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Theory of the fractional quantum Hall effect in Weyl semimetals
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We develop a hydrodynamic field theory of the three-dimensional fractional quantum Hall effect, which was
recently proposed to exist in magnetic Weyl semimetals, when the Weyl nodes are gapped by strong repulsive
interactions. This theory takes the form of a BF theory, which contains both one-form and two-form gauge
fields, coupling to quasiparticle and loop excitations, respectively. It may be regarded as a generalization of the
Chern-Simons theory of two-dimensional fractional quantum Hall liquids to three dimensions.
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I. INTRODUCTION

One of the fundamental properties of any quantum-
mechanical system is level repulsion: energy levels do not
cross when parameters are varied. An important implication
of this is that gapless excitations in many-body systems are
an exception rather than a rule, in the sense that they do not
appear without a specific reason. In particular, conventional
phases of matter are distinguished by spontaneously broken
symmetries. These necessarily lead to gapless excitations, or
Goldstone modes, described by the corresponding “nonlinear
sigma model.” When the Goldstone modes fluctuate strongly
and the broken symmetry is restored, a gap is generally
opened [1].

A gapless spectrum may also arise for topological, rather
than symmetry, reasons [2,3]. Topological insulators (TIs)
necessarily have gapless states on their boundaries [4–6],
which are required by the existence of nontrivial invariants,
characterizing the bulk electronic structure of the insulator.
But topology-mandated gaplessness is not limited to TI sur-
faces. The bulk spectrum may also be gapless for topological
reasons. The best known and simplest example of this is the
fact that when the number of electrons per unit cell of a
crystal is an odd integer, the material must be a metal with
a Fermi surface of gapless particle-hole excitations, whose
enclosed volume in momentum space is proportional to the
electron density [7]. The only way to avoid gaplessness in
this situation, without breaking translational symmetry and
thus changing the number of electrons per unit cell, is through
the formation of a Mott insulator, in which electron quantum
numbers are fractionalized and topological order, i.e., genus-
dependent ground-state degeneracy, is present [8–11].

When the number of electrons per unit cell is even, con-
ventional wisdom holds that one may (and often does) still
get a metal due to accidental band overlap, but generically,
one gets an insulator, as the Luttinger volume vanishes in this
case. This conventional wisdom was shown to be incorrect
recently, when Weyl semimetals were discovered [12–15].
A Weyl semimetal has a gapless bulk spectrum when the
number of electrons per unit cell is even and one thus nor-
mally expects an insulator or an accidental (semi)metal with
zero Luttinger volume, which may be deformed into an

insulator by a small perturbation of the Hamiltonian. In con-
trast, a gapless spectrum in a Weyl semimetal is mandated by
topology, and the Weyl semimetal phase arises unavoidably
in certain generic situations, in particular as an intermediate
phase between the TI and normal insulator in three dimensions
(3D) when either time reversal (TR) or inversion symmetries
are violated [16,17].

In analogy to the Mott insulator state in strongly correlated
materials with an odd number of electrons per unit cell, one
may ask whether we can circumvent the topologically man-
dated gaplessness in Weyl semimetals and open a gap when
strong electron-electron interactions are introduced. Is this
possible, and if yes, what is the nature of the insulating state
one obtains? We asked and answered this question in Ref. [18]
in the context of the simplest realization of a Weyl semimetal
with a single pair of opposite-chirality Weyl nodes at the
Fermi energy (see Refs. [19–23] for alternative discussions
of this problem). Such a Weyl semimetal inevitably arises as
an intermediate phase between an integer quantum Hall (IQH)
and normal insulator in 3D.

In a 3D band insulator the Hall conductivity is quantized
as

σxy = e2

h

G

2π
, (1)

where G is a reciprocal lattice vector [24–26]. Just as in
two dimensions (2D), this integer (i.e., integer multiple of a
primitive reciprocal lattice vector 2π/a, where a is the lattice
constant) quantization is a direct and inevitable consequence
of gauge invariance. Suppose we want to realize a transition
between a 3D normal insulator with σxy = 0 and an IQH
insulator with σxy = e2/ha. In 2D the analogous transition
is a sharp “plateau transition”: the Hall conductivity jumps
between the two quantized values. This sharp transition is
a consequence of the fact that the Hall conductivity in 2D
is dimensionless in units of a combination of fundamental
constants e2/h and there is no way to smoothly interpolate
between the two quantized values. In 3D, however, the situ-
ation is different, and the Hall conductivity involves a wave
vector. This implies that the IQH transition does not have
to be (in fact, cannot be) sharp in 3D. Instead, it proceeds
through a gapless phase, a Weyl semimetal, in which the Hall

2469-9950/2020/101(23)/235168(7) 235168-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2139-0792
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.235168&domain=pdf&date_stamp=2020-06-29
https://doi.org/10.1103/PhysRevB.101.235168


MANISHA THAKURATHI AND A. A. BURKOV PHYSICAL REVIEW B 101, 235168 (2020)

conductivity is given by

σxy = e2

h

2Q

2π
, (2)

where 2Q is the separation between a pair of opposite-
chirality Weyl nodes in momentum space, which changes
smoothly between zero and G. Vice versa, such a “fractional”
Hall conductivity in the absence of a Fermi surface (Luttinger
volume is zero due to the even number of electrons per unit
cell) inevitably, by gauge invariance, implies the presence of
gapless Weyl nodes.

Another very useful viewpoint on the connection between
the noninteger Hall conductivity in 3D and Weyl nodes is
provided by the concept of the chiral anomaly [27–30]. In
the absence of the Fermi surface, the Hall conductivity is a
thermal equilibrium property, given by the derivative of the
electron density with respect to the magnetic field

σxy =
(

∂n

∂B

)
μ

, (3)

where we will switch to h̄ = c = e = a = 1 units henceforth.
The nonzero derivative with respect to the applied magnetic
field arises in the Weyl semimetal case due to the property
that the lowest Landau level crosses the Fermi energy at the
locations of the two Weyl points (the classic chiral anomaly,
i.e., nonconservation of the chiral charge, is a direct conse-
quence of that). This introduces an effective one-dimensional
(1D) metal with a magnetic-field-dependent electron density

n = 2Q

2π

B

2π
, (4)

which is not an integer per 2π�2
B = 2π/B, leading to a

nonzero 1D Luttinger volume. The derivative of this extra
magnetic-field-induced Luttinger volume with respect to the
magnetic field gives the fractional Hall conductivity of Eq. (2),
thus revealing a connection between the gaplessness of Weyl
semimetals, chiral anomaly, and Luttinger’s theorem [31].

Using the “vortex condensation” method [32,33], we found
in Ref. [18] that Weyl nodes may, indeed, be gapped out
while preserving the chiral anomaly, i.e., the electrical and
thermal Hall conductivities of the gapless Weyl semimetal,
when the separation between the Weyl nodes is exactly half
the reciprocal lattice vector 2Q = π . The resulting state was
shown to be a 3D version of a non-Abelian fractional quan-
tum Hall state, which may be viewed as a 3D TR-breaking
analog of the Pfaffian-antisemion state on the surface of a 3D
TI [32,33]. In this paper we provide mathematical details of
the vortex condensation procedure and derive a hydrodynamic
BF theory [34–40] of this 3D Fractional Quantum Hall (FQH)
state. This theory may be viewed as a 3D analog of the
Chern-Simons field theory of 2D Fractional Quantum Hall
Effect (FQHE).

II. DERIVATION OF THE HYDRODYNAMIC THEORY

To derive the hydrodynamic theory of the 3D FQH liquid
microscopically, we start from the simplest lattice model of
a magnetic Weyl semimetal with two nodes [17,41]. The

momentum space Hamiltonian is given by

H =
∑

k

ψ
†
k [σx sin(kx ) + σy sin(ky) + σzm(k)]ψk . (5)

Here σi are Pauli matrices, describing the pair of touching
bands, and

m(k) = cos(kz ) − cos(Q) − m̃[2 − cos(kx ) − cos(ky)], (6)

where m̃ > 1 and m(k) vanishes at two points on the z axis
with kz = ±Q, which are the locations of the Weyl nodes.
Equation (5) has the form of a Hamiltonian of a massive
2D Dirac fermion with mass m(k), which changes sign at
the Weyl node locations. Since a massive 2D Dirac fermion
contributes sgn(m)/4π to the Hall conductivity, it follows
from Eqs. (5) and (6) that the Hall conductivity of the Weyl
semimetal is given by Eq. (2).

Fourier transforming Eq. (5) to real space and coupling to
external electromagnetic field, we obtain

H =
∑

r

{
iAr0ψ

†
r ψr − [cos(Q) + 2m̃]ψ†

r σzψr

− i

2
ψ†

r (σx + im̃σz )ψr+xeiArx + H.c.

− i

2
ψ†

r (σy + im̃σz )ψr+yeiAry + H.c.

+ 1

2
ψ†

r σzψr+ze
iArz + H.c.

}
. (7)

We now use parton representation of the electron opera-
tors [42]

ψr = eiθr fr, (8)

where eiθr represents a spinless charged boson (chargon)
while fr is a two-component neutral fermion (spinon) which
carries the remaining spin and orbital quantum numbers of the
electron. The spinon number satisfies a local constraint,

f †
r fr = nr, (9)

where nr is the chargon number operator, conjugate to the
phase

[θr, nr] = −i. (10)

Decoupling the spinon and chargon variables using
the Hubbard-Stratonovich transformation, we obtain the
following contributions to the imaginary-time Lagrangian
density L = L f + Lb (the imaginary-time action is S =∫ β

0 dτ
∑

r L) [43–45]:

L f = f †
r (∂τ − iar0) fr − [cos(Q) + 2m̃] f †

r σz fr

− iχ

2
f †
r (σx + im̃σz ) fr+xe−iarx + H.c.

− iχ

2
f †
r (σy + im̃σz ) fr+ye−iary + H.c.

+ χ

2
f †
r σz fr+ze

−iarz + H.c., (11)

and

Lb = inr (∂τ θr + Ar0 + ar0) − χ cos(�iθr + Ari + ari ).
(12)
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Here χ and ari are the amplitude and the phase of the
Hubbard-Stratonovich field, coupling chargons and spinons,
ar0 is a Lagrange multiplier which enforces the constraint in
Eq. (9), and arμ is thus a compact U(1) gauge field, associated
with the U(1) gauge invariance implicit in the parton decom-
position (8). �iθr = θr+i − θr is a discrete derivative. We have
not explicitly included the electron-electron interaction terms,
which are generally present in both L f and Lb. While the
specific form of these interactions is not important for our
purposes, their presence certainly is since the physics we will
discuss can arise only as a result of repulsive electron-electron
interactions.

In the language of the parton construction, “vortex con-
densation” means pairing spinons (which by itself does not
produce a superconducting state since the spinons are neutral)
and condensing vortices of the chargon field to produce a
charge insulator. This procedure results in a gapped incom-
pressible state, if no symmetries are broken. As discussed in
Ref. [18], to gap out the spinons, finite-momentum (Fulde-
Ferrell-Larkin-Ovchinnikov, or FFLO) pairing is necessary,
where spinons on each side of the left- and right-handed
Weyl cone are paired [46,47]. This generally produces a state
with broken translational symmetry. Since the pairing field
carries momentum 2Q, a gauge-invariant density modulation
carries momentum 4Q. This means that when and only when
4Q = G = 2π , the gapped state of paired spinons actually
does not break translational symmetry. This gives 2Q = π ,
i.e., the Weyl node separation of exactly half the reciprocal
lattice vector. The Fermi arc of the spinon Weyl semimetal
turns into a Majorana surface state in this case, which spans
the entire Brillouin zone (BZ), allowing the Weyl nodes to be
gapped without BZ reduction and thus translational symmetry
breaking.

Alternatively, this state, specifically in the case 2Q =
π , may also be obtained using BCS zero-momentum pair-
ing [46–49]. This route was not discussed in Ref. [18], so let
us elaborate on it here. Let us start from the spinon Hamil-
tonian, ignoring the coupling to chargons, and add standard
BCS pairing of time-reversed states:

H =
∑

k

f †
k [σx sin(kx ) + σy sin(ky) + m(k)σz] fk

+�
∑

k

( f †
k↑ f †

−k↓ + f−k↓ fk↑). (13)

Introducing the Nambu vector f̃k = ( fk↑, fk↓, f †
−k↓, f †

−k↑) and
diagonalizing the particle-hole block of the Hamiltonian, we
obtain

H = 1

2

∑
k

f̃ †
k {σx sin(kx )+ σy sin(ky) + [m(k) ± �]σz} f̃k.

(14)

When 2Q = π and � > 1, this describes a fully gapped
topological superconductor, which may be viewed as a stack
of 2D p + ip superconductors and has a Majorana mode,
spanning the BZ in the z direction [47,48]. This is identical to
the state one gets by gapping out the Weyl nodes with FFLO
pairing when 2Q = π . Henceforth, we will assume that the

FIG. 1. Cartoon of a vortex world sheet in 3 + 1 dimensions,
swept by a section of a vortex loop. The two-form vortex current Jμν

is associated with a tangent plane to the world sheet at a particular
space-time point. It is minimally coupled to the two-form gauge field
bμν . The two-form gauge invariance is connected to the vorticity
conservation.

Weyl node separation is 2Q = π and the spinons are gapped
by either FFLO or strong BCS pairing.

We now turn to the charge sector of the theory, described
by Lb, which contains most of the physics of the vortex
condensation. To describe vortex condensation we need to
pass to the dual description. We start by decoupling the cosine
in Eq. (12) using Villain transformation, which is, in essence,
a discrete analog of the Hubbard-Stratonovich transformation,

Lb = inr (∂τ θr + Ar0 + ar0)

+ iJri(�iθr + Ari + ari ) + 1

2χ
J2

ri + 1

2χ
n2

r , (15)

where the currents Jri are integers and the last term arises
from repulsive electron-electron interactions. We have made
its coefficient the same as that of the J2

ri term for notational
brevity; this does not lead to any loss of generality. Identifying
nr = Jr0 and discretizing the imaginary time, Eq. (15) may be
written in a compact “relativistic” notation,

Lb = iJrμ(�μθr + Arμ + arμ) + 1

2χ
J2

rμ. (16)

The currents Jrμ are defined on the corresponding links of the
space-time lattice. Integrating over θr produces the chargon
current conservation law

�μJrμ = 0. (17)

This may be solved as

Jμ = 1

2π
εμνλρ�νbλρ, (18)

where bμν is a (2π × integer)-valued antisymmetric two-form
gauge field, defined on plaquettes of the dual space-time
lattice, bisecting the links of the direct lattice on which
the currents Jμ are defined. For brevity we will drop the r
subscripts henceforth. Equation (18) possesses gauge invari-
ance with respect to the transformation bμν → bμν + �μgν −
�νgμ. The two-form gauge field bμν is minimally coupled to
a conserved two-form vortex space-time current Jμν , which
will be explicitly introduced below and describes vortex world
sheets in 3 + 1 space-time dimensions (see Fig. 1) [34–40].
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It is convenient to relax the 2π × integer constraint on bμν

by introducing a “vortex kinetic energy term” as follows [50]:

Lb = i

2π
(Aμ + aμ)εμνλρ�νbλρ + 1

8π2χ
(εμνλρ�νbλρ )2

− t cos(�μαν − �ναμ + bμν ). (19)

This term, which is manifestly gauge invariant, describes the
vorticity-conserving motion of vortex loops. The operator
e−iαrμ creates a segment of a vortex loop on the link (r, μ)
of the dual lattice [the r indices are suppressed in (19)]. The
kinetic energy term then describes annihilation of vortex loop
segments on links (r, μ) and (r + μ, ν) and simultaneous
creation of two segments on links (r, ν) and (r + ν, μ), which
is the simplest possible process, changing the local geometry
of the vortex loop while preserving its continuity.

Conventional vortex condensation would mean taking t to
be large, in which case the last term in Eq. (19) results in
the Meissner effect for the gauge field bμν , giving rise to
a mass term bμνbμν . This, however, produces a trivial Mott
insulator with a zero electrical Hall conductivity, not the state
we are looking for, preserving the chiral anomaly. In order
to fix this, it is convenient to switch to a dual view of the
vortex condensation, which operates explicitly with vortex
currents. As before, we decouple the cosine using the Villain
transformation,

Lb = i

2π
(Aμ + aμ)εμνλρ�νbλρ + 1

8π2χ
(εμνλρ�νbλρ )2

+ iJμν (�μαν − �ναμ + bμν ) + 1

2t
(Jμν )2, (20)

where Jμν are integer vortex current variables. Integrating out
αμ gives the vorticity conservation law

�μJμν = 0, (21)

which may be solved as

Jμν = 1

2π
εμνλρ�λcρ, (22)

where cμ is a (2π × integer)-valued one-form gauge field,
defined on the links of the direct space-time lattice, perpen-
dicular to the plaquettes of the dual lattice on which currents
Jμν are defined. Then Eq. (20) becomes

Lb = i

2π
(Aμ + aμ + cμ)εμνλρ�νbλρ

+ 1

8π2χ
(εμνλρ�νbλρ )2 + 1

8π2t
(εμνλρ�λcρ )2. (23)

The 2π × integer constraint on cμ may be softened as before
by introducing the term −t̃ cos(�μφ + cμ), where φ is essen-
tially the phase of the chargons. Since we want to describe a
charge insulator, the chargons are gapped, and therefore, this
term may be ignored. One needs to remember, however, that
cμ is a compact gauge field, defined modulo 2π .

Then, integrating over cμ produces a Meissner term for bμν

and a trivial Mott insulator. This would correspond to ordinary
condensation of 2π vortices. Instead, we will condense double
(flux 4π ) vortices, placing them in a quantum Hall state
rather than a simple superfluid state. To accomplish this, we
replace the 2π vortex kinetic energy term in Eq. (19) with the

4π vortex kinetic energy term −t cos(�μαν − �ναμ + 2bμν ).
Carrying out Villain transformation and integrating out α as in
Eqs. (20)–(23), we obtain

Lb = i

2π
(Aμ + aμ + 2cμ)εμνλρ∂νbλρ

− 2i

4π
εzμνλcμ∂νcλ + · · · , (24)

where the symbol · · · stands for the Maxwell terms and we
have taken the continuum limit. The factor of 2 in front of
cμ in the first term expresses the fact that we are condensing
flux 4π vortices. The first term in Eq. (24) is the standard
topological BF term, which simply encodes the mutual phase
factors of particles and flux 4π vortices. The second term,
which we added by hand, is a Chern-Simons term for cμ. It
has a properly quantized coefficient of 2/4π , which ensures
gauge invariance. Quantization of the coefficient may be
established by viewing the contribution of the second term in
Eq. (24) to the imaginary-time action as a sum of standard
2D Chern-Simons terms over atomic planes, stacked in the
z direction. This topological term expresses the fact that the
condensed double vortices exist not in a simple superfluid but
in a 3D quantum Hall state, whose physics we describe in
detail below.

We need to note here that a more mathematically com-
plete coordinate-independent formulation of the topological
field theory in Eq. (24) should involve a “translation gauge
field” [18,26,31,51–54] describing elastic response of the
3D crystal. This is a consequence of the fact that a Weyl
semimetal is protected by the crystal translational symmetry,
and we are aiming to describe a 3D featureless liquid state,
obtained by gapping the Weyl nodes without violating the
translational symmetry. This naturally leads to the emergence
of elastic gauge fields, whose fluxes are related to the den-
sity of crystalline defects (dislocations). However, here, in
the interests of clarity and simplicity, we will focus on the
electromagnetic (and thermal) response and thus choose more
simple-minded formulation, in which we explicitly fix the
direction of the Weyl node separation vector to be the z
direction. This fixes the first index of the antisymmetric tensor
in the Chern-Simons term in Eq. (24). We leave the more
complete formulation of the theory, involving elastic gauge
fields, to future work.

III. PHYSICS OF THE 3D FRACTIONAL
QUANTUM HALL LIQUID

Let us see that this theory indeed describes the cor-
rect physics, which was introduced in Ref. [18]. The
total Lagrangian density is given by L = L f (−aμ) +
Lb(Aμ, aμ, bμν, cμ), where L f (−aμ) is given by Eq. (11)
plus an FFLO (or strong enough BCS) pairing term, which
gaps out the Weyl nodes. Spinon pairing produces a Meissner
term for the gauge field aμ. Since L f is defined on a lattice
and aμ is a compact gauge field, the Meissner term has
the form − cos(2aμ), which makes aμ a Z2 gauge field. A
vison excitation of this Z2 gauge field corresponds to π flux
(hc/2e flux in normal units), which is the superconducting
flux quantum [55].
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Integrating out bμν in Eq. (24) produces a Meissner term
for the combination Aμ + aμ + 2cμ, which means that at low
energies we have

cμ = −Aμ + aμ

2
. (25)

This makes cμ a Z4 gauge field since cμ is also compact.
This emergent Z4 gauge theory structure corresponds to the
following electron fractionalization pattern:

ψ = f b1b2, (26)

where b1,2 are charge-1/2 bosons. We will discuss the physi-
cal meaning of this fractionalization in greater detail below.

Let us now minimally couple the gauge fields bμν and cμ

to the corresponding conserved current sources jμν and jμ,

Lb = i

2π
(Aμ + 2cμ)εμνλρ∂νbλρ − 2i

4π
εzμνλcμ∂νcλ

+ ibμν jμν + icμ jμ, (27)

where we have ignored the coupling to the spinons at this
point. The currents jμν and jμ describe vortex loop and quasi-
particle excitations correspondingly. Let us first set jμν = 0
and integrate out bμν . This gives

Lb = − i

8π
εzμνλAμ∂νAλ − i

2
jμAμ. (28)

The first term gives electrical Hall conductivity

σxy = 1

4π
= e2

h

π

2π
, (29)

which is identical to the Hall conductivity of a Weyl
semimetal with Q = π/2. The second term tells us that quasi-
particle excitations are bosons that carry charge-1/2.

Now let us set jμ = 0 instead and integrate out cμ. We
obtain

δLb

δcμ

= − i

π
εzμνλ∂νcλ + i

π
εμνλρ∂νbλρ = 0. (30)

We may solve this equation assuming that all fields are
uniform in the z direction. This corresponds to a mean-field
picture of our 3D incompressible liquid as a stack of indepen-
dent 2D incompressible liquids. This gives

cμ = −2bμz. (31)

What is the physical meaning of bμz? Consider jμz, which
is the component of the vortex current, minimally coupled to
bμz. If all other components of jμν are zero, jμz corresponds
to a straight-line vortex parallel to the z axis. Intersection of
this vortex line with the xy plane may be viewed as a particle,
to which the one-form gauge field bμz is minimally coupled.
Plugging Eq. (31) into Eq. (27) and rescaling variables bμz →
bμz/2, we obtain

Lb = 2i

4π
εzμνλbμz∂νbλz − i

2π
Aμεzμνλ∂νbλz + ibμz jμz. (32)

FIG. 2. Induced charges and exchange statistics for intersections
of π - and 2π -flux vortex lines with the xy plane. A π -flux line
induces a charge-1/4 and a localized Majorana mode, while a
2π -flux line induces a charge-1/2 semion.

This describes a stack of 2D FQH liquids of bosons in the
ν = 1/2 Laughlin state. Integrating out bμz, we obtain

Lb = − i

8π
εzμνλAμ∂νAλ + i

2
Aμ jμz − i

8π
εzμνλc̃μ∂ν c̃λ, (33)

where we have written jμz = εzμνλ∂ν c̃λ/2π for convenience.
Equation (33) tells us that the intersection of a vortex line,
parallel to z, with the xy plane behaves as a particle of charge-
1/2 and semionic statistics θ = π/2 (see Fig. 2). As discussed
in Ref. [18], this semionic self-statistics of an isolated inter-
section of a 2π vortex with the xy plane, which occurs, for ex-
ample, when a dislocation with the Burgers vector along the z
axis is inserted into the system, is what prevents condensation
of 2π vortex loops. In our derivation in the previous section
this was manifested in the impossibility of writing down a
theory with condensed 2π vortices, i.e., with a unit coefficient
in front of cμ in the first term in Eq. (24), while maintaining
a properly quantized coefficient of the Chern-Simons term
in (24) and getting the right electromagnetic response (29).

We have so far established that the charge sector of our
theory Lb correctly reproduces the topological part of the
electromagnetic response of the Weyl semimetal, namely, the
electrical Hall conductivity, given by Eq. (29). We want to also
reproduce the thermal response, which in the noninteracting
Weyl semimetal is tied to the electrical response by the
Wiedemann-Franz law,

κxy = σxy
π2k2

BT

3
. (34)

We note that the fermionic sector of the theory L f already
produces the right thermal Hall conductivity κxy, which arises
from the chiral Majorana surface state, spanning the BZ.
This means that Lb must describe a state with zero thermal
Hall conductivity if our 3D incompressible liquid indeed fully
reproduces the chiral anomaly of a weakly interacting Weyl
semimetal.

The simplest way to see that this is indeed the case is
to invoke the mean-field approximation, described above, in
which only bμz components of the two-form gauge field bμν

are nonzero. Then we obtain

Lb = − i

π
(Aμ + 2cμ)εzμνλ∂νbλz − i

2π
εzμνλcμ∂νcλ. (35)
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FIG. 3. Schematics of the surface state structure of the 3D FQH
liquid. Only a 2D section, perpendicular to the z axis, is shown for
simplicity. There are two opposite-chirality bosonic modes, charged
(red solid line, bc) and neutral (red dashed line, bn), and a Majorana
mode (blue dotted line, γ ).

Changing variables as bμz → (bμz − cμ)/4, this becomes

Lb = − i

4π
εzμνλcμ∂νbλz − i

4π
εzμνλbμz∂νcλ

− i

4π
εzμνλAμ∂ν (bλz − cλ). (36)

This describes a stack of “bosonic integer quantum Hall”
states [56,57] of two-component charge-1/2 bosons, which
may be viewed as b1,2 in Eq. (26). As can be easily seen by
diagonalizing the K matrix, corresponding to Eq. (36), i.e.,
K = σx, this theory contains two edge modes: one charged,
which gives the Hall conductivity of Eq. (29), and one neutral,
which has opposite chirality (see Fig. 3). Thus the thermal
Hall conductivity in this state is indeed zero, and we have
a gapped incompressible liquid state, which has the same
topological response (chiral anomaly) as a noninteracting
Weyl semimetal.

One final issue we have not yet touched upon is excitations
of this incompressible fractionalized 3D liquid that arise from
the fermionic sector of the theory. Quasiparticle fermionic ex-
citations are the neutral spinons f themselves. There are also
vison loop excitations of the gauge field aμ. To understand
their properties let us go back to Eq. (25). Substituting this
into the full Lagrangian, we obtain

L = L f (−aμ) − i

8π
εzμνλAμ∂νAλ

− i

4π
εzμνλAμ∂νaλ − i

8π
εzμνλaμ∂νaλ. (37)

Consider a straight vison (i.e., π flux of aμ) line, parallel
to the z axis. The above equation tells us that such a vortex
line induces a charge-1/4 when intersecting an xy plane. In
addition, such a vortex binds a 1D helical Majorana mode,
dispersing along the z direction, which may be easily ob-
tained by solving the corresponding Bogoliubov–de Gennes
equation [18]. It follows that an intersection of the vison loop
with an atomic xy plane induces a 1/4 charge and a localized
zero-energy Majorana mode, as illustrated in Fig. 2. Braiding
of such vison loop excitations, when linked with an isolated
dislocation line, is characterized by non-Abelian statistics due
to the presence of the Majorana mode. The 3D FQH state we
have found may thus be viewed as a 3D analog of non-Abelian
even-denominator 2D FQH liquids.

IV. CONCLUSIONS

In this paper we have discussed the hydrodynamic theory
of the 3D FQH state, obtained after gapping Weyl nodes in
a magnetic Weyl semimetal without breaking translational
symmetry, introduced in Ref. [18]. This takes the form of
a hydrodynamic BF theory, which is a 3D analog of the
Chern-Simons theory of 2D FQHE. An important difference
from the 2D case is that this theory contains two gauge
fields: a two-form gauge field bμν and a one-form gauge field
cμ. Physically, this expresses the existence of two kinds of
excitations in the 3D FQH liquid: quasiparticle excitations,
which couple to cμ, and loop excitations, which couple to
bμν . In addition, there is a statistical gauge field aμ, which
couples bosonic and fermionic sectors of the theory. Unlike in
2D FQHE, quasiparticle excitations are always either bosons
or fermions, as there is no fractional statistics in 3D. The
closest analog of the fractionally charged anyon excitations of
2D FQH liquids is, in fact, the loop excitations. In particular,
when a 2π vortex loop intersects an xy atomic plane, the
intersection point carries charge-1/2. The exchange of two
such intersection points may be sharply defined when a pair
of vortex loops is linked with a dislocation line in the xy
plane [18,58]. In this case, the exchange statistics of the linked
2π vortex loops is semionic. A π -flux vortex loop induces a
charge-1/4 and a localized Majorana mode, leading to non-
Abelian exchange statistics.

While in this paper and in Ref. [18] we focused on fully
gapped states, preserving the chiral anomaly of a noninteract-
ing Weyl semimetal, it also makes sense to consider gapless
strongly correlated states with the same property. Such states
may be accessed easily within the formalism, presented above,
by simply leaving the spinons unpaired while still placing the
chargons in a gapped fractional quantum Hall state. This type
of gapless topologically ordered state may be regarded as a 3D
analog of the composite fermion Fermi liquid at filling factor
ν = 1/2, [59] and may be called a “composite Weyl liquid.”
While a similar term was introduced earlier in Ref. [21], its
meaning is somewhat different in our case. Unlike the fully
gapped 3D FQH liquid, nontrivial composite Weyl liquids
may, presumably, exist at many different values of the Weyl
node separation. The corresponding topological orders may
be described by condensing vortex composites with even-
integer vorticity larger than 4 in units of the superconducting
flux quantum. We leave a more detailed discussion of possi-
ble composite Weyl liquids and their physical properties to
future work.
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