Fermi sea, so
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Ref. [18] defined the following operators:

a�q(�kF ) =
∑

�k
��(|�k − �kF |) [n�q(�k)�(�v�kF

· �q)

+ n−�q(�k)�(−�v�kF
· �q)],

a†
�q(�kF ) =

∑
�k

��(|�k − �kF |) [n−�q(�k)�(�v�kF
· �q)

+ n�q(�k)�(−�v�kF
· �q)], (2)

where �(x) = 1(−1) if x > 0(< 0) and ��(|�k − �kF |) is some
dimensionless smearing function that keeps the vectors �k close
to the Fermi momentum �kF . More precisely, it is defined as

lim
�→0

��(|�k − �kF |) = δ�k,�kF
, (3)

where � is a momentum space cutoff. We have also defined
the velocity of the particles as �v�k = �∇εk , with ε�k being the
spectrum of the one-particle states. The idea is to divide the
Fermi surface into patches of radius � centered about �kF ,
and �q is constrained to lie within the patch, so q � � � kF .
By construction, a�q(�kF ) annihilates the Fermi sea |FS〉, i.e.,
a�q(�kF )|FS〉 = 0.

For each patch, the local density of states is

N�(�kF ) = 1

V

∑
�k

|��(|�k − �kF |)|2δ(μ − ε�k ), (4)

where the chemical potential is μ = ε�kF
and the total system

size is V . The total density of states is

N (0) = 1

V

∑
�k

δ(μ − ε�k ) (5)

and they are related by N�(�kF ) = N (0)
Sd

for an isotropic Fermi
surface, where Sd is the d-dimensional solid angle. For con-
venience, rescale the bosonic operators Eq. (2) as

b�q(�kF ) = [N�(�kF )V | �q · �v�kF
|]−1/2a�q(�kF ). (6)

These operators obey the usual bosonic algebra:

[b�q(�kF ), b†
�q ′ (�k′

F )] = δ�kF ,�k′
F

(
δ�q,�q ′ + δ�q,−�q ′

)
. (7)

For the restricted Hilbert space that contains excitations
close to the Fermi surface, the noninteracting Hamiltonian is
effectively given by

H0 =
∑
�kF

�q·�kF >0∑
�q

| �q · �v�kF
|b†

�q(�kF )b�q(�kF ). (8)

We see that these bosons diagonalize the noninteracting low-
energy Hamiltonian. The electronic density is related to the
bosons as follows:

ρ(�q) =
�v�kF

· �q>0∑
�kF

[N�(�kF )| �q · �v�kF
|]1/2[b†

�q(−�kF ) + b�q(�kF )]. (9)

This is the multidimensional bosonization identity which re-
lates the fermionic density with the bosonic modes.

For the rest of the paper, we will restrict ourselves to two
spatial dimensions.

III. FREE FERMION PARTICLE NUMBER CUMULANT
GENERATING FUNCTIONAL

For a given subregion A, we define the generating function
of particle number cumulants to be [22,23]〈

eiλN̂A
〉
, λ ∈ C, (10)

where N̂A is the number operator of subregion A. The gener-
ating function produces the cumulants of the particle number
distribution in subregion A via

V (m)
A = (−i∂λ)m ln 〈 eiλN̂A 〉|λ=0. (11)

In particular, the second cumulant (variance) is

V (2)
A = 〈

(N̂A − 〈N̂A〉)2
〉
. (12)

Without interactions, the Hamiltonian is given by Eq. (8)
for low-lying states, so the ground state is annihilated by
b�q(�kF ). Defining f (�r) = iλ�(�r ∈ A), where �(�r) is the two-
dimensional step function, the generating function Eq. (10)
can be written as

〈 eiλN̂A 〉 =
〈

exp

[ ∫
dd r ρ(�r) f (�r)

]〉

=
〈

exp

[ ∑
�k

ρ(�k) f (−�k)

]〉
, (13)

where the momentum-space density operator can be related to
the bosonic modes via Eq. (9). Since the expectation value is
computed in the ground state of Eq. (8), it can be simplified by
the Baker-Campbell-Hausdorff formula. Let us further restrict
ourselves to a circular Fermi surface for the rest of the paper.
The generating function then simplifies to

〈 eiλN̂A 〉 = exp

[
− 1

2

λ2

V

∑
�kF

∫
�r∈A

dd r
∫

�r ′∈A
dd r ′

×
�v�kF

· �q>0∑
�q

N�(�kF )(�q · �v�kF
) ei �q·(�r−�r ′ )e

−
α| �q·�v�kF

|
|�v�kF

|
]
. (14)

Here, a momentum regulator α has been introduced so only
states with small excitation momenta normal to the Fermi
surface are kept.

It remains to perform the momentum sums and the spatial
integrals. We first integrate over the excitation momentum
�q. This can be done by decomposing �q into two parts, �q =
�qN + �qT , where �qN/T are the components normal/tangent to
the Fermi surface. The subsequent spatial integral leads to

〈 eiλN̂A 〉 = exp

[
− λ2

2π
NN�(�kF )|�v�kF

|I (R)

]
, (15)

where N = ∑
�kF

is the number of patches, and

I (R) =
∫

�r∈A
dd r

√
R2 − y2

R2 − y2 − (x + iα)2
, (16)
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with �r = (x, y). The coordinate system was chosen such that
�qN is parallel to x̂ and �qT is parallel to ŷ. The final result
is independent of the direction of the Fermi momentum �kF

due to the isotropy of the Fermi surface, so the sum over
the Fermi momentum of the patches of the Fermi surface
simply becomes the number of such patches. Evaluating the
final one-dimensional spatial integral numerically, we find
that I (R) � 2R ln R

α
+ 0.776R. The generating function for the

particle number cumulants is thus

〈 eiλN̂A 〉 = exp

[
− λ2kF

(2π )2

(
2R ln

R

α
+ 0.776R

)]
. (17)

This equation is independent of the number of patches of the
Fermi surface, as it should be. The coefficient of the loga-
rithmic term converged unambiguously to 2 in the numerical
integration. With the generating function at hand, one can
easily obtain the variance Eq. (12):

V (2)
A = kF

2π2

(
2R ln

R

α
+ 0.776R

)
. (18)

The leading term is simply the two-dimensional area law
with a logarithmic violation, and is thus proportional to the
entanglement entropy, as it should be [12,24]. Intuitively, if
the number of particles in a subregion has significant fluctua-
tions, then there must be a large number of particles moving
between the subregion and its complement, giving rise to a
large amount of entanglement, so these two quantities should
be proportional.

The variance Eq. (18) can be checked numerically with the
following formula, valid for free fermions systems, in terms
of the overlap matrix [22,25,26],

V (2)
A = Tr [A(1 − A)], (19)

where A is the overlap matrix given in terms of the single-
particle eigenfunctions φn(�r) as

Anm =
∫

�r∈A
dd r φ∗

n (�r)φm(�r). (20)

The overlap matrix A is the continuum limit of the more fa-
miliar correlation function C used in computing entanglement
entropy for free fermions on a lattice [22], Tr Cn = Tr An.

(Working in the continuum allows us to select a perfectly
circular subregion, which is not possible in a lattice model).
For a total system of size L × L with periodic boundary
conditions,

Anm = 1

L2

∫
�r∈A

d2r ei(�km−�kn )·�r

= 2πR

|�km − �kn|L2
J1(|�km − �kn|R), (21)

where �k lies within a circular Fermi surface of radius kF and
J1(x) is a Bessel function of the first kind. The subregion A is a
disk of radius R as before. The numerically obtained variance
Eq. (19) with L = 20, kF = π is compared with the analytical
result Eq. (18) in Fig. 1. Here, we use the regulator α as a
fitting parameter with α = 0.0603.

FIG. 1. The ratio of the variance to the subregion radius V (2)
A /R

as a function of the subregion radius R obtained from the numerical
evaluation of Eq. (19) (dots) fitted against the analytical result
Eq. (18) (curve). The fit gives α = 0.0603. The system size is L = 20
and kF = π .

IV. ENTANGLEMENT ENTROPY

In this section, we compute the Rényi entanglement en-
tropy of a free Fermi gas in a circular subregion A with a
two-dimensional isotropic Fermi surface:

S(n)
A = 1

1 − n
ln Tr

(
ρn

A

)
. (22)

As mentioned earlier, for a free Fermi gas, the quantum
entanglement and the particle number variance for a given
subregion are proportional to each other [22–24],

S(n)
A

V (2)
A

= (1 + n−1)π2

6
+ O(1), (23)

where V (2)
A is the second cumulant of the generating function

we found earlier. Using our previously obtained analytical
result for the particle number variance, we readily obtain

S(n)
A = (1 + n−1)

kF

6
R ln

R

α
+ · · · . (24)

The fact that we are able to obtain the leading term in the
Rényi entropy by multidimensional bosonization implies that
the leading contribution comes from the modes near the Fermi
surface.

Let us also mention that Eq. (23) is not the only way to
relate the Rényi entropy with the particle number variance.
The Rényi entropy can be written in terms of expectation
values of the form Eq. (10) with particular choices of λ [27].
This approach yields the same result as in Eq. (23).

V. SYMMETRY-RESOLVED ENTANGLEMENT

Having computed the Rényi entropy, we turn our attention
to the charged entanglement:

S(n)
A (c) = Tr

(
ρn

A eicN̂A
)
, c ∈ R. (25)

This quantity has a nice interpretation of a replicated path
integral with flux insertion [19], as will be demonstrated later.
The charged entanglement entropy and its variants have been
used to detect and distinguish symmetry-protected topologi-
cal phases [28,29]. It has also been studied holographically
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[30–33]. A related quantity known as accessible entanglement
entropy has been studied in Refs. [34,35]. Performing the
Fourier transform, we obtain the symmetry-resolved entangle-
ment [19,36],

S(n)
A (NA) =

∫ π

−π

dc

2π
S(n)

A (c) e−icNA = Tr
(
ρn

A PNA

)
, (26)

where PNA is the projector onto the subspace with NA particles
in region A. In other words, the symmetry-resolved entangle-
ment is the contribution to the nth Rényi entropy from states
with NA particles in region A.

We begin by computing the charged entanglement. The
following derivation generalizes the computation of the en-
tanglement entropy in Ref. [27] to compute the charged en-
tanglement entropy. Let us consider the partial U (1) rotation
restricted to region A:

M = eicN̂A . (27)

In the basis of fermionic coherent states,

M =
∫

dψdψ̄dχdχ̄ e−(ψ̄ψ+χ̄χ )M(ψ̄, χ )|ψ〉〈χ̄ |, (28)

where ψ, ψ̄, χ, χ̄ are Grassmann numbers. (These coherent
states are constructed in the basis that diagonalizes the en-
tanglement Hamiltonian.) We have suppressed the indices of
the Grassmann variables for notational simplicity. All normal-
ization constants have also been absorbed into the integration
measure. Here,

M(ψ̄, χ ) = eφψ̄χ , φ = eic. (29)

Performing the Grassmann integrals [37], we obtain the
following simple form for the charged Rényi entropy:

Tr
(
ρn

A eicN̂A
) =

∫ ∏
i

dαidᾱi ρA(ᾱi, αi ) e
∑

i, j ᾱiTi jα j , (30)

where αi, ᾱi are Grassmann variables, and the T matrix in the
replica space is given by

T =

⎡
⎢⎢⎢⎢⎣

e−ic

−1
−1

. . .
−1

⎤
⎥⎥⎥⎥⎦ (31)

with eigenvalues

λk = ei( 2πk−c
n ), k = −n − 1

2
, · · · ,

n − 1

2
. (32)

This matrix connects the fermions in each sheet of the replica
path integral to the next and the phase factor in the upper right-
hand corner of the matrix corresponds to the Aharanov-Bohm
phase that the fermions acquire if they pass through all the
sheets of the replicated space-time and go back to the original
sheet. This is the reason why we can interpret the charged
Rényi entropy as a replicated path integral with flux insertion.
One can then factorize S(n)

A (c) as

S(n)
A (c) = Tr

(
ρn

AeicN̂A
) =

∏
k

Zk, (33)

where Zk is a ground-state expectation value,

Zk = 〈�|Tk|�〉 = Tr

(
ρATk

)
,

Tk = exp

(
i�k

∑
j

c†
j c j

) = exp
(
i�k

∑
μ

f †
μ fμ

)
. (34)

Here, c j are the real-space fermions while fμ are the fermions
that diagonalize the entanglement Hamiltonian and they are
related by a unitary transformation. �k is related to λk as
�k = c−2πk

n . We can now utilize our previous multidimen-
sional bosonization result for the generating function of par-
ticle number cumulants Eq. (17) with λ = �k . We thus arrive
at

S(n)
A (c) = exp

[
− kF I (R)

(2π )2

n−1
2∑

k=− n−1
2

�2
k

]

= e− n2−1
12n kF I (R)e− c2

4nπ2 kF I (R)
. (35)

Since I (R) = 2π2

kF
V (2)

A , the larger the variance, the smaller the
charged Rényi entropy.

The Fourier transform of charged entanglement S(n)
A (c)

gives the symmetry-resolved Rényi entropy for particle num-
ber NA:

S(n)
A (NA) = S(n)

A (c = 0)
∫ π

−π

dc

2π
e− kF I (R)

n ( c
2π )2−icNA . (36)

Assuming R ln R  1, the integrand is negligible for large c,
so we might as well extend the integration region to R and get
a Gaussian integral, leading to

S(n)
A (NA) =

√
πn

kF I (R)
e− kF I (R)

12
n2−1

n − nπ2N2
A

kF I (R) . (37)

Finally, the entanglement entropy for a given particle number
NA is

SA(NA) = 1

6

√
2πkF R ln

R

α
e
− π2N2

A
2kF R ln R

α , (38)

Dividing Eq. (37) by Tr(ρn
A) gives a normalized symmetry-

resolved Rényi entropy which can be used to compute the
accessible entanglement entropy discussed in Ref. [34]. where
we kept only the leading order term in the final expression.
Summing up the contributions from all the particle number
sectors, we recover the von Neumann entropy for subsystem
A: ∫

dNASA(NA) = kF

3
R ln

R

α
= SA. (39)

VI. CONCLUSION

In conclusion, we applied multidimensional bosonization
to compute the generating function of the particle number
cumulants of a circular subregion A for a two-dimensional
Fermi gas. This generating function is then used to compute
the Rényi entropy of the Fermi gas, which agrees with known
results. These quantities show a logarithmic violation of the
area law. We then proceed to compute the symmetry-resolved
entanglement of the two-dimensional Fermi gas, extending
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the results in Ref. [19] to two spatial dimensions. Each
charge sector is observed to give a

√
R ln R contribution to

the total von Neumann entanglement entropy, which scales
as R ln R. The success of multidimensional bosonization in
computing these quantities suggests that one could try to apply
multidimensional bosonization to compute other quantities in
a nonperturbative ab initio approach.

It should, in principle, be possible to extend the analysis to
higher dimensions, although the integrals in Eq. (14) become
a lot more complicated. To make progress in this direction, a
more efficient approach to evaluating the integrals is required.

While we focused on a noninteracting Fermi gas, the
power of bosonization lies in its ability to treat Fermi liquid
interactions. Before closing, we give a brief comment on the
effects of Fermi liquid interactions on the particle number
cumulants. Utilizing the formalism of Ref. [18], we computed
the particle number cumulants’ generating function with an
isotropic contact interaction (with a spherical Fermi surface
and a spherical entangling surface, as in the case of the free
Fermi gas). In this computation, the effects of interactions
can be incorporated by a Bogoliubov transformation, which
relates the modes that diagonalize the interacting Hamiltonian
to the noninteracting modes, thereby realizing Landau’s adia-
batic principle. Unfortunately, we found that the calculation is
plagued by an infrared (IR) divergence. The best way to deal
with the IR divergence is at this moment unclear, and left for
future investigation. We suspect that the IR divergence might

be cured with an improved treatment of collective modes
within the bosonization framework. Heuristically dropping
the IR divergence (appearing in a subleading contribution) by
hand, we found that the coefficient of the leading logarithmic
term decreases as we turn on interactions,

〈 eiλN̂A 〉=exp

[
−λ2kF

2π2

(
1 − 1

2

(
gN

1 + gN

)2
)

R ln
R

α
+ · · ·

]
,

(40)

where g is the dimensionless coupling constant. In particular,
it approaches half of the noninteracting value in the limit
of infinite coupling. This decrease is consistent with the
known result in one-dimensional Tomonaga-Luttinger liquids
[23]. It would be interesting to calculate the particle number
cumulants numerically and compare them with the above
findings.

Note added. Recently, Ref. [38] appeared on arXiv, where
the symmetry-resolved entanglement for higher-dimensional
Fermi gases was computed using Widom’s conjecture.
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