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The two classes of 3D, time-reversal-invariant insulators are known to subdivide into four classes in the
presence of glide symmetry. Here, we extend this classification of insulators to include glide-symmetric Weyl
metals and find a finer Z4 ⊕ Z classification. We further elucidate the smoking-gun experimental signature
of each class in the photoemission spectroscopy of surface states. Measuring the Z4 topological invariant by
photoemission relies on identifying the glide representation of the initial Bloch state before photoexcitation—we
show how this is accomplished with relativistic selection rules, combined with standard spectroscopic techniques
to resolve both momentum and spin. Our method relies on a spin-momentum locking that is characteristic of all
glide-symmetric solids (inclusive of insulators and metals in trivial and topological categories). As an orthogonal
application, given a glide-symmetric solid with an ideally symmetric surface, we may utilize this spin-momentum
locking to generate a source of fully spin-polarized photoelectrons, which have diverse applications in solid-state
spectroscopy. Our ab initio calculations predict Ba2Pb, stressed Na3Bi, and KHgSb to realize all three, nontrivial
insulating phases in the Z4 classification.
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Despite exhaustive theoretical classifications and modeling
of topological insulators and semimetals over hundreds of
space groups [1–13], there have been fewer material real-
izations, and far fewer translations of abstract topological
invariants into experimental observables. This work provides
the translation for a new class of topological solids pro-
tected by nonsymmorphic crystalline symmetries [1–3,14–
22]—symmetries that unavoidably translate space by a ra-
tional fraction of the lattice period [23]. A case in point is
glide-symmetric KHgSb which is invariant under reflection
composed with half a lattice translation; KHgSb represents
a nonsymmorphic topological insulator [1,2] with hourglass-
fermion surface states that have been experimentally con-
firmed [24,25].

From the perspective of topological classification of band
insulators, the two well-known classes [26–29] of 3D, time-
reversal-invariant insulators subdivide into four classes [3,30]
in the presence of glide symmetry. Indeed, while the Z2

classification in the absence of glide symmetry corresponds
to the number (even vs odd) of Dirac fermions on the surface
of an insulator, glide symmetry further assigns to each Dirac
fermion a “chirality” which enriches the classification to Z4.
To appreciate this, consider a glide-invariant cross section
(in k space) of a Dirac fermion, as illustrated in Fig. 1(a);
each Bloch state (with wave vector in this cross section)
carries a glide eigenvalue which takes on one of two values
(denoted as �±). The chirality of the Dirac fermion is defined
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to be positive (resp. negative) if the right-moving mode has
eigenvalue �+ (resp. �−), as illustrated in Fig. 1(b) [resp.
(c)]. Two fermions with positive chirality [first panel of
Fig. 1(d)] represent a nontrivial insulator whose surface-
band dispersion resembles an hourglass [second panel of
Fig. 1(d)] [1,2]. This same dispersion can be deformed to
two fermions with negative chirality [sequenced panels in
Fig. 1(d)] while preserving surface states at any energy in
the bulk gap (as illustrated in third column of Fig. 3) [31],
this provides a heuristic argument for the Z4 classification of
glide-symmetric insulators.

One of our aims is to extend this classification to de-
scribe glide-symmetric solids—inclusive of insulators and
topological metals—and to further elucidate the smoking-gun
experimental signature of each class of solids. As described
in Sec. II, the classification of topological solids is Z4 ⊕ Z,
with Z corresponding to the net number of Weyl points in a
symmetry-reduced quadrant of the Brillouin zone. Each class
of Z4 ⊕ Z can be experimentally distinguished through (a) the
holonomy of bulk Bloch functions over noncontractible loops
of the Brillouin torus, as well as through (b) the photoemission
spectroscopy [32,33] (PES) of surface states, as discussed in
Sec. IV. (a) and (b) are related by the bulk-boundary corre-
spondence [2,34,35] of topological insulators and metals.

We propose that our theory is materialized in Sec. III by
Ba2Pb, uniaxially-stressed Na3Bi, and KHgSb; they respec-
tively fall into the classes: (χ+ ∈ Z4, C ∈ Z) = (3, 0), (1,0),
and (2,0). For the Dirac semimetal Na3Bi, we consider a
stress that preserves the glide symmetry but destabilizes the
Dirac crossings between conduction and valence bands [36],
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thus inducing a transition from a Dirac semimetal (with space
group D4

6h) to a χ+ = 1 topological insulator (with nonsym-
morphic space group 63); such a transition is deducible using
the methods of topological quantum chemistry [21]. While
it is known that Ba2Pb and gapped Na3Bi belong to the
same nontrivial phase under the Z2 time-reversal-symmetric
classification [36,37], here we propose that they are distinct
phases in the Z4 glide-symmetric classification and may be
distinguished by photoemission spectroscopy.

Measuring the Z4 topological invariant through photoe-
mission relies on identifying the glide eigenvalues (�±) of
Bloch states before they are photoexcited [cf. Figs. 3(c)–
3(h)]. By combining angle-resolved PES with dipole selection
rules [38,39], it is known how to determine the integer-spin
representation of glide for solids without spin-orbit cou-
pling [40,41]. However, this method is insufficient to deter-
mine half-integer-spin representations of glide for spin-orbit-
coupled solids, which are the subject of this work. Here,
we show that spin- and angle-resolved PES, which was not
addressed during the previous works [38–42], provides the
missing ingredient to identify glide eigenvalues—and there-
fore the Z4 index—in spin-orbit-coupled solids.

Our proposed method relies on photoexciting a glide-
invariant Bloch state with linearly-polarized radiation. The
excited photoelectron is emitted (into vacuum) as a quantum
superposition of plane waves, with wave vectors differing only
by reciprocal vectors of the solid (with a surface). The wave
vectors lying within the glide-invariant plane form a fan of
rays that is illustrated in Fig. 1(e). If the polarization vector of
the incoming radiation lies orthogonal to the glide-invariant
plane, then photoelectrons on any pair of adjacent rays are
fully spin polarized in opposite directions—normal and anti-
normal to the glide-invariant plane. As we will demonstrate
in Sec. V, this perfect spin-momentum locking of the photo-
electron is a general manifestation of spin-orbit coupling in
all glide-symmetric solids (trivial or topological, insulating or
metallic); the generalization to mirror-symmetric solids will
also be discussed. As an orthogonal application of this lock-
ing, one may generate a fully spin-polarized photoelectronic
current (photocurrent, in short) by isolating one of the rays
in Fig. 1(e) using standard angle-resolved PES techniques.
The potential applications to solid-state spectroscopy are dis-
cussed in Sec. VI.

The reader who is solely interested in this spin-momentum
locking (and how it is utilized to resolve glide eigenvalues in
PES) may jump straight to Sec. V, which has been designed
to be a self-contained exposition. In Sec. VI, we elaborate
on our proposal to generate spin-polarized photocurrents, as
well as compare it with existing theoretical proposals. We also
summarize our main results and discuss further experimental
implications.

I. PRELIMINARIES ON NONSYMMORPHIC
SPACE-GROUP REPRESENTATIONS

Throughout this work, we focus on spin-orbit-coupled
solids whose space groups contain (minimally) the operations
of time reversal and glide. We adopt a Cartesian coordinate
system (x, y, z), with corresponding unit directional vectors
(�x, �y, �z), such that the glide symmetry (denoted as gx) maps

(a)
(d)

k

E

(c)(b)

x

ky

(e)

FIG. 1. (a) Band dispersion of a Dirac fermion. The glide-
invariant cross section of a Dirac cone corresponds to a right- and
left-moving mode, as indicated by two intersecting black lines. A
solid (resp. dashed) line corresponds to the glide eigenvalue being
�+ (resp. �−). (b)–(d) Glide-invariant cross sections of a variety of
surface states. (e) A glide-invariant Bloch state (localized to the rect-
angular sample) absorbs a photon and is emitted as a superposition
of plane waves traveling in several directions, as illustrated by the
fan of arrows parallel to the glide-invariant plane (colored orange);
neighboring arrows differ by a reciprocal vector of the solid. For blue
arrows, the photoelectron spin points into the board, and for red it
points out.

(x, y, z) → (−x, y + R2/2, z), where R2 is the lattice period in
the �y direction. That is, gx is the composition of two commut-
ing operations: a reflection (rx) that inverts x and a translation
by half a lattice period in �y. This implies g2

x is the product of
a full lattice translation and r2

x ; the latter acts on spinor wave
functions like a 2π rotation, i.e., it produces a −1 phase factor.

Let us review the irreducible half-integer-spin represen-
tations of glide and discrete translational symmetries. The
irreducible representations of translations are Bloch states
labeled by a crystal wave vector k = (kx, ky, kz ) in the first
Brillouin zone (BZ). Since gx maps k → (−kx, ky, kz ), the
glide-invariant Bloch functions lie in two cuts of the BZ:
The kx = 0 cut through the BZ center will be referred to as
the central glide plane, and the kx = π/a1 plane (with 2π/a1

a reciprocal period in the �x direction) will be referred to
as the off-center glide plane. As illustrated in Fig. 2(a), the
positive-ky halves of the central and off-center glide plane are
labeled by c and a, respectively.

Let ĝx be an operator representing gx on spinor wave func-
tions. The action of ĝ2

x on a glide-invariant spinor Bloch func-
tion produces a phase −e−ikyR2 , hence the possible eigenvalues
of ĝx fall into two branches of �±(ky): = ±i exp[−ikyR2/2].
A Bloch state with glide eigenvalue �±(ky) is said to be
in the �±(ky) representation; we will use ‘eigenvalue’ and
‘representation’ interchangeably. The typical energy band dis-
persions along two glide- and time-reversal-invariant lines are
illustrated in Figs. 2(c) and 2(d); each solid black line (resp.
dashed black line) indicates a band in the �+ (resp. �−)
representation; this convention is adopted in all figures. The
symmetry-enforced band connectivities in Figs. 2(c) and 2(d)
are further explained in Appendix A 2.

II. CLASSIFICATION OF NONSYMMORPHIC
TOPOLOGICAL SOLIDS

A. Zak-phase expression of the Z4 invariant

In Ref. [3], a topological invariant χ+ ∈ Z4 :=
{0, 1, 2, 3}—expressible as an integral of the Berry connection
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FIG. 2. (a) 3D Brillouin zone (BZ) of glide-symmetric solids.
For certain nonsymmorphic space groups which contain glide sym-
metry (e.g., D4

6h, the space group of KHgSb), their BZs are not cubic,
and (a) should be understood as a modified BZ corresponding to
a nonprimitive real-space unit cell; further details may be found
in Appendix C. We will define topological invariants on a 2D
subregion that combines four colored faces, which are labeled abcd
and parametrized in (b). Red (a) and orange (c) faces are glide
invariant. (c),(d) For noncentrosymmetric space groups, we illustrate
typical energy-band dispersions on two glide- and time-reversal-
invariant lines, the first at fixed kx = kz = 0 and the second at
fixed kx = 0, ky = π (R2 = 1). Solid and dashed lines, respectively,
indicate bands in the �+ and �− representations, with corresponding
glide eigenvalues �±(ky ) = ±i exp[−iky/2]. Arrows indicate states
related by time reversal.

and curvature—was introduced by Shiozaki, Sato, and Gomi
to classify glide-invariant topological insulators. The same
invariant provides a partial classification of glide-invariant
topological (semi)metals, so long as touchings—between
conduction and valence bands—occur away from the bent,
2D subregion colored in Fig. 2(a). This subregion resembles
the face of a rectangular pipe (with its ends identified due
to the periodicity of the BZ). The faces of the cylinder are
denoted a, b, c, and d , with c and a belonging to the central
and off-center glide planes, respectively. In the absence
of additional point-group symmetry that might restrict
conduction-valence touchings to abcd [43], we may assume
in the generic situation that such touchings occur elsewhere.

Let us present an equivalent reformulation of the Z4

invariant (χ+) through the matrix holonomy of multiband
Bloch functions over the Brillouin torus. The comparative
advantages of our formulation are that the eigenvalues of the
holonomy matrix, as represented by the graphs in Fig. 3:
(i) are potentially measurable by interference experiments
[44,45], (ii) are directly relatable to surface states through
the bulk-boundary correspondence [2,34,35], as will be elab-
orated below, and (iii) are efficiently computed from tight-
binding models and first-principles calculations [46–48]. In
this section, we will explain how the aforementioned graphs

FIG. 3. Classification of glide-symmetric insulators by a strong
Z4 invariant (χ+) and a weak Z2 invariant (P01). The vertical axis
has the double interpretation as a Berry-Zak phase θ ∈ [0, 2π ] or
as the energy of a surface-localized state (that interpolates between
conduction and valence bands). The integer labels in the horizon-
tal axis correspond to high-symmetry wave vectors illustrated in
Figs. 2(a) and 2(b). Bands are doubly degenerate along the high-
symmetry line 30 and glide invariant along 01 and 23 only.

are attained and describe an elementary method to identify
χ+ from these graphs. The proof of equivalence between our
holonomy formulation of χ+ and the Shiozaki-Sato-Gomi
formulation is postponed to Appendix B.

To begin, let us consider the parallel transport of Bloch
states in the z direction, i.e., the wave number kz of a Bloch
state is advanced by a reciprocal period, while the reduced
wave vector k‖ = (kx, ky) is fixed. We consider a family
of noncontractible loops within abcd [Fig. 2(a)]; this fam-
ily is parameterized by t ∈ [0, 4] with 4 ≡ 0 [Fig. 2(b)]. A
Bloch state that is parallel transported over a loop does not
necessarily return to its initial state; the mismatch between
initial and final states is represented by a holonomy matrix
W in the space of occupied bands (numbering nocc). W is
known as the Wilson loop of the non-Abelian Berry gauge
field [49], and its unimodular eigenvalues {exp[iθ j (t )]| j =
1, 2, . . . , nocc; t ∈ [0, 4]} are the Zak phase factors. In analogy
with energy bands, we may refer to θ j (t ) as the dispersion
of a ‘Zak band’ with band index j. For t ∈ [0, 1] and [2,3]
(which correspond to the glide-invariant faces a and c), W
block diagonalizes into two nocc/2-by-nocc/2 blocks [50],
corresponding to the two representations (�±) of glide; we
may therefore label the Zak bands as {θ±

j }nocc/2
j=1 .

As proven in Appendix B, the Z4 topological invariant is
expressible as:

χ± = 1

π

nocc/2∑
j=1

[
θ±

j

∣∣∣∣
0

− θ±
j

∣∣∣∣
3

+
∫ 1

0
dθ±

j +
∫ 3

2
dθ±

j

]

+ 1

2π

nocc∑
j=1

∫ 2

1
dθ j . (1)

For this expression to be well-defined modulo four, we
choose that (i) θ j is smooth with respect to t over [1,2],
(ii) θ±

j is smooth over [0,1] and [2,3], and (iii) θ±
j (t ) are

pairwise degenerate at t = 0 and 3. To clarify (iii), for any
j ∈ {1, . . . , nocc/2}, there exists j′ ∈ {1, . . . , nocc/2} such that
j 	= j′, θ±

j (0) = θ±
j′ (0), and θ±

j (3) = θ±
j′ (3).

From Eq. (1), we derive the simplest way to identify χ±
from the Zak-phase spectrum: For an arbitrarily chosen θ̄ ,
draw a constant-θ̄ reference line (as illustrated in blue in the
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rightmost column of Fig. 3) and consider its intersections
with Zak bands (indicated by red dots). For each intersection
occurring at t ∈ (1, 2), we calculate the sign of the velocity
dθ/dt and sum this quantity over all intersections [over t ∈
(1, 2)] to obtain S12(θ̄ ); for t ∈ [0, 1] and [2,3], we consider
only intersections with Zak bands in the �± representation,
and we similarly sum over sgn[dθ/dt] to obtain S±

01(θ̄ ) and
S±

23(θ̄ ), respectively. The following weighted sum of S±
i j

and S12,

S±(θ̄ ) = 2S±
01(θ̄ ) + S12(θ̄ ) + 2S±

23(θ̄ ), (2)

satisfies that (S±(θ̄1) − S±(θ̄2))/4 ∈ Z for any two reference
lines at constant θ̄1 and θ̄2, e.g., compare S+(θ̄1) = 2(0) +
1 + 2(−1) = −1 (upper blue line in Fig. 3) with S+(θ̄2) =
2(+1) + 1 + 2(0) = 3 (lower blue line). Equivalently stated,
if we henceforth view S±(θ̄ ) as an element in Z4, then this
quantity becomes independent of θ̄ . By also viewing χ± as a
Z4 quantity, we may identify S± ≡ χ± by comparing Eq. (1)
with Eq. (2). To clarify, ≡ denotes an identity between two
equivalence classes in Z4.

B. Extended classification of glide-symmetric topological solids

We now demonstrate that χ+ ≡ −χ− for insulators, while
this is not necessarily true for Weyl metals. We are considering
time-reversal- and glide-symmetric Weyl metals that occur
only in noncentrosymmetric space groups [51,52]. Such met-
als may be characterized by counting the net number of Weyl
nodes in the open Brillouin-zone quadrant O surrounded by
(but not including) the faces abcd [Fig. 3(a)]. O resembles
the interior of a rectangular pipe, and its properties determine
those of the other three quadrants owing to gx and time-
reversal symmetry. Each Weyl node has a signed charge (q)
corresponding to whether it is a source (q = +1) or sink
(q = −1) of the Berry field strength; the net charge within
O is quantified by the bent Chern number (C) [53], which
may be formulated as the net winding of θ (t ) for t ∈ [0, 4],
or equivalently as the summation of sign[dθ/dt], over all
intersections with a constant-θ̄ reference line. The sum is
carried out over all bands indiscriminate of their symmetry
representations, therefore

C = 1
2 [S+(θ̄ ) + S−(θ̄ )] + S30(θ̄ ). (3)

To clarify, S30 here is the summation of sign[dθ/dt] over the
interval t ∈ (3, 4), which corresponds to the blue line 30 in
Fig. 2(a); S30 must be even because Zak bands are doubly
degenerate due to gxT symmetry [1]. While each of S± and
S30 may individually depend on the choice of reference line,
their weighted sum (C) does not. Applying that 2S30 is an
integer multiple of four, and the relation S± ≡ χ± from the
previous paragraph, we derive

(χ+ + χ−) ≡ 2C mod 4, (4)

which implies a Z ⊕ Z4 classification of glide-symmetric
solids, inclusive of metals and insulators. To recapitulate, Z
counts the net number of Weyl points in a symmetry-reduced
quadrant of the BZ. Representative examples for C = 1 and 2
are illustrated in Fig. 4.

FIG. 4. Topological classification of glide-symmetric metals
with C ∈ Z and χ+ ∈ Z4. A finer classification is possible with
the introduction of P01 ∈ Z2—a weak topological invariant that is
defined in Sec. III. Note that χ+ ∈ {0, 1, 2, 3} should be viewed as
the mod-four equivalence class of the quantity defined in Eq. (1) or
equivalently in Eq. (2).

C. Surface states of nonsymmorphic topological solids

We now extend our discussion to the physics of surface
states. We terminate the solid in the z direction by introducing
a surface that is symmetric under glide and discrete transla-
tions in the xy plane. We further assume that the surface is
clean and does not undergo a symmetry-breaking reconstruc-
tion. So long as the above-stated symmetries are preserved,
the exact termination of the surface (including relaxation
effects) is not essential to our discussion—we are concerned
only with topological aspects of the surface states.

The translational symmetry implies the existence of a
surface Brillouin zone (sBZ) that is parametrized by the wave
vector k‖; recall that (k‖, kz ) parametrizes the bulk Brillouin
zone (bBZ) of a solid that is periodic in three directions.
Energy bands whose wave function is localized to the surface
shall be referred to as surface bands. Such surface bands can
only exist at k‖ ∈ sBZ for which there is a bulk energy gap at
the reduced wave vector k‖; in particular, they cannot exist at
k‖ ∈ sBZ if a Weyl point lies at (k‖, kz ) ∈ bBZ for some kz.

Our previous discussion of Zak bands may be related to
surface bands by the bulk-boundary correspondence. This
correspondence states that the connectivity of Zak bands (over
the reduced wave vector k‖) is topologically equivalent to
the connectivity of surface bands (over the surface wave
vector k‖) [2,34,35]. We shall only concern ourselves with the
connectivity over on the high-symmetry lines 01, 12, 23, 30
in sBZ [see Fig. 3(a)]; they are, respectively, the projections
of the faces a, b, c, and d in bBZ. Given our assumption that
Weyl points (if they exist) lie away from abcd , surface bands
potentially exist along 01230, and their connectivity is then
well defined.

χ± may be identified by considering intersections between
surface bands (over 0123) and a constant-energy reference
line (e.g., the Fermi level). This reference line is chosen so
as not to intersect any bulk bands; S12 and S±

i j in Eq. (2) are
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FIG. 5. Ab initio derived Zak phases of: (a) Ba2Pb, (b) KHgSb,
and (c) uniaxially-stressed Na3Bi. Along the glide-invariant lines
01 and 23, we decompose the Zak phases according to their glide
representations: �+ is indicated by red circles and �− by blue.

defined analogously with the velocities (dε/dt) of surface
bands instead of Zak bands. We are now ready to justify
our heuristic argument for the Z4 classification of glide-
symmetric insulators, as formulated in the introductory para-
graph: Suppose our reference Fermi level lies above the Dirac
node, each positive-chirality Dirac surface band [centered at
k‖(2) = �] singly intersects the reference line at each of 12
and 23; each therefore contributes to χ+ the quantity 2(0) +
(−1) + 2(1). We may therefore interpret the deformation in
Fig. 1(d) as the equivalence: χ+ = 2 ≡ −2.

III. MATERIALIZATION OF NONSYMMORPHIC
TOPOLOGICAL INSULATORS

In this section, we identify three insulating materials which
realize all three nontrivial phases in the Z4 classification given
by χ+ ≡ −χ−. This classification is characterized as strong,
in the sense that any nontrivial phase (with χ+ 	= 0 mod
4) cannot be realized by layering lower-dimensional glide-
symmetric topological insulators [54].

As is known from topological K theory [3], the full
classification of glide-symmetric surface bands is Z4 ⊕ Z2,
where the additional Z2 summand corresponds to a weak
classification by a Kane-Mele [55] invariant (denoted P01 ∈
{0, 1}) defined over the time-reversal and glide-invariant plane
containing the face a. P01 may be determined by the con-
nectivity of Zak/surface bands on the off-center glide line
01 [56]: P01 = 0 corresponds to a gapped, hourglass-type
connectivity along t ∈ [0, 1] in the top row of Fig. 3 and
P01 = 1 to a zigzag (quantum-spin-Hall) connectivity [57,58]
in the bottom row.

Having described in Fig. 3 the connectivity in each non-
trivial class of Z4 ⊕ Z2, we are ready to identify Ba2Pb,
KHgSb, and uniaxially-stressed Na3Bi as corresponding to
(χ+,P01) = (3, 0), (2, 0), (1, 0), from their ab initio-derived
Zak-band connectivity in Figs. 5(a) and 5(c). The parity of
χ+ being even (resp. odd) is in one-to-one correspondence
[30] with the trivial (resp. nontrivial) phase in the time-
reversal-symmetric, strong Z2 classification. We thus deduce
that Ba2Pb and uniaxially-stressed Na3Bi belong to the same
phase in the time-reversal-symmetric classification (as was
derived by other means in previous works [36,37]) but belong
to distinct Z4 phases in the presence of glide symmetry.
This conclusion is further supported by our analysis of both

compounds based on their elementary band representations
[21,50,59–62]—a perspective we develop in Appendix D.

In comparison, KHgSb is trivial in the time-reversal-
symmetric Z2 classification but nontrivial in the glide-
symmetric Z4 classification; additional crystalline symmetries
(beyond glide) in the space group (D4

6h) of KHgSb are known
to lead to an even finer classification [2]. It was argued in
Ref. [3] that KHgSb should belong to the χ+ = 2 class based
on the connectivity of its surface states; Fig. 5(b) provides
evidence based on an explicit calculation of the bulk topo-
logical invariant. We remark that a recent polarized Raman
scattering study [63] suggests of a low-temperature lattice
instability in KHgSb; such an instability would not break glide
symmetry, and we expect that χ+ = 2 should remain valid.
In Appendix D, we detail the space groups and elementary
band representations of these materials and further describe
the stress that should be applied to Na3Bi so that it becomes a
topological insulator.

IV. PHOTOEMISSION SPECTROSCOPY OF Z4 INVARIANT

Let us describe how the Z4 invariant [cf. Eq. (2)] is
measurable from PES. The velocities (dε/dt) of surface
states are measurable from angle-resolved PES using standard
techniques [32,33]. The counting of S±

23 (resp. S±
01) further

requires that we identify the glide representation (�±) of
the pre-excited Bloch state on the glide line intersecting the
surface-BZ center (resp. lying on the surface-BZ edge). We
propose a spectroscopic method for identifying �± on the
central glide line 23 (kx = 0) in the next section [Sec. V].

This method cannot be applied to determine �± for the
off-center glide line 01, as explained at the end of Sec. V.
However, we may anyway determine the Z4 invariant for
materials with no Fermi-level surface states along 01, in which
case S±

01 = 0. Indeed, there is no topological reason to expect
surface states along 01 for materials with a trivial weak index
(P01 = 0), as explained in Sec. III. Our calculations show
that all three materials (proposed in Sec. III) have P01 = 0
and have no Fermi-level surface states along 01 for a perfect
surface termination (i.e., ignoring surface relaxation or recon-
struction). We remark that P01 = 0 is guaranteed for certain
space groups (including those of KHgSb and uniaxially-
stressed Na3Bi), owing to a symmetry of a discrete translation
(in a direction oblique to the surface); this is elaborated on in
Appendix C.

Let us address one final subtlety about the identification of
χ± (or C) from photoemission. χ± and C have been defined
with respect to a fixed, Cartesian, right-handed coordinate
system parametrized by (kx, ky, kz ). A spectroscopist who
examines a solid necessarily has to pick a coordinate system
and measure the topological invariants with respect to this
choice. Will two measurements of χ±—of the same solid but
based on different coordinates chosen by the spectroscopist—
unambiguously agree?

The glide symmetry may be exploited to reduce this
coordinate ambiguity: We may always choose a right-handed,
Cartesian coordinate system where �x (resp. �y) lies parallel to
the reflection (resp. fractional translational) component of the
glide, i.e., the glide maps (x, y, z) → (−x, y ± R2/2, z) [64];
from the experimental perspective, this presupposes some
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knowledge about the crystallographic orientation of a sample,
as discussed further in Appendix F. This prescription does not
uniquely fix the coordinate system: Supposing (x, y, z)
satisfies the above condition, so would (x′, y′, z′) =
(−x,−y, z), and more generally any coordinate system
that is related to (x, y, z) by twofold rotations about �x, �y or
�z; such rotations, denoted as p ∈ {C2x,C2y,C2z}, respectively,
preserve the orientation (or handedness) of the coordinate
system.

It follows from the above discussion that two spectro-
scopists, given an identical sample, may set down different
coordinate systems parametrized by (x, y, z) and (x′, y′, z′) =
p ◦ (x, y, z), respectively; p need not be a symmetry of the
solid. Following identically the instructions of this work,
the two spectroscopists would determine the Z4 and Z in-
variants based on their chosen coordinates; suppose the first
spectroscopist measures the numbers (χ±, C), and the sec-
ond measures (p ◦ χ±, p ◦ C). As proven in Appendix E, for
p ∈ {C2x,C2y}, p ◦ χ± = −χ∓ and p ◦ C = −C. On the other
hand, C2z ◦ χ± = χ± and C2z ◦ C = C. In all cases, Eq. (4) is
invariant. We may then draw the following conclusions de-
pending on whether C is even or odd: If even (which includes
the insulating case), then χ± ≡ −χ∓ according to Eq. (4),
and two right-handed (or two left-handed) spectroscopists
always agree on their measured values for χ±. That is to
say, χ± = p ◦ χ± for p ∈ {C2x,C2y,C2z}. If, however, C is
odd, two right-handed spectroscopists are only guaranteed to
agree on the parity of χ±. Despite this ambiguity, once a
convention for a coordinate system is fixed, the distinction
between phases is well defined.

V. GLIDE-RESOLVED PHOTOEMISSION SPECTROSCOPY

This section is a self-contained exposition on a spectro-
scopic method to identify the glide representation �±(ky) of
initial Bloch states (i.e., Bloch states before photoexcitation).
We assume only that the reader is familiar with basic notions
in the representation theory of space groups, as reviewed
briefly in Sec. I.

Our method is applicable to surface or bulk photoemission.
That is to say, our initial Bloch states may be localized to
the surface (on which the radiation is incident) or delocalized
throughout the bulk of the solid. In both cases, we focus on
initial Bloch states with wave vectors on the glide-invariant
line intersecting the surface-BZ center (the central glide line),
as indicated by 23 in Fig. 2(a). Adopting our choice coordi-
nates for real and quasimomentum spaces, this glide-invariant
line lies at kx = 0, for a glide operation gx that maps (x, y) →
(−x, y + R2/2), with R2 a primitive surface-lattice period.

We will first describe the basic idea in simple, intuitive
terms in Sec. V A, where we specialize to normally incident,
linearly polarized, and monochromatic light. We shall assume
that the radiation gauge and dipole approximation are applica-
ble to the electron-photon coupling; the dipole approximation
is relaxed in the formal theory presented in Sec. V B, where
we also generalize our conclusions to off-normal incident
light. In the late stages of this work, the selection rule [cf.
Eq. (6)] that is the main result of Sec. V A has independently
been derived by Ryoo and Park [65] within the dipole approx-
imation. Though the dipole approximation breaks down for

FIG. 6. (a) Cross section of the photoemission setup: A sample
(colored blue) is radiated and emits photoelectrons which are col-
lected in a hemispherical cup. (b) Our chosen coordinate system,
which holds for all (a)–(e). In (a) only a constant-x cross section is
drawn. (c)–(e) illustrate our favored incidence angles and polariza-
tions. The spatial variation and directional vector of the electric field
are indicated by the sinusoidal lines.

surface photoemission induced by p-polarized light [66–68],
a widely-held expectation is that the selection rule should re-
main valid beyond the dipole approximation; this expectation
is confirmed by the pedagogical derivation in Sec. V B.

A. Basic principle

Suppose an electron—with Bloch wave function ψi, initial
energy εi, and wave vector k‖ = (0, ky)—absorbs a photon
and is excited to a photoelectronic state with energy εp. The
electron-photon coupling is proportional to a·p̂ in the radi-
ation gauge, where a ∝ �ε is the divergence-free electromag-
netic vector potential, and the electromagnetic scalar potential
is chosen to vanish. p̂ above is the electronic momentum
operator, which should be distinguished from the crystal wave
vector k. We choose normally-incident, linearly-polarized ra-
diation with the polarization vector �ε lying parallel to the glide
plane; for the gx-invariant yz plane, �ε = �y is the unit vector in
the y direction [cf. Fig. 6(c)]. In the dipole approximation,
a·p̂ reduces to a spatially-homogeneous constant multiplied
with p̂y. Since p̂y is invariant under gx and surface-parallel
translations, ψi and the emitted photoelectron belong to the
same representation of these symmetries; we shall refer to this
constraint as a selection rule.

This selection rule has observable consequences for a
photoelectron that is measured at the detector. This photo-
electron generically has a complicated wave function with
a component in vacuum that extends toward the detector
and a separate component that penetrates the solid up to an
escape depth [69]. Consider how a photoelectron transforms
under any spacetime symmetry of a surface-terminated solid
(in short, surface-preserving symmetry), as exemplified in
this context by gx and surface-parallel translations. Such
transformation is completely determined by the transforma-
tion of the photoelectron’s component in vacuum, because
a surface-preserving isometry never maps a point inside a
solid to a point outside. Since vacuum is symmetric under
continuous translations and SU (2) spin rotations [70], the
vacuum component is simply a linear combination of plane
waves with energy εp: = (h̄p)2/2m and wave vector p (note
|p| := p); for each p, there are two plane waves distinguished
by the photoelectron spin. Due to the symmetry of discrete
surface-parallel translations, the surface-parallel component
of p must equal k‖—of the initial Bloch state—modulo a
surface-parallel reciprocal vector G‖; each G‖ corresponds to
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a different angle for photoelectrons to come out of the solid,
as illustrated by the fan of arrows in Fig. 1(e).

To understand the symmetry representation of the photo-
electron, we must therefore analyze the symmetry properties
of spin-polarized plane waves. Each gx-invariant plane-wave
state |φp,s〉 is a tensor product (|φp〉⊗|s〉) of a spinless plane
wave (〈r|φp〉 = eip·r) and a spinor |s = ±1〉 in the eigenbasis
of Sx. The momentum p lies parallel to the glide plane (px =
0), and the spin orthogonal to the glide plane, such that

ĝx|φp,s〉 = −i s e−ipyR2/2|φp,s〉; Sx|s〉 = s
h̄

2
|s〉. (5)

The phase −i s originates from reflecting |s〉 in the x direction;
after all, this reflection is just the composition of spatial
inversion (which acts trivially on spin) and a twofold rotation
e−iπ (Lx+Sx ) about the x axis. The phase e−ipyR2/2 in Eq. (5)
originates from translating φp by half a lattice period in the y
direction. We can always express py = ky + 2πn/R2 such that
ky lies in the first Brillouin zone (BZ) and n ∈ Z. Recalling
from Sec. I that a Bloch state in the �±(ky) representation has
glide eigenvalue ±ie−ikyR2/2, we conclude that φp,s transforms
in the �−s(ky) representation if n is even and in the �+s(ky)
representation if n is odd.

Combining this symmetry analysis with our selection rule,
we find the following constraint for a photoelectron that
is excited from an initial Bloch state [k‖ = (0, ky)] in the
�+(ky) representation. Namely, the photoelectronic plane
wave (|φp,s〉) that is detected must also belong in the �+(ky)
representation; this implies that the spin of the photoelec-
tron is nontrivially locked to its momentum: expressing
the surface-parallel component of p as p‖ = (0, py = ky +
2πn/R2), then

〈Sx〉 = s
h̄

2
=

{+ h̄
2 , if n ∈ 2Z + 1

− h̄
2 , if n ∈ 2Z

. (6)

If the initial Bloch state were in the �− representation, then
Eq. (6) holds with the interchange of ‘odd’ and ‘even.’ This
spin-momentum locking manifests the glide symmetry of the
spin-orbit interaction. As a consequence, each ray of the fan
[in Fig. 1(e)], corresponding to a unique value of n, is fully
spin polarized; nearest-neighbor rays always have opposing
polarizations. The angle of each ray is determined by energy
conservation:

εi + h̄ω = h̄2(ky + 2πn/R2)2 + h̄2 p2
z

2m
. (7)

Tantalizingly, each ray may be isolated experimentally by
standard spin- and angular-resolution techniques that measure
〈Sx〉 and py [33]; this allows us to spectroscopically identify
the glide representation of an initial state.

B. One-step theory of glide-resolved photoemission

To justify this spin-momentum locking rigorously, we em-
ploy the steady-state scattering formulation [71–73] of the
one-step theory [69,74,75] of photoemission. Let us con-
sider the component He of the Hamiltonian that describes
the solid in the absence of radiation; in the independent-
electron approximation and nonrelativisitic limit [76,77],
He = (h̄ p̂)2/2m + V , with V the sum of a scalar potential, the

spin-orbit interaction, and in principle also the Darwin term.
Since V encodes a mean-field interaction of a single electron
with other electrons as well as the ionic lattice, V falls off to
zero rapidly away from the solid [78]. Here, we have adopted
the usual electrostatic convention for the zero of energy—as
the energy of a zero-momentum plane wave in free space (far
away from the solid).

Suppose ψi, an eigenstate of He with energy εi below the
Fermi level, absorbs a single photon with energy h̄ω; i here
includes all quantum numbers of the eigenstate, including the
band index and the crystal wave vector. The corresponding
photoelectron has energy εi + h̄ω > 0 and a spinor wave
function of the form:

�p,i = G+(εp)Hintψi, εi + h̄ω := εp := (h̄p)2/2m (8)

to lowest order in the electron charge [79]. Here we have in-
troduced the advanced/retarded Green’s functions: G±(ε) =
(ε−He ± iδ)-1, with infinitesimal δ > 0. The electron-photon
coupling has the form Hint = |e|(a· p̂ + p̂·a)/2mc in the tem-
poral gauge, where the scalar potential vanishes; a here is
the screened [68,75] electromagnetic vector potential in the
solid. The Zeeman interaction with the spin magnetic moment
typically has a small effect relative to the a· p̂ term [80,81] and
is therefore neglected from Hint; a further evaluation of the
Zeeman interaction is provided in Sec. VI.

Given that ψi belongs to a certain glide representation, we
would like that the photoelectron transforms in a glide repre-
sentation that is uniquely determined by the representation of
ψi. Such a selection rule exists if the electron-photon coupling
Hint transforms in a one-dimensional representation of glide
symmetry, i.e., ĝxHintĝ−1

x equals Hint up to a phase, with ĝx the
operator that implements glide reflection [cf. Eq. (5)].

As shown in Appendix F, the desired transformation of
Hint exists for a linearly-polarized light source, with wave
vector parallel to the glide-invariant yz plane, and with the
polarization vector �ε either orthogonal [see Figs. 6(d) and
6(e)] or parallel [Fig. 6(c)] to the glide-invariant plane. In the
standard convention, we identify the orthogonal alignment as
s polarization, and the parallel alignment as p polarization,
though such identifications are not meaningful for normal
incidence.

In the case of normal incidence, the Fresnel equations
inform us that the light remains linearly polarized (with
the same polarization vector �ε) upon transmission into the
solid; that is to say, the vector potential a within the solid
remains parallel to �ε. In the orthogonal alignment, Hint ∝
a·p̂ ∝ p̂xe−iωz/c anticommutes with the glide operator ĝx; with
the parallel alignment, Hint ∝ p̂ye−iωz/c commutes [82] with
ĝx. In the more general case of non-normal incident angles
[see Fig. 6(e)], it is shown in Appendix F that

ĝxHintĝ
−1
x = ±e−iqyR2/2Hint, (9)

with the plus (resp. minus) sign applying to p (resp. s) po-
larization, and the additional phase factor e−iqyR2/2 originating
from a half-lattice translation of the photon field (having wave
number qy within the solid).

Since ĝx commutes with G+(εp) [cf. Eq. (8)], �p,i and
Hintψi transform in the same representation of gx. That
is, if ψi is a Bloch function [k‖ = (0, ky)] in the �±(ky)
representation, then �p,i belongs in the �∓(ky + qy) [resp.
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�±(ky + qy)] representation for �ε orthogonal (resp. parallel)
to the glide-invariant plane; the addition of qy in the argument
represents the absorption of the photon’s momentum [cf.
Eq. (9)]. Assuming the surface is clean and unreconstructed,
�p,i also transforms under discrete translations in the repre-
sentation k‖ = (0, ky + qy). Let us translate these selection
rules to a spin-momentum-locking constraint on the measured
photocurrent. We begin with an identity relating G± to the
free-space Green’s function G±

0 :

G± = G±
0 + G±

0 V G±; G±
0 (ε) :=

(
ε − (h̄ p̂)2

2m
± iδ

)-1

. (10)

The asymptotic form of G±
0 for |r|: = r � r′: = |r′| is well

known [83]:

〈r, s|G±
0 (εp)|r′, s′〉 ∼ − m

h̄2

e±ipr

2πr
e∓ip·r′

δss′ , (11)

where �r is the unit vector parallel to r, p := p�r := (px, py, pz ),
|r, s〉 is an eigenstate of position and Sx operators, and ∼
denotes the leading asymptotic form for large r.

Let us apply the identity Eq. (10) and the asymptotic
form of G+

0 [Eq. (11)] to evaluate �p,i defined in Eq. (8).
Combining Eqs. (8)–(10), we derive

�p,i(r, s) =
∑

s′=±1

∫
dr′〈r, s|G+

0 (εp)|r′, s′〉

× 〈r′, s′|( I + V G+(εp) )Hint|ψi〉. (12)

For the scattering geometry illustrated in Fig. 6(a), we take r
to be a position on the hemispherical detector and choose our
spatial origin to lie within the solid. Since V vanishes rapidly
away from the solid [78], the domain of integration (over r′)
may effectively be limited to a finite volume that is at most the
order of the sample volume [84]. Assuming that the detector-
to-sample distance is much greater than the sample dimension
(which is valid in most modern ARPES setups), the condition
r�r′ is satisfied for all r′ in the domain of integration, hence
we may utilize the asymptotic form of the free-space Green’s
function in Eq. (11). Thus, combining Eq. (12) with Eq. (11),
we derive

as r → ∞, �p,i(r, s) ∼ − m

h̄2

eipr

2πr
〈�p,s|Hint|ψi〉, (13)

where |�p,s〉 is defined as

|�p,s〉 := |φp,s〉 + G−(εp)V |φp,s〉. (14)

We remind the reader that |φp,s〉 is a plane-wave state with
momentum p and spin eigenvalue sh̄/2 under Sx [cf. Eq. (5)].
Equation (14) may be identified as the Lippmann-Schwinger
equation [71] with the retarded Green’s function; this informs
us that |�p,s〉 is an eigenstate of He with the boundary con-
dition of an inverse low-energy electron diffraction (LEED)
experiment [85].

Let us evaluate the spin-resolved probability current
through a solid angle element d� centered at r, as depicted
in Fig. 6(a). The current contributed by ψi is expressible as a

Fermi golden rule:

dIi
p,s

d�
= r2h̄

m
Im[�∗

p,i∂r�p,i]r,s ∼ 2π

h̄
ρp|〈�p,s|Hint|ψi〉|2,

(15)

where ρp := mp/(2π )3h̄2 is the density of plane-wave states
per unit real-space volume and solid angle. The measured
current at the detector is obtained by summing dIi

s over all
initial states. Equations (13) and (15) are the generalization
of the inverse-LEED (or one-step) theory of photoemission
(as originally formulated by Adawi [74] and Mahan [69]) to
include the effect of spin. Equivalent golden-rule formulas
(for spin systems) have previously been derived [81,86,87]
based on a different formalism by Pendry [88].

If the initial state ψi were energy nondegenerate, and the
light source fully polarized, then the corresponding photocur-
rent would be fully spin polarized in a direction given by
Eq. (13). This is because the asymptotic form of �p,i is
the product of a spherical wave and a spinor, and the latter
depends only on the orientation (�r) of the detector relative to
the sample. (This general observation about spin polarization
has been made by Park and Louie in Ref. [89]).

Going beyond this general observation, we will find that
utilizing crystallographic symmetry not only uniquely deter-
mines the direction of spin polarization but also allows for
a fully polarized photocurrent in the presence of energy-
degenerate initial states. Let us therefore consider the sub-
group A of spatial symmetries that are preserved in the pres-
ence of the surface, i.e., they are the (subset of) symmetries of
He that do not involve time reversal [90]. A nonvanishing dIi

p,s

requires that 〈�p,s|Hint|ψi〉 	= 0; according to the Wigner-
Eckhart theorem, this further requires that

�∗
�p,s

⊗ �Hint ⊗ �ψi = E ⊕ . . . , (16)

where �α is the representation of α under A, �∗ denotes the
complex-conjugate representation, and E is the trivial repre-
sentation. Since spatial symmetries are represented unitarily,
each element in A commutes with both G− and V . Therefore,
we deduce from Eq. (14) that �p,s and φp,s belong to the same
representation of A. In combination,

dIi
p,s 	= 0 ⇒ �∗

φp,s
⊗ �Hint ⊗ �ψi = E ⊕ . . . (17)

summarizes a key result of this work: It states that the spin-
resolved photocurrent satisfies selection rules based on the
overlap of Hintψi with a spin-polarized plane wave φp,s. The
full generality of this result is explored in Sec. VI, but for now
we content ourselves with the application at hand.

Applying Eq. (17) to the representation of discrete surface-
parallel translations, we derive the well-known result that if ψi

has crystal wave vector k‖ and the photon has wave vector q‖
within the solid, then dIi

s is only nonvanishing for p‖ = k‖ +
q‖ modulo a surface reciprocal vector. Applying Eq. (17) to
the representation of glide symmetry (gx), and to plane waves
propagating parallel to the glide plane (i.e., px = 0), we derive
that dIi

s is only nonvanishing for one spin component s; which
component depends on the magnitude of py and the glide
representation of Hintψi, as has been explained in Sec. V A
[cf. Eq. (6)]. The result of Eq. (6) holds even for non-normal
incident angles with either s or p polarization. It is worth
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remarking that if ψi were energy degenerate with a state of the
same glide representation, the net photocurrent is obtained by
summing Eq. (17) for both initial states and remains fully spin
polarized according to Eq. (6). Such a twofold degeneracy of
initial states is in fact enforced by time-reversal symmetry
at the Brillouin-zone edge, as illustrated by the hourglass
dispersion in Fig. 2(c).

For a glide-invariant initial state ψi with kx = 0, such a
full correlation between spin and momentum does not occur
for photoelectronic plane waves that propagate in a direction
nonparallel to the glide plane (i.e., px = 2πm/a1 with m a
nonzero integer and a1 the primitive surface-lattice period).
To explain this, consider that a one-dimensional plane wave
eipxx (with px 	= 0) is a sum of two components [cos(pxx) +
isin(pxx)] that transform in even and odd representations
of the reflection: x → −x; likewise, φp,s is the sum of two
components belonging to distinct representations of gx. Con-
sequently, no matter the glide representation of ψi and no
matter the magnitude of py, glide symmetry does not enforce
dIi

p,s to vanish for any spin eigenvalue (s) of Sx. Restating
this conclusion, the photocurrent is not expected to be spin
polarized in the x direction on grounds of glide symmetry.

Finally, let us consider a glide-invariant initial state ψi be-
longing to the off-center glide line (01, kx = π/a1). The cor-
responding photoelectron must be emitted with nonzero wave
number px = qx + π (2n + 1)/a1 with n ∈ Z. By the same
argument (given in the previous paragraph), the photocurrent
is not expected to be Sx polarized on grounds of glide symme-
try. This implies that the spin-momentum-locking technique
cannot be used to determine the glide representation of initial
Bloch states on the off-center glide line 01.

VI. DISCUSSION AND SUMMARY

We have proposed a Z4 ⊕ Z strong classification of glide-
symmetric solids (inclusive of band insulators and metals);
for each nontrivial class of the Z4 classification, we have
proposed a materialization in KHgSb, Ba2Pb, and stressed
Na3Bi. The smoking-gun signatures of each phase are de-
scribed in the photoemission of surface states. To facilitate
the identification of χ± ∈ Z4, we have proposed a method to
measure initial-state glide eigenvalues in photoemission spec-
troscopy. It is further shown that any two spectroscopists—
employing distinct spatial coordinate systems but with the
same orientation—will agree on: (a) χ± modulo four, if C is
even, and (b) χ± modulo two, if C is odd. The implications of
(a) for Ba2Pb (χ+ = −1) and stressed Na3Bi (χ+ = +1) is
that they may be sharply distinguished through glide-resolved
photoemission.

Our method to resolve glide eigenvalues exploits a spin-
momentum locking that characterizes the photoemission of
any glide-symmetric solid. In more detail, a photoelectron
is emitted into vacuum as a superposition of plane waves,
whose wave vectors are illustrated in Fig. 1(e) as a fan of rays;
distinct rays differ by a surface reciprocal vector, and every
adjacent pair of rays has opposite spin orientations.

As an orthogonal application of this locking, one may
generate a photocurrent with near-perfect spin polarization by
isolating one of these rays, using standard angle-resolved PES
techniques. Photoemission sources of spin-polarized electrons

have diverse applications as spectroscopic probes of solid-
state systems [91]; such sources form the basis for spin-
polarized bremsstrahlung isochromat spectroscopy [92], spin-
polarized low-energy electron diffraction [93], spin-polarized
electron-energy-loss spectroscopy (e.g., for the investigation
of Stoner excitations [94]), and spin-polarized appearance
potential spectroscopy [95]. While beam current densities of
existing GaAs-based, photoemission sources are satisfactory,
their spin polarization is theoretically limited to 50%, with
experiments achieving just over 40% [91]; in comparison,
our proposed spin polarization can in principle be com-
plete (100%), assuming the surface-terminated solid perfectly
maintains glide symmetry. It is worth remarking that a fully
spin-polarized photocurrent is generally expected if the initial
state is energy nondegenerate and the light source fully polar-
ized [89]. By utilizing crystallographic glide symmetry, our
work goes beyond this general expectation in two respects:
(a) the direction of spin polarization is fully determined by
Eq. (6), and (b) energy-degenerate initial states (in the same
glide representation) can also produce a fully polarized pho-
tocurrent, as discussed in Sec. V B.

For the above applications, spin-orbit-split energy bands
are desirable; otherwise, distinct glide representations would
be energy degenerate at each crystal wave vector [2], and their
combined photoemission would result in canceling spin polar-
izations. Practically, the spin-orbit splitting should be larger
than the energy resolution of the detector in PES. Two types
of spin-orbit-split energy bands may in principle be utilized:

(i) Surface bands are generically split by spin-orbit cou-
pling due to the absence of spatial inversion symmetry on the
surface. For example, the spin-orbit splitting in the hourglass
surface bands of KHgSb is predicted to be about 20 meV, [24]
which is just about larger than the current energy resolution
in spin-resolved PES (e.g., 7.5 meV for the ESPRESSO ma-
chine in Hiroshima Synchrotron Radiation Center [96]). It has
further been predicted that compressive strain can enlarge the
spin-orbit splitting of hourglass-fermion surface states [97].

(ii) Bulk bands (whose wave functions extend over the
entire solid) are also spin-orbit split for certain noncentrosym-
metric space groups [98]. However an additional complication
may arise for spin-orbit-split bulk bands, namely that it is
possible for bulk states (with different kz and glide represen-
tations) to be accidentally energy degenerate; here, kz is the
wave number orthogonal to the surface. If a priori knowledge
of the bulk band structure is unknown, then utilizing spin-
orbit-split surface bands may be a safer option.

Our derivation of 100% spin polarization is based on a
model of the first-order photoelectric effect with the following
approximations: (i) the independent-electron approximation,
(ii) a classical, Maxwell-based approximation to the electro-
magnetic wave in the solid, (iii) the neglect of the Zeeman
interaction (with the magnetic field of the radiation) relative
to the minimal coupling ∝a· p̂ [cf. the discussion in Sec. V B],
and (iv) a surface termination which perfectly respects glide
symmetry. One effect of many-body interactions in Fermi
liquids is to add a continuous background to the photoemis-
sion intensity, which may reduce (but not eliminate) the full
spin polarization associated to a sharp peak. (ii) is a good
approximation for radiation of certain polarization and inci-
dence angles, as explained in Sec. V B and Appendix F. (iii) is
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widely believed to be valid [81] and has been substantiated by
model calculations [80]; however, further quantitative studies
are desirable. (iv) Our prediction of 100% spin polarization
also assumes that the surface of a glide-symmetric solid is also
glide-symmetric. That is to say, if any surface relaxation or
reconstruction occurs, we assume it preserves the glide sym-
metry; this assumption should be checked for any candidate
material. In principle, glide-asymmetric surface defects may
also reduce the spin polarization. We briefly remark on the
spin polarization of the second-order photocurrent, which is
induced by the absorption of two photons: For simplicity
we consider normally-incident light with polarization vec-
tor parallel or orthogonal to the glide plane; in both cases,
the second-order photocurrent is fully spin polarized; in the
former (resp. latter) case, the second-order spin polarization
is parallel (resp. antiparallel) to the first-order spin polariza-
tion [99].

A comparison with existing proposals for spin-polarized
photocurrents is instructive. It is not surprising that pho-
toemission from a spin-polarized ground state would be
spin polarized [100]; such ground states exhibit either long-
ranged magnetic order or spontaneously-broken spatial sym-
metries leading to a spin-split Fermi surface [101–105]. For
ground states without spontaneous ordering, only partially
spin-polarized photocurrents have been realized practically
and typically only with circularly-polarized light [91]. We
highlight an existing theoretical proposal which relies on ne-
glecting the a· p̂ interaction in favor of the Zeeman interaction:
A fully spin-polarized photocurrent may then be generated by
radiating a solid (having negligible spin-orbit coupling) with
circularly-polarized light. The neglect of the a·p̂ interaction
is valid only for special geometric configurations [80], and
even so the Zeeman-induced photocurrent is expected to be
weak [81].

While we have focused on glide-symmetric solids through-
out this work, we highlight a result that is generally applica-
ble to the photoemission of any spin-orbit-coupled solid, no
matter its space group. Our result is that the spin-resolved
photocurrent (contributed by an initial Bloch state ψi) satisfies
a Wigner-Eckhart-type selection rule based on the overlap of
Hintψi with a spin-polarized plane-wave state, as summarized
in Eq. (17). Here, our selection rules are based only on spatial
symmetries that are preserved in the presence of a surface;
these symmetries are determined by the exact conditions of
the surface, including possible relaxation or reconstruction
effects. Hint here is the electron-photon coupling and may in
principle include either or both of the a·p̂ and Zeeman interac-
tions. It should be emphasized that Eq. (17) has been derived
without the dipole and Born approximations. In the Born
approximation, the final state of photoemission [cf. Eq. (14)]
is approximated as a plane wave [74]; this approximation
is certainly invalid at lower photon energies [81]. Also, we
remark that Eq. (17) has been derived within the one-step
theory, which is more accurate [106] and more generally
applicable [69,75] than the three-step theory [107,108]—only
the one-step theory can describe surface photoemission.

For a final illustration, we apply Eq. (17) to solids with a
reflection (or mirror) symmetry that is not a glide symmetry.
For simplicity, we consider normally-incident light with a
polarization vector lying parallel to the mirror-invariant plane.

The associated photocurrent would also spread out in a fully-
spin-polarized fan illustrated in Fig. 1(e), except the direction
of spin polarization would not alternate between adjacent rays.
This alternation is a fundamental property of glide symmetry,
which is special for having a momentum-dependent eigen-
value ∝e−iky/2. This provides a sharp distinction between the
photoemission of mirror- and glide-symmetric solids. This
distinction exists for both insulators and metals, in both trivial
and topological categories. In particular, one may compare the
surface photoemission of the mirror-symmetric topological
insulator SnTe [109] with any of the glide-symmetric topo-
logical insulators that have been proposed in this work.
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APPENDICES

The appendices are organized as follows:
(A) We briefly review symmetries in the tight-binding

method and establish notation that would be used throughout
the Appendix. (B) We show the equivalence between the Z4

invariant defined by Shiozaki-Sato-Gomi [3] and the Zak-
phase expression in Eq. (1). (C) We introduce two symmetry
classes of solids with glide symmetry; the two classes are
distinguished by the representation of glide symmetry in the
3D Brillouin zone (BZ). In one of the two classes, the weak
Z2 invariant is trivial, and a nonprimitive unit cell must be
chosen to compute the strong Z4 invariant. (D) We detail the
space groups and elementary band representations of Ba2Pb,
stressed Na3Bi, and KHgSb, so as to provide a complementary
perspective on their topological nontriviality. (E) We show if
and how the topological invariants defined in the main text
depend on the choice of coordinate system. (F) We discuss
properties of the photoemission light source that allow us to
utilize the selection rule (derived in Sec. V).

APPENDIX A: REVIEW OF SYMMETRIES IN THE
TIGHT-BINDING METHOD

1. Review of the tight-binding method

In the tight-binding method, the Hilbert space is reduced to
a finite number of atomic Löwdin orbitals ϕR,α for each unit
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cell labeled by the Bravais lattice (BL) vector R [110–112]. In
Hamiltonians with discrete translational symmetry, our basis
vectors are

φk,α (r) = 1√
N

∑
R

eik·(R+rα )ϕR,α (r − R − rα), (A1)

where α = 1, . . . , ntot, k is a crystal momentum, N is the
number of unit cells, α labels the Löwdin orbital, and rα is
the continuum spatial coordinate of the orbital α as mea-
sured from the origin in each unit cell. The tight-binding
Hamiltonian is defined as

H (k)αβ =
∫

dd r φk,α (r)∗ Ĥ φk,β (r), (A2)

where Ĥ is the single-particle Hamiltonian; Ĥ is a sum of the
kinetic term, a scalar, r-periodic potential (which accounts for
the ionic lattice and a mean-field approximation of electron-
electron interactions), as well as the spin-orbit interaction. The
energy eigenstates are labeled by a band index n and defined
as ψn,k(r) = ∑ntot

α=1 un,k(α) φk,α (r), where
ntot∑
β=1

H (k)αβ un,k(β ) = εn,k un,k(α). (A3)

We employ the braket notation and rewrite the above
equation as

H (k) |un,k〉 = εn,k |un,k〉. (A4)

Due to the spatial embedding of the orbitals, the basis vec-
tors φk,α are generally not periodic under k → k + G for a
reciprocal vector G; indeed, by substituting k with k + G in
Eq. (A1), each summand acquires a phase factor eiG·rα which
is generally not unity. This implies that the tight-binding
Hamiltonian satisfies a condition we shall refer to as ‘Bloch
periodic:’

H (k + G) = V (G)-1 H (k)V (G), (A5)

where V (G) is a unitary matrix with elements: [V (G)]αβ =
δαβ eiG·rα . Throughout this Appendix, we shall describe any
matrix-valued function of k as ‘Bloch periodic’ if f (k + G) =
V (G)−1 f (k)V (G).

In the context of insulators, we are interested in Hamilto-
nians with a spectral gap that is finite for all k, such that we
can distinguish occupied from empty bands; the former are
projected by

P(k) =
nocc∑
n=1

|un,k〉〈un,k|

= V (G) P(k + G)V (G)-1, (A6)

where the last equality follows directly from Eq. (A5).

2. Symmetries in glide-invariant planes

Consider a time-reversal-invariant insulator that is sym-
metric under the glide gx, which is a composition of a
reflection (in the x coordinate) and a translation by half a
Bravais lattice vector in the y direction. We explain in this
section how time-reversal and glide symmetries constrain the
projection P(k) to filled bands, with k lying in a glide plane;
the restriction of k to the plane will be denoted kr := (ky, kz ).

In this section (and for the formulation of the topological
invariants χ±), we shall concern ourselves only with glide
planes wherein each wave vector is mapped to itself under
glide; these glide planes are labeled ordinary. For example,
any glide plane that includes the Brillouin-zone center is
always ordinary; nonordinary glide planes only occur away
from the zone center and only for certain space groups, as
elaborated in Appendix C.

Let us parametrize the ordinary glide plane by kr :=
(ky, kz ), which we define to lie in the first Brillouin zone
(BZ). Assuming that Gy = 2π�y/R2 is a reciprocal vector, ky ∈
[−π, π ] in units where R2 = 1. T̂ is defined as the antiunitary
representation of time reversal in this plane, and ĝx(ky) as the
unitary, wave-vector-dependent representation of gx; ĝx(ky) is
the product of exp (−iky/2) and a momentum-independent
matrix Ugx which commutes with T̂ , as shown in Appendix
A1 of Ref. [2]. It follows that

T̂ ĝx(ky) = ĝx(−ky)T̂ , (A7)

which we will shortly find to be useful. P(kr ), as defined in
Eq. (A6), projects to a nocc-dimensional vector space, with nocc

a multiple of four owing to glide and time-reversal symme-
tries, as proven in Appendix B of Ref. [2]. This vector space
splits into two subspaces of equal dimension, which transform
in the two representations of glide: �±(ky). That is, nocc/2
number of vectors in the �+(ky) representation have the glide
eigenvalue +i exp[−iky/2] under the operation ĝx(ky); the
other nocc/2 vectors have glide eigenvalue −i exp[−iky/2].
The glide symmetry constrains the projection as

ĝx(ky)P(kr )ĝx(ky)−1 = P(kr ), (A8)

and time-reversal symmetry constrains as

T̂ P(kr )T̂ −1 = P(−kr ) = V (±Gy)P(±Gy−kr )V (∓Gy), (A9)

⇒ T̂±P(kr )T̂ −1
± = P(±Gy − kr ), with T̂± ≡ V (∓Gy)T̂

and T̂ -1
± = V (∓Gy)T̂ -1. (A10)

We have applied Eq. (A6) in the second equality of Eq. (A9).
From Eq. (A7) and Eq. (A9), we deduce that time-reversed
partner states at ±kr belong to orthogonal representations of
�±(ky), as illustrated by the double-headed arrow in Fig. 2(c).
Indeed,

if ĝx(ky)|ukr 〉 = ±ie−iky/2|ukr 〉, then ĝx(−ky)T̂ |ukr 〉
= T̂ ĝx(ky)|ukr 〉 = ∓ieiky/2T̂ |ukr 〉. (A11)

On the other hand, time reversal imposes a different constraint
on the glide representations at the ky = ±π edges of the glide
plane: T̂± maps kr = (±π, kz ) → (±π,−kz ), and T̂±-related
states belong to the same glide representation, as illustrated
by curved arrows in Fig. 2(c) and double-headed arrows in
Fig. 2(d). This result follows from

ĝx(±π )T̂± = ĝx(±π )V (∓Gy)T̂

= e−iGy·�y/2V (∓Gy)ĝx(±π )T̂

= e−iπV (∓Gy)T̂ ĝx(∓π ) = T̂±ĝx(±π ), (A12)

and the reality of the eigenvalues of ĝx(±π ). The second
equality in Eq. (A12) follows from Eq. (A24) in Ref. [2].
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To restate the above result in slightly different words,
within an ordinary glide plane, any time-reversed partner
states which lie at ky and −ky belong in opposite glide rep-
resentations; this statement applies to ky = 0. In comparison,
time-reversed states with equal wave number (ky = π ) belong
in the same glide representation; note at ky = π that the glide
eigenvalue is real. This will be helpful in formulating the Z4

invariant in Appendix B.

APPENDIX B: ZAK-PHASE EXPRESSION OF STRONG
Z4 INVARIANT

We show the equivalence between the Z4 invariant defined
by Shiozaki et al. [3] and the Zak-phase expression Eq. (1).
Consider the bent quasimomentum region (abc) drawn in
Fig. 3(a), which is the union of three faces a (red), b (green),
and c (orange): a and c are each half of a glide plane, and b is a
half-plane orthogonal to both a and c; due to the periodicity of
the Brillouin torus, abc has the topology of an open cylinder
and is parametrized by orthogonal coordinates k = (t, kz ),
with t ∈ [0, 3] and kz ∈ [0, 2π ); kz = 0 is identified with kz =
2π . We define L(t ) as constant-t circles in abc, as illustrated
by oriented dashed lines in Fig. 2(b); the sign of ±L(t )
indicates its orientation, and abc is bounded by L(0) − L(3).

In the half-plane b [t ∈ [1, 2], corresponding to kx varying
in the interval (−π, 0)], we define the connection and curva-
ture as

for k = (t, kz ) ∈ b, Tr[A(k)] =
nocc∑
i=1

〈ui,k|∇kui,k〉,

F (k) ≡ ∂t Tr[Az(k)] − ∂zTr[At (k)]. (B1)

Here, A = (At , Az ) with At = ∑
i〈ui,k|∂t ui,k〉 and Az =∑

i〈ui,k|∂kz ui,k〉. Choosing wave functions in a and c to
be eigenstates of the glide operation, they divide into two
equally-numbered sets according to their glide eigenvalues,
which fall into either branch of �η(ky) = η i exp(−iky/2),
with η = ±1. We distinguish between these two sets by mod-
ifying our wave-function labels to {uη

n,k|n = 1, . . . , nocc/2}.
We then define the glide-projected, Berry connection, and its
corresponding curvature as

for k ∈ a ∪ c, Tr[Aη(k)] =
nocc/2∑
i=1

〈
uη

i,k

∣∣∇kuη

i,k

〉
,

F η(k) ≡ ∂t Tr
[
Aη

z (k)
] − ∂zTr

[
Aη

t (k)
]
. (B2)

Shiozaki et al. defined a Z4 invariant by

χη = 2Pη(0) − 2Pη(3) + i

2π

[
2

∫
a

F ηd2k

+2
∫

c
F ηd2k +

∫
b

F d2k
]
, (B3)

with the polarization (in the �η representation) defined as

Pη(t ) ≡ i

2π

∫
L(t )

Tr[Aη(k)] · dk. (B4)

Included in Shiozaki’s definition is a gauge constraint for the
wave functions on the boundary [L(0) − L(3)].

Before defining this constraint in complete generality, let
us develop some intuition by considering a specific realiza-
tion. For noncentrosymmetric space groups, energy bands in
each glide subspace are twofold connected along L(3) [also
true for L(0)], due to the Kramers-degenerate points at kz = 0
and π , as illustrated in Fig. 2(d); note here that the glide
eigenvalue is real, hence time-reversal related states belong to
the same glide representation. For each pair of energy bands
(within one glide subspace), one energy band may be denoted
uη

α,k and the other uη

ᾱ,k, as illustrated in Fig. 2(d). As is well
known, any energy eigenfunction of a Hamiltonian is only
well defined up to a phase (which here can depend on k). Here,
it is possible to choose this phase (or gauge) such that

for t ∈ {0, 3}, ∣∣uη

α,t,−kz

〉 = Tt

∣∣uη

ᾱ,t,kz

〉
,∣∣uη

ᾱ,t,−kz

〉 = −Tt

∣∣uη

α,t,kz

〉
, (B5)

with T0 [T3] the antiunitary representation of time reversal at
the time-reversal invariant line L(0) [L(3)]. We have shown
in Appendix A 2 that time-reversed partner states at ky = π

belong in the same glide representation (here the glide eigen-
values is real); we may directly identify T3 = T̂+ in Eq. (A10).
By imposing Eq. (B5) on the wave function, the invariant
defined by Shiozaki becomes well-defined modulo four [3].
More generally, Eq. (B3) is well defined with the following
gauge constraint: decompose each glide subspace (within the
filled-band subspace) into nocc/4 pairs of bands [labelled by
{uη

α,k, uη

ᾱ,k|k ∈ L(0) − L(3), α = 1, . . . , nocc/4} ], such that
each of uη

α,k and uη

ᾱ,k is first-order differentiable in kz and
together satisfy Eq. (B5).

Calculating the Z4 invariant through Eq. (B3) requires that
we find glide-projected wave functions that are both first-order
differentiable along the boundary of abc [L(0)−L(3)] and
constrained as in Eq. (B5). In the rest of this section, we
reformulate Eq. (B3) as an index [Eq. (1)] that is extractable
from the Wilson loop of the Berry gauge field, whose basic
properties we review in Appendix B 1. One advantage of a
Zak-phase calculation is that it may be done without fixing
a gauge; in comparison, the necessity of imposing a differ-
entiable gauge [satisfying Eq. (B5)] makes Eq. (B3) difficult
to compute in practice. Our reformulation is a generalization
of Refs. [47,113] for insulators with glide symmetry. To
organize this Appendix section, we divide χη into two additive
contributions: χη

ac from the glide-invariant faces a and c, and
χb from the glide-variant face b.

χη = χb + χη
ac

χb = i

2π

∫
b

F d2k (B6)

χη
ac = 2[Pη(0) − Pη(3) ] + i

π

[∫
a

F ηd2k +
∫

c
F ηd2k

]
.

(B7)

We tackle χb in Appendix B 1 e, and χη
ac in Appendix B 2.

1. Review of Wilson loops

a. Basic definition

We consider the parallel transport of occupied Bloch
waves around a momentum loop L, where at each k ∈ L a
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spectral gap separates a set of lower-energy, occupied states
(numbering nocc) from a higher-energy, unoccupied subspace.
The nocc-by-nocc matrix representing such parallel transport
is known as the Wilson loop [49], and it may be expressed
as the path-ordered exponential (denoted by exp) of the
Berry-Wilczek-Zee non-Abelian connection [49,114]:

W[L] ≡ exp

[
−

∫
L

dk · A(k)

]
, Ai j (k) = 〈ui,k|∇ku j,k〉,

i, j = 1, . . . , nocc, (B8)

where |u j,k〉 belongs to the filled-band subspace of the tight-
binding Hamiltonian in Eq. (A4); in keeping with the general-
ity of this review, we will not adopt the specific gauge choice
in Eq. (B5). Henceforth, we consider only noncontractible
loops within the 2D subregion abc [cf. Fig. 2(a)] parametrized
by t ∈ [0, 3] and kz ∈ [−π, π ]; each loop is oriented parallel
to �z and lies at fixed t , as illustrated by the triple-headed arrow
in Fig. 2(a); we streamline our notation from W[L(t )] to

W (t ) ≡ exp

[
−

∫
L(t )

dkz Az(t, kz )

]
. (B9)

To calculate W (t ) from this expression, it is implicit from the
definition of Az that a first-order differentiable basis for ui,k

is needed. Moreover, to uniquely define the eigenspectrum
of W (t ), we insist that this basis further satisfies the condi-
tion [48]:

∀ i ∈ {1, . . . , nocc},
∣∣ui,k+Gz

〉 = V (−Gz )|ui,k〉. (B10)

That such a basis can be found follows from the Bloch
periodicity of the Bloch Hamiltonian in Eq. (A5), and so we
shall refer to Eq. (B10) as the Bloch-periodic gauge.

b. The gauge-independent Wilson loop

It is advantageous to equivalently formulate the W eigen-
values as the unimodular eigenvalues of a related operator that
is gauge independent. Following our treatment in Ref. [48]
with slightly different notation, we define an operator that
effects parallel transport in the Löwdin-orbital basis as

Ŵk2,k1 (t ) =
k2←k1∏

kz

P(t, kz ). (B11)

Here, we uniquely specify the path from (t, k1) → (t, k2) by
choosing kz ∈ [k2, k1] to always lie in [−π, π ]; the right-hand
side of Eq. (B11) indicates a path-ordered product of projec-
tions [defined in Eq. (A6)] where kz assumes any discrete
value 2πm/Nz between k1 and k2, for integral m. Ŵk2,k1 (t )
defines a map from B(t, k1) to B(t, k2), where B(k) is the
nocc-dimensional vector space spanned by the filled bands
({u j,k}) at k. The Bloch periodicity of the Bloch Hamiltonian
[Eq. (A5)] implies that V (Gz ) (with Gz ≡ 2π�z) is a map
from B(t, kz ) to B(t, kz−2π ), and therefore the composition
of V (Gz ) and Ŵ (defined with a curly Ŵ , which is to be
distinguished from Ŵ ) is a map:

Ŵ (t ) ≡ V (Gz )Ŵπ,−π (t ) : B(t,−π ) → B(t,−π ). (B12)

In the limit Nz → ∞, kz becomes a continuous variable, and
we may identify W in Eq. (B8) as a matrix representation of

curly Ŵ in a basis of B(t,−π ) (the filled-band subspace at
the base point of the loop) [48]:

[W (t )]i j = 〈ui,(t,−π )| Ŵ (t ) |u j,(t,−π )〉. (B13)

Here, i = 1, . . . , nocc labels the basis vector and need not
label an energy band. We therefore refer to curly Ŵ as the
gauge-independent Wilson loop. The full eigenspectrum of
W comprises the unimodular eigenvalues of Ŵ , which we
label by exp[iθn,t ] with n = 1, . . . , nocc. The form of W in
Eq. (B13) manifests the gauge invariance of its eigenspec-
trum, since if

|u j,(t,−π )〉 →
nocc∑
i=1

|ui,(t,−π )〉Si j, with S ∈ U (nocc),

then W → S†WS. (B14)

We remark that the W eigenvalues are also independent of the
base point of the loop [48]; our choice of (t,−π ) as the base
point merely renders certain symmetries transparent, as will
be made evident in Appendix B 2.

c. Relation of the Wilson loop to polarization

It is useful to relate the Wilson loop to the polariza-
tion [115], defined as the line integral of the U (1) Berry
connection:

P (t ) := i

2π

∫
L(t )

Tr[A(k)] · dk. (B15)

We caution that P is the expectation value of a discrete po-
sition operator (taking only discrete values corresponding to
the centers of localized, tight-binding basis vectors) [35,48],
rather than that of the usual continuum position operator
[115]. Implicit in the definition of the Wilson loop [Eq. (B8)]
is that wave functions are first-order differentiable in kz and
Bloch periodic in Gz—this would also imply that the polar-
ization quantity in Eq. (B15) is well defined. The polarization
is related [48] to the U (nocc) Wilson loop through:

P (t ) ≡ − i

2π
ln det[W (t ) ]. (B16)

Throughout this section, ≡ denotes an equivalence up to
addition or subtraction of an integer. As with all polarization
quantities, this integer ambiguity [115] reflects the discrete
translational symmetry in �z. Defining {exp[iθ j (t )]|}nocc

j=1 as the
eigenvalues of W (t ), Eq. (B16) is expressible as

P (t ) ≡ 1

2π

nocc∑
j=1

θ j (t ). (B17)

To prove the equivalence of Z4 invariants, it is useful (as
an intermediate step) to work in a special basis (denoted
{ũ j,k}nocc

j=1) of the filled-band subspace spanned by {u j,k}nocc
j=1.

The new basis is defined to satisfy two (related) properties:
(i) for each j,

P̃ j (t ) := i

2π

∫
L(t )

〈ũ j,k|∇kũ j,k〉 · dk ≡ θ j (t )

2π
. (B18)

(ii) The Fourier transform of ψ̃ j,k(α) := eik·(R+rα )ũ j,k with
respect to kz is a hybrid Wannier function [48,116] that
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is an eigenstate of the z position operator projected to the
filled-band subspace; such eigenstates are always maximally
localized [117] in the z direction. We refer to {ũ j,k}nocc

j=1 as the
maximally-localized basis/gauge. Due to their nice localiza-
tion properties in real space, the maximally-localized basis
has found applications in several contexts [48,118,119]; we
briefly review how this basis is constructed.

d. Review

To construct this special basis, we first diagonalize the
gauge-independent Wilson loop [Eq. (B12)] at the base point
(kz = −π ) as

Ŵ (t )|ũn,(t,−π )〉 = eiθn,t |ũn,(t,−π )〉. (B19)

We remind the reader that Ŵ is an ntot × ntot matrix operator
with only nocc unimodular eigenvalues (the rest being zero).
Basis vectors away from the base point are then constructed
by parallel transport, composed with a multiplicative phase
factor [35,48,113]:∣∣ũn,(t,kz )

〉 = e−i(kz+π )θn/2πŴkz,−π (t )|ũn,(t,−π )〉. (B20)

Note that ũn,(t,kz ) diagonalizes the gauge-independent Wilson
loop with base point kz. Owing in part to the phase factor in
Eq. (B20), ũn,(t,kz ) satisfies the Bloch-periodicity condition:

|ũn,(t,π )〉 = e−iθnV (−Gz )V (Gz )Ŵπ,−π (t )|ũn,(t,−π )〉
= e−iθnV (−Gz )Ŵ (t )|ũn,(t,−π )〉 = V (−Gz )|ũn,(t,−π )〉;

(B21)

in the last equality, we utilized that ũ is an eigenstate of the
gauge-independent Wilson loop [cf. Eq. (B19)]. We remark
that the Berry connection evaluated with ũn,(t,kz ) equals〈

ũm,(t,kz )

∣∣∣∣∂ ũn,(t,kz )

∂kz

〉
= −iδmn

θm

2π
, (B22)

which generically does not vanish. It is instructive to demon-
strate that these basis functions are orthonormal away from the
base point, assuming such is true for the base point. Dropping
the constant label t in this demonstration,〈

ũm,kz

∣∣ũn,kz

〉 = 〈ũm,−π |Ŵ−π,kzŴkz,−π |ũn,−π 〉
= 〈ũm,−π |ũn,−π 〉 = δm,n. (B23)

In the second equality, we applied that parallel trans-
port within the valence bands is unitary, and therefore
Ŵ−π,kzŴkz,−π acts on any state in B(−π ) as the identity
operator.

e. Relation of the Wilson loop to the integral of the curvature

Let us consider the area integral of the Berry curvature over
faces a, b, or c; any of these faces is parametrized by kz ∈
[0, 2π ) and t ∈ [t1, t2] with t2 > t1. We can always choose the
wave function (in a face) to be smooth with respect to t and
kz [62]. We may then utilize Stoke’s theorem to convert the
area integral to a line integral of the Berry connection over the
face’s boundary; in the Bloch-periodic gauge of Eq. (B10),
the line integral over the line segments orthogonal to �z cancel,
and what remains is:

i

2π

∫
F (k)d2k = P (t2) − P (t1). (B24)

We will find it useful to evaluate the area integral with the
maximally-localized basis defined in Eqs. (B19), (B20), and
(B21); then applying Eq. (B17) to Eq. (B25), we obtain

i

2π

∫
F (k)d2k = 1

2π

nocc∑
j=1

[θ j (t2) − θ j (t1)]. (B25)

By our assumption that basis vectors are smooth in t , we
must choose a branch for θ j (t ) that is differentiable in t for
t ∈ [t1, t2], and therefore,∫

F (k)d2k = i
nocc∑
j=1

∫ t1

t2

dθ j

dt
dt := i

nocc∑
j=1

∫ t1

t2

dθ j . (B26)

An immediate implication is that

χb = i

2π

∫
b

F (k)d2k = 1

2π

nocc∑
j=1

∫ 2

1
dθ j . (B27)

2. Expressing χη
ac with the Wilson loop

In this subsection, we restrict our discussion to the glide-
invariant half-planes a and c, as illustrated in Figs. 3(a) and
3(b). The component of χη [recall Eq. (B3)] contributed by
a and c has been defined as χη

ac in Eq. (B7). It is known
from Ref. [3] that χη

ac is well-defined modulo 4, if we insist,
at t̄ ∈ {0, 3}, that the wave functions satisfy the time-reversal
constraint in Eq. (B5).

The goal of this section is to express χη
ac [as defined in

Eq. (B7)] equivalently as

χη
ac = 1

π

nocc/2∑
j=1

[
θ

η
j (0) − θ

η
j (3) +

∫ 1

0
dθ

η
j +

∫ 3

2
dθ

η
j

]
,

(B28)

where θ
η
j (t ) is the phase of the jth eigenvalue of the Wilson

loop [Wη(t )] projected to the �η glide representation. To
clarify, if we begin at the base point of L(t ) (t ∈ [0, 1]
or [2,3]) with a Bloch state in the �η(ky) representation,
such a Bloch state remains in the �η(ky) representation
as it is parallel transported in the z direction [50]. Con-
sequently, the nocc×nocc Wilson loop diagonalizes into two
(nocc/2)×(nocc/2) blocks, which we define as Wη(t ); the
superscript η ∈ ± distinguishes between the two glide repre-
sentations. For Eq. (B28) to be a well-defined modulo four,
we impose that θ

η
j is first-order differentiable with respect

to t and that θ±
j (t ) are pairwise degenerate at t = 0 and 3.

To clarify ‘pairwise degeneracy,’ we mean that for any Zak
band with phase θ+

j (0), we pick a branch for a distinct Zak
band (labelled j′) such that θ+

j′ (0) = θ+
j (0) (viewed as a strict

equality, not an equivalence modulo 2π ), so that
∑nocc/2

j=1 θ+
j (0)

is uniquely defined modulo 4π .
To prove the equivalence of Eq. (B7) with Eq. (B28),

we adopt the following strategy. Beginning with the filled-
band subspace in each glide representation, we pick a
basis that is maximally localized in the z direction [cf.
Eqs. (B19)–(B21)] and simultaneously satisfies the time-
reversal-symmetric gauge constraint [Eq. (B5)]. If such a basis
(denoted ũη

α,k, ũη

ᾱ,k) can be found, then we may evaluate all
terms in Eq. (B28) and Eq. (B7) in this special basis and see
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straightforwardly that they are identical. By ‘evaluating... in
this special basis,’ we mean that we can express all Zak phases
in Eq. (B28) as

θη
α = i

∫
L

〈
ũη

α,k

∣∣∇kũη

α,k

〉 · dk (B29)

(and an identical expression with α → ᾱ); we can express the
quantities occurring in Eq. (B7) as

Pη(t ) = 1

2π

(
nocc/2∑
α=1

θη
α (t ) +

nocc/2∑
ᾱ=1

θ
η
ᾱ (t )

)
, t = 0, 3

i

2π

∫
a

F η(k)d2k = 1

2π

(
nocc/2∑
α=1

∫ 1

0
dθη

α +
nocc/2∑
ᾱ=1

∫ 1

0
dθ

η
ᾱ

)
,

(B30)

(and an identical expression with a → c and
∫ 1

0 → ∫ 3
2 ). Equa-

tion (B30) follows from our previously-derived Eq. (B17) and
Eq. (B26).

Let us now prove that, indeed, such a basis can be found.
While we have demonstrated how to construct the maximally-
localized basis in Eqs. (B19)–(B21), we have not shown
that the time-reversal constraint can be simultaneously and
consistently imposed. Specifically, we would show that our
maximally-localized basis vectors {ũη

j,k}nocc/2
j=1 can be relabelled

as pairs of {ũη

α,k, ũη

ᾱ,k}nocc/4
α=1 , such that each pair (α, ᾱ) satisfies

Eq. (B5) with u → ũ.
Proof: Let us focus on the glide- and time-reversal-

invariant lines L(0) and L(3). The proof is essentially iden-
tical for either line, so let us just focus on L(3). We be-
gin by defining ũη

n,(t=3,kz ) as a basis vector in Bη(3, kz ) (the
filled-band subspace in the η glide representation) satisfying
three maximally-localized conditions Eqs. (B19)–(B21). Our
proof is eased by equivalently expressing two of these three
conditions [Eq. (B19) and (B20)] as

V (Gz )Ŵ2π,0(3)
∣∣ũη

n,(3,0)

〉 = eiθη

n,3
∣∣ũη

n,(3,0)

〉
,∣∣ũη

n,(3,kz )

〉 = e−ikzθ
η
n /2πŴkz,0(3)

∣∣ũη

n,(3,0)

〉
. (B31)

In the above equations, we have, for analytic convenience,
shifted the base point of the loop from kz = −π to kz = 0,
and Ŵk2,k1 has been defined in Eq. (B11); note that {eiθη

n }
is invariant under changes of the base point [48]. ũη

n,(3,kz )
occurring in the second line of Eq. (B31) is an eigenstate of
the gauge-independent Wilson loop with base point kz = 0.
The first line of Eq. (B31) leads equivalently to the inverse-
eigenvalue equation:

Ŵ0,2π (3)V (−Gz )
∣∣ũη

n,(3,0)

〉 = e−iθη

n,3
∣∣ũη

n,(3,0)

〉
, (B32)

which follows from Ŵ0,2π (3)V (−Gz )V (Gz )Ŵ2π,0(3) acting as
the identity map in B(3, 0), the filled-band subspace.

Following our discussion in Appendix A 2, we would gen-
erate a basis vector in Bη(3,−kz ) by time reversing ũη

α,(3,kz ).
The operator representation of time reversal in L(3) (where
ky = π ) is T̂+, as defined in Eq. (A10); we remind the reader
that any T̂+-related pair of Bloch states (at ky = π ) belong
in the same glide representation �η. From Eq. (B11) and
Eq. (A10), we deduce the effect of time reversing the Wilson-

line operators:

T̂+Ŵk2,k1 (3)T̂ −1
+ = Ŵ−k2,−k1 (3), (B33)

and also the Wilson-loop operator:

T̂+V (Gz )Ŵ2π,0(3)T̂ −1
+ = V (−Gz )Ŵ−2π,0(3)

= Ŵ0,2π (3)V (−Gz ). (B34)

To simplify our notation, we henceforth drop the constant
labels for the glide index η and the quasimomentum parameter
t = 3 [e.g., ũη

α,(3,kz ) → ũα,kz , Bη(3, kz ) → B(kz )]. Since T̂+ is

antiunitary and squares to −1, T̂+|ũη

α,0〉 ∈ B(0) is orthogonal
to |ũα,0〉. We would further show that T̂+|ũα,0〉 diagonalizes
the gauge-independent Wilson loop with the same eigenvalue
as |ũα,0〉:

V (Gz )Ŵ2π,0T̂+|ũn,0〉 = T̂+Ŵ0,2πV (−Gz )|ũn,0〉
= T̂+e−iθn |ũn,0

〉
= eiθn T̂+|ũn,0〉. (B35)

In the second equality, we applied Eq. (B34) and in the third
Eq. (B32). Applying Eq. (B31) and (B33),

T̂+
∣∣ũn,kz

〉 = eikzθn/2πŴ−kz,0T̂+|ũα,0〉. (B36)

Thus if we relabel ∣∣ũα,kz

〉
:= ∣∣ũn,kz

〉
,∣∣ũᾱ,−kz

〉
:= T̂+

∣∣ũn,kz

〉
,

eiθα = eiθᾱ := eiθn , (B37)

Eqs. (B35) and (B36) may be expressed as two of the three
maximally-localized conditions:

V (Gz )Ŵ2π,0|ũᾱ,0〉 = eiθᾱ |ũᾱ,0〉,
|ũᾱ,kz 〉 = e−ikzθᾱ/2πŴkz,0|ũᾱ,0〉, (B38)

and the third condition (Bloch periodicity) is simple to show.
By assumption, ũα,kz is also maximally localized. By con-
struction, each pair of {ũα,kz , ũᾱ,kz} satisfies the time-reversal
constraint [Eq. (B5)]. �

It is instructive to compare the respective gauge conditions
that have been imposed to ensure that Eq. (B7) and Eq. (B28)
are well-defined Z4 quantities. The time-reversal condition of
Eq. (B5) implies

i〈ũα,k|∇kũα,k〉 = i〈ũᾱ,k|∇kũᾱ,k〉|k→−k, (B39)

which ensures the pairwise-degeneracy condition on
Eq. (B28):

i
∫
L
〈ũα,k|∇kũα,k〉 · dk := θα = θᾱ := i

∫
L
〈ũᾱ,k|∇kũᾱ,k〉 · dk.

(B40)

The above equality is strict and is a stronger condition than
the equivalence modulo 2π [which was proven earlier in
Eq. (B37)].

Combining the results of this section with Eq. (B27), we
finally complete the proof of equivalence between Eq. (1) and
Eq. (B3). Having proven this equivalence in the maximally-
localized and time-reversal-symmetric gauge, we emphasize
that the computation of the Zak phase factors {eiθη

n } is
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manifestly gauge invariant; these phase factors are obtained
from diagonalizing the gauge-independent Wilson loop in
Eq. (B12).

APPENDIX C: TWO SYMMETRY CLASSES OF SOLIDS
WITH GLIDE SYMMETRY

We introduce here two symmetry classes (labelled I and
II) of solids with glide symmetry. The practical value of
distinguishing these classes is that in class II, the weak Z2

invariant is always trivial; while the strong Z4 classification
holds for both classes, in class II a nonprimitive unit cell must
be chosen to compute the strong Z4 invariant.

The two classes are distinguished by the representation of
glide symmetry in the Brillouin zone (BZ), which is defined
standardly as the Wigner-Seitz cell of the reciprocal lattice.
Glide-invariant planes in the BZ are of two types: in an
ordinary glide plane, each wave vector k is mapped to itself by
glide. In a projective glide plane, each k is mapped by glide to
a distinct wave vector (gx ◦ k) on said plane, such that gx ◦ k is
translated from k by half a reciprocal vector. This is analogous
to a nonsymmorphic symmetry whose fractional translation
(traditionally defined in real space) now acts in k space; this
analogy is elaborated on precisely in Ref. [2].

Class-I glide-symmetric solids are defined to have two
ordinary glide planes in the BZ, as exemplified by Ba2Pb
(space group 62). For a glide symmetry gx that inverts the
wave number kx, the two planes lie at kx = 0 and kx = π/R1,
where 2π �x/R1 is a primitive reciprocal vector. In this class,
the strong (χ+ ∈ Z4) and weak (P01 ∈ Z2) invariants may in-
dependently assume any values, as representatively illustrated
in Fig. 3; this is consistent with a K-theoretic classification
of surface states in Ref. [3]. We remind the reader that P01

is a Kane-Mele invariant defined over the off-center glide
plane. Ba2Pb falls into the (χ+,P01) = (3, 0) class, as may
be verified by its Zak phases in Fig. 5(a).

Class-II solids are defined to have only a single ordinary
glide plane (containing the BZ center) in the BZ; an off-center
glide plane exists but is projective. For a glide symmetry
gx that inverts the wave number kx, though an off-center
glide plane exists at kx = π/R1, 2π �x/R1 is a not primitive
reciprocal vector; however, the existence of primitive vec-
tors 2π �x/R1 + π�z/R3 and 2π�z/R3 ensure that glide-related
states in the plane are separated by half a reciprocal vector
(π�z/R3). Consequently, the Kane-Mele invariant for the off-
center glide plane is always trivial (P01 = 0), as was proven
in the Appendix of Ref. [1]; see also the reductio ad absurdum
argument through Wilson-loop connectivities in Ref. [2].

There remains for class-II solids a Z4 strong classification,
as exemplified by KHgSb [SG D4

6h; χ+ = 2; Fig. 5(b)] and
uniaxially stressed Na3Bi [χ+ = 1; Fig. 5(c)]. The Z4 in-
variant [cf. Eq. (1)] is only well defined for k in a modified
BZ (denoted BZ’) wherein both glide planes are ordinary.
To appreciate this, consider that a Bloch state with wave
vector k in a projective glide plane does not transform in
either of the glide representations �± (due to the glide-related
states lying at inequivalent wave vectors). The simplest choice
for BZ’ would correspond to a nonprimitive real-space unit
cell that is consistent with a glide-symmetric surface termi-
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k
2 /3a
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(a) (b)

R 2R'
1R'
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FIG. 7. (a) Constant-y cross section of the crystal structure of
KHgSb, with bulk Bravais lattice vectors R1 and R2. The top
armchair edge is the cross section of a glide-symmetric surface.
A nonprimitive unit cell consistent with a glide-symmetric surface
contains four atoms in both A and B sublattices (colored red and
blue, respectively); this nonprimitive cell, when translated by vectors
R′

1 and R′
2, covers the entire xz plane. Note that this nonprimitive

unit cell has twice the volume of the primitive cell. (b) The hexagon
illustrates the constant-kz cross section of the BZ; b1 and b2 are
primitive reciprocal vectors dual to R1 and R2; the orange rectangle
inscribed in the hexagon illustrates BZ’, which is the Wigner-Seitz
cell of a modified reciprocal lattice with basis vectors b′

1 and b′
2

(which are dual to R′
1 and R′

2).

nation, as exemplified (for KHgSb) by the orange rectangle
in Fig. 7(a). We remind the reader that a nonprimitive cell
has larger volume than the primitive cell; it is a region that,
when translated through a subset of vectors of the Bravais
lattice, just fills all of space without overlapping itself or
leaving voids [78]; the subset of vectors in our example is
generated by R′

1 and R′
2 [ Fig. 7(a)]. This subset of vectors

forms a reduced Bravais lattice (denoted BL’) that is distinct
from the original. BZ’ would then be the Wigner-Seitz cell
of the reciprocal lattice dual to BL’; both BZ and BZ’ of
KHgSb are illustrated, respectively, as the hexagon and orange
rectangle in Fig. 7(b). This prescription of enlarging the unit
cell was first suggested in Ref. [3] to establish a connection
between their K-theoretic classification and the material class
of KHgSb. The utility of BZ’ is that the Z4 invariant may be
calculated by diagonalizing a family of Wilson loops (over
the nontrivial cycles of BZ’), as was described in Sec. II A; an
example of such a Wilson loop is illustrated with triple arrows
in Eq. (7b). The result of this calculation for KHgSb has been
shown in Fig. 5(b), from which we conclude χ+ = 2.

APPENDIX D: MATERIAL ANALYSIS: SPACE GROUPS
AND ELEMENTARY BAND REPRESENTATIONS

1. Ba2Pb

The space group of Ba2Pb is SG62 (Pnma), which has
an orthorhombic lattice. The spatial symmetries include:
an inversion (I), three screws ({C2x| 1

2
1
2

1
2 }, {C2y|0 1

2 0}, and
{C2z| 1

2 0 1
2 }), two glide (gx ≡ {rx| 1

2
1
2

1
2 } and gz ≡ {rz| 1

2 0 1
2 }), and

one mirror ({ry|0 1
2 0}). Note r j is a mirror operation that inverts

the single coordinate j.
For the calculations of topological invariants, we redefine

the lattice vectors as �a′ = 2�a + �b, �b′ = b, and �c′ = c, which
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TABLE I. Irreducible representations for Ba2Pb, as computed by
VASP.

Valence bands

� 6;5;6;5;5;6;5;6;6;5;6;6;
R 4 + 4;3 + 3;3 + 3;4 + 4;3 + 3;4 + 4;
S 4 + 4;3 + 3;3 + 3;4 + 4;4 + 4;3 + 3;
T 3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;
U 5 + 5;6 + 6;6 + 6;5 + 5;6 + 6;5 + 5;
X 3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;
Y 3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;
Z 3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;3 + 4;

are orthogonal. We can then set a′, b′, and c′ as the x, y, z axes.
With respect to these new lattice vectors, the glide symmetry
is represented by gx ≡ {rx|00 1

2 }.
Beside exhibiting a nontrivial connectivity of the Zak

phases [cf. Fig. 5(a)], another manifestation [21,62] of the
nontriviality of Ba2Pb is that its ground state is not a direct
sum of elementary band representations [21,62]. To prove
this, it is sufficient to compare the irreducible representations
(irreps) at high-symmetry wave vectors [21,120]. By inspec-
tion, the irreps of Ba2Pb (Table I) cannot be decomposed into
a direct sum of irreps of the elementary band representations,
as obtained from the Bilbao crystallographic server (repro-
duced in Table II).

2. Stressed Na3Bi

For Na3Bi that is stressed in the x direction, the space group
falls into Cmcm (SG 63), which is a body-center structure. The
conventional lattices are redefined as �a′ = 0.98(�a + �b) where
the factor 0.98 is due to a hypothetical compression in the x
direction, �b′ = b and �c′ = c, where a, b, c are the primitive
lattice vectors in the original structure(SG 194). χ+ is calcu-
lated with the conventional (nonprimitive) lattices. The glide
symmetry is represented by gx ≡ {rx|00 1

2 }. By comparing the
irreps of all elementary band representations (in SG63; see
Table III) with the irreps of stressed Na3Bi (cf. Table IV), we
conclude that the ground state of stressed Na3Bi is not band
representable.

3. KHgSb

The space group of KHgSb is D4
6h or SG194; further

details about its crystallographic structure may be found in
Ref. [1]. By comparing the irreps of all elementary band
representations (in SG194; see Table V) with the irreps of
KHgSb (cf. Table VI), we conclude that the ground state of
KHgSb is not band representable.

APPENDIX E: AMBIGUITY IN THE CHOICE OF
COORDINATE SYSTEMS

This Appendix addresses a question posed at the end
of Sec. IV, which we will briefly recapitulate. Suppose we
choose a right-handed, Cartesian coordinate system where �x
(resp. �y) lies parallel to the reflection (resp. fractional transla-
tional) component of the glide, i.e., the glide maps (x, y, z) →
(−x, y ± R2/2, z). Such a coordinate system would be called
glide symmetric. Would the topological invariants χ+ (or C)
differ if measured in distinct glide-symmetric coordinates?

As argued in Sec. IV, there are three glide-symmetric co-
ordinates which are related to each other by twofold rotations
C2 j about the directional axes �j ( j = x, y, z); we shall only
concern ourselves with proper point-group transformations
that preserve the orientation (or handedness) of the coordinate
system. We will refer to one glide-symmetric, right-handed
(but otherwise arbitrarily chosen) coordinate system—in k
space—as the reference coordinate system; all other coordi-
nate systems are related to the reference by k′ = p ◦ k, with p
a point-group transformation [e.g., C2x ◦ k := (kx,−ky,−kz )
etc.]. It should be emphasized that p is not necessarily a
symmetry of the solid (i.e., not an element of the space group)
but merely reflects an ambiguity in the choice of coordinates.

To establish notation, a map between points: k → p ◦ k
induces naturally a map between subregions of the Brillouin
torus (e.g., lines denoted as l , or faces denoted as a, b, c, d .);
we shall denote this as l → p ◦ l etc; several examples are
illustrated in Fig. 8. It is useful (as an intermediate step in
the following computations) to decompose C2x as the product
of two reflections ry and rz, such that each r j inverts only
the jth coordinate ( j = x, y, z). We will also consider coordi-
nate transformations induced by the inversion I : (x, y, z) →
(−x,−y,−z), though inversion symmetry need not belong
in the space group. We separately analyze the coordinate
dependence of C and χ± in Appendix E 1 and Appendix E 2,
respectively.

TABLE II. Elementary band representations [21,120] for SG62.

Wyckoff pos. 4a 4a 4b 4b 4c
Band-rep. AgAg AuAu AgAg AuAu

1E 2E

� 4 × 5 4 × 6 4 × 6 4 × 6 4 × 6
R (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4)
S (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4) (3 + 3) ⊕ (4 + 4)
T 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4)
U 2 × (5 + 5) 2 × (6 + 6) 2 × (6 + 6) 2 × (5 + 5) (5 + 5) ⊕ (6 + 6)
X 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4)
Y 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4)
Z 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4) 2 × (3 + 4)
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TABLE III. Elementary band representations for SG63.

Wyckoff pos. 4a 4a 4b 4b 4c
Band-rep. 1E 2

g Eg
1E 2

u Eu
1E 2

g Eg
1E 2

u Eu E

� 2 × 5 2 × 6 2 × 5 2 × 6 5 + 6
R 2 + 2 2 + 2 2 + 2 2 + 2 2 + 2
S 2 × (3 + 4) 2 × (5 + 6) 2 × (5 + 6) 2 × (3 + 4) (3 + 4) ⊕ (5 + 6)
T 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4
Y 2 × 5 2 × 6 2 × 5 2 × 6 5 + 6
Z 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4

1. Coordinate dependence of the bent Chern number C
We begin by defining the Berry curvature as a pseudovector

field F = (Fx,Fy,Fz ), with components

Fa = iεabc

nocc∑
n=1

〈∂bun|∂cun〉; (E1)

∂ j is shorthand for the derivative with respect to k j , εabc is
the Levi-Cevita tensor, repeated indices (e.g., b, c above) are
summed over the Cartesian directions x, y, z. The bent Chern
number is defined as the integral of the Berry curvature

C = −
∫

|a|
Fxdkydkz −

∫
|b|
Fydkxdkz +

∫
|c|
Fxdkydkz

+
∫

|d|
Fydkxdkz, (E2)

where | f | in the subscript of
∫
| f | denotes the face f without

its orientation. The ± signs in front of each integral reflect
our convention that C measures the outgoing Berry ‘flux,’ or
equivalently the net charge of the Berry monopoles within
the quadrant enclosed by abcd . An equivalent and useful
expression is

C = i

2π

∫ 4

0

dt

4

∫ 2π

0

dkz

2π

[〈
∂t u

∣∣∂kz u
〉 − 〈

∂kz u
∣∣∂t u

〉]
, (E3)

where t ∈ [0, 4] (with 4 ≡ 0) parametrizes the loop l on which
abcd projects in the z direction, as illustrated in Fig. 8(a) [see
also Fig. 2(b)]. l is anticlockwise oriented [as indicated by
arrows in Fig. 8(a)], and t increases in the direction of the
orientation loop l .

Let C be the Chern number defined over abcd in the
reference coordinate system (parametrized by k). We define
p ◦ C as the same Chern number in a different coordinate
system parametrized by k′ = p ◦ k; that is, p ◦ C is defined

TABLE IV. Irreducible representations for stressed Na3Bi, as
computed by VASP.

Valence bands

� 5;6;5;5;5 + 6;
R 8; 12; 11; 9; 8; 12;
S 5 + 6; 3 + 4; 3 + 4; 5 + 6; 3 + 4; 5 + 6;
T 3 + 4; 3 + 4; 3 + 4;
Y 5; 6; 6; 5; 6; 5;
Z 3 + 4; 3 + 4; 3 + 4;

exactly as in Eq. (E2) but with k replaced by k′. For the same
Hamiltonian, we would prove that

C = rx ◦ C = ry ◦ C = −rz ◦ C. (E4)

To prove the first equality, consider that rx ◦ C is the
Chern number defined over a′b′c′d ′ = rx ◦ abcd in the k′ =
(−kx, ky, kz ) coordinates, as illustrated in Fig. 8(c). In the
reference coordinates, a′b′c′d ′ is comparatively illustrated
with abcd in Fig. 8(b). Since a′b′c′d ′ and abcd are re-
lated by the reflection rx, they enclose different quadrants
of the BZ (colored red and blue, respectively). To deduce
that C = rx ◦ C, we will rely on two observations: (i) While
rx ◦ C is defined to measure the outgoing Berry flux in the
k′ coordinates, it measures the incoming Berry flux in the
reference coordinates k; this may be deduced by the rx ◦ l
having an opposite orientation relative to l , as illustrated in
Figs. 8(a) and 8(b). (ii) Since the curvature transforms like a
pseudovector, we expect that glide-related Berry monopoles
have opposite charge—therefore the net monopole charge in
the blue quadrant is negative the monopole charge in the red
quadrant. In combination, (i)–(ii) produces the desired result.

C = ry ◦ C [the second equality in Eq. (E4)] may be derived
by a simple generalization of the above argument. Now the
two quadrants (enclosed by abcd and ry ◦ abcd) are related by
a composition (T gx) of time-reversal and glide symmetry. (i′)
ry ◦ C also measures the incoming Berry flux in the reference
coordinates, and (ii′) T gx-related monopoles have opposite
charge. (Note that ry is not assumed be a symmetry in the
space group, but if it were, we would similarly conclude that
ry-related monopoles have opposite charge).

C = −rz ◦ C [the last equality in Eq. (E4)] may be derived
from the following argument. When both abcd and a′b′c′d ′ =
rz ◦ abcd are viewed in the reference coordinates, the two
surfaces occupy the same area (in k space) and differ only
in their orientations; this difference in orientations originates
from the reversal of kz. This implies that rz ◦ C measures
the incoming Berry flux through abcd . From Eq. (E4) and
C2x = ryrz etc., we derive that the bent Chern numbers—for
two coordinate parametrizations of the same Hamiltonian—
are related as

p ◦ C =
{−C, p ∈ {C2x,C2y},
C, p = C2z.

(E5)

2. Coordinate dependence of topological invariant χ±

Let us define χ± as Z4 invariants defined with respect to a
reference coordinate system parametrized by k; analogously,
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TABLE V. Elementary band representations for SG194

Wyckoff pos. 2a 2a 2a 2a 2b 2b 2b 2c 2c 2c 2d 2d 2d
Band-rep. 1E2

g Eg
1E2

u Eu E1g E1u E1 E2 E3 E1 E2 E3 E1 E2 E3

A (4 + 5) (4 + 5) 6 6 6 6 4 + 5 6 6 4 + 5 6 6 4 + 5
� 2 × 7 2 × 10 8 ⊕ 9 11 ⊕ 12 9 ⊕ 11 8 ⊕ 12 7 ⊕ 10 9 ⊕ 11 8 ⊕ 12 7 ⊕ 10 9⊕ 11 8 ⊕ 12 7 ⊕ 10
H (4 + 5) ⊕ (6 + 7) (4 + 5) ⊕ (6 + 7) 8 ⊕ 9 8 ⊕ 9 8 ⊕ 9 8 ⊕ 9 (4 + 5) ⊕ (6 + 7) (4 + 5) ⊕ 9 (6 + 7) ⊕ 8 8⊕ 9 (4 + 5) ⊕ 9 (6 + 7) ⊕ 8 8 ⊕ 9
K 2 × 7 2 × 7 8 ⊕ 9 8 ⊕ 9 2 × 9 2 × 8 2 × 7 7 ⊕ 8 7 ⊕ 9 8 ⊕ 9 7 ⊕ 8 7 ⊕ 9 8 ⊕ 9
L 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4 3 + 4
M 2 × 5 2 × 6 2 × 5 2 × 6 5 + 6 5 + 6 5 + 6 5 + 6 5 + 6 5 + 6 5 + 6 5 + 6 5 + 6

p ◦ χ± are defined as the Z4 invariants defined with respect
to a distinct coordinate system with k′ = p ◦ k. For the same
Hamiltonian, we will show that

p ◦ χ± =
{−χ∓, p ∈ {C2x,C2y},
χ±, p = C2z.

(E6)

This would imply, in combination with Eq. (E5), that χ+ +
χ− ≡ 2C mod 4 [cf. Eq. (4)] is invariant under proper co-
ordinate transformations—a result applicable to both band
insulators and Weyl metals.

The rest of this Appendix is devoted to proving Eq. (E6).
Let l be the oriented path in (kx, ky) space on which χ±[l]
is defined through Eq. (1). l is illustrated in Fig. 9(a), in
conjunction with the three other point-group mapped p ◦ l;
we remind the reader that p is not necessarily a symmetry of
the solid. A word of caution: l was also used in the previous
section to define a loop illustrated in Fig. 8; in this section
we use the same symbol l for an open segment of the loop in
Fig. 8.

For each of p ◦ l illustrated in Fig. 9(a), we define the
quantities χ±[p ◦ l] which simply generalize our original
definition in Eq. (1):

χ±[p ◦ l] = 1

π

nocc/2∑
j=1

[
θ±

j [p ◦ l (0)] − θ±
j [p ◦ l (3)]

+
∫ [p◦l (1)]

[p◦l (0)]
dθ±

j +
∫ [p◦l (3)]

[p◦l (2)]
dθ±

j

]

+ 1

2π

nocc∑
j=1

∫ [p◦l (2)]

[p◦l (1)]
dθ j . (E7)

Equation (1) is a particularization of χ±[p ◦ l] for p being
the identity operation. Here, we have parametrized p ◦ l (t ) by
t ∈ [0, 3] such that t ∈ {0, 1, 2, 3} lie on the high-symmetry
wave vectors in the kx − ky plane, as illustrated in Fig. 9(a).
{eiθ j [p◦l (t )]} are eigenvalues of the Wilson loop—for an ori-
ented quasimomentum loop which projects in the z direction

TABLE VI. Irreducible representations for KHgSb, as computed
by VASP.

Valence bands

A 6;6;6;
� 8;12; 11; 9; 8; 12;
H 6 + 7; 8; 9; 8; 6 + 7; 8;
K 7; 8; 9; 9; 7; 9;

to the wave vector p ◦ l (t ), as illustrated by the triple arrows in
Fig. 9(b); by definition, the orientation of each loop is always
in the direction of increasing kz.

In congruence with our previous definitions, χ±[p1 ◦ l]
is defined with respect to a reference coordinate k, and we
define p2 ◦ χ±[p1 ◦ l] with respect to k′ = p2 ◦ k, with p1 not
necessarily equal to p2. We caution that χ±[p ◦ l] and p ◦
χ±[l] are not necessarily equal, as will be seen in Eq. (E16).

a. Proposition 1

Let us prove an intermediate proposition:

χ±[l] ≡ χ±[rx ◦ l] ≡ χ∓[ry ◦ l] ≡ χ∓[C2z ◦ l], (E8)

where ≡ is an equivalence modulo four. Let us introduce the
shorthand p ◦ j( j + 1), for j ∈ {0, 1, 2}, as the subset of p ◦
l (t ) in which t ∈ [ j, j + 1]. That is, l is the union of intervals
01, 12, and 23, and so similarly we define p ◦ 01, p ◦ 12 and
p ◦ 23 for p ◦ l . The relation in Eq. (2) simply generalizes to

χ±[p ◦ l] ≡ 2S±
p◦ 01(θ̄ ) + Sp◦ 12(θ̄ ) + 2S±

p◦ 23(θ̄ ), (E9)

where Sp◦ i j is defined analogously to Si j , as introduced in
the main text. We write it down for clarity: draw a constant-θ̄
reference line (for an arbitrarily chosen Zak phase θ̄ ) and
consider its intersections with Zak bands along p ◦ l . For
each intersection between p ◦ 12, we calculate the sign of the
velocity dθ/dt and sum this quantity over all intersections
to obtain Sp◦ 12(θ̄ ); for p ◦ 01 and p ◦ 23, we consider only
intersections with Zak bands in the �± representation, and
we similarly sum over sgn[dθ/dt] to obtain S±

p◦ 01(θ̄ ) and
S±

p◦ 23(θ̄ ), respectively.
Proof of χ±[l] ≡ χ±[rx ◦ l].
Along the glide-invariant lines, rx ◦ 01 = 01 and rx ◦ 23 =

23, and therefore S±
rx◦01 = S±

01 and S±
rx◦23 = S±

23. However, rx ◦
12 	= 12 lie on distinct lines which are related by time-reversal
symmetry [which maps (kx, ky ) → (−kx,−ky )], as illustrated
in Fig. 9(a). This symmetry imposes S12 = Srx◦12, as we now
explain. Suppose a Zak band over 12 intersects our constant-θ̄
line with velocity v, then its time-reversed partner is a Zak
band over rx ◦ 12, which intersects the θ̄ line with velocity
−v. By v and −v, we refer to velocities defined by varying
the Zak phase of a Zak band with respect to kx. However,
our definition of Sp◦i j involved velocities defined by varying
the Zak phase with respect to a parameter that is specific to
p ◦ i j: The parameter for 12 increases in the same direction
as kx, but the parameter for rx ◦ 12 increases in the opposite
direction, as illustrated in Figs. 9(a) and 9(d). Therefore, each
pair of time-reversed Zak bands contribute equally to S12
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FIG. 8. (a) Illustration of p ◦ l in the surface Brillouin torus.
(b) Bent manifolds abcd and a′b′c′d ′ = rx ◦ abcd in the k coordi-
nates; note that rx ◦ c and c differ only in orientation. (c) rx ◦ abcd in
the reflected coordinates (k′

x, k′
y, k′

z ) = (−kx, ky, kz ).

and Srx◦12, leading to S12 = Srx◦12. For example, consider a
representative Zak-band dispersion in Fig. 9(d), where S12 =
Srx◦12 = 2 for the chosen reference line (colored orange). �

Proof of χ±[l] ≡ χ∓[ry ◦ l].
Since 12 = ry ◦ 12,

S12 = Sry◦12. (E10)

Time reversal relates 01 and ry ◦ 01 and therefore imposes a
relation between S±

01 and S±
ry◦01, as we now derive. Recall from

Appendix A 2 that time-reversed partner states at ±ky belong
to opposite representations �± of the glide gx. This implies
that (a) a Zak band in the �± representation at 01 has a time-
reversed partner at ry ◦ 01 in the �∓ representation; note that
01 and ry ◦ 01 are distinct lines in k space. (b) Moreover, as
representatively illustrated in Fig. 9(e), time-reversed partners
have opposite-sign velocities with respect to variation of ky

but equal velocities with respect to varying the parameters of
01 and ry ◦ 01, respectively. (a) and (b) together imply

S±
01 = S∓

ry◦01. (E11)

By cosmetic substitution of 12 → 23 in the above demonstra-
tion, we would show that

S±
23 = S∓

ry◦23. (E12)

Eq. (E10), Eq. (E11), Eq. (E12), and Eq. (E9) together imply
our claim. �

Finally, χ±[l] ≡ χ∓[C2z ◦ l] may be proven from

S12 = SC2z◦12, S±
01 = S∓

C2z◦01, S±
23 = S∓

C2z◦23. (E13)

b. Dependence on proper coordinate transformations

Let the p be a proper point-group transformation that
preserves handedness of the coordinate system. p can always
be viewed as the composition of a two-dimensional point-
group operation (p⊥) acting in the kx − ky plane and a one-
dimensional point group operation acting in the kz line:

p ◦ k = (p⊥ ◦ (kx, ky), p‖kz ), p‖ ∈ ±1. (E14)

This gives a correspondence p ↔ (p⊥, p‖). We are particu-
larly interested in

C2x ↔ (ry,−1), C2y ↔ (rx,−1), C2z ↔ (C2z,+1).
(E15)

For two coordinate parametrizations (k and k′ = p ◦ k) of the
same Hamiltonian, we argue that

p ◦ χ±[l, kz] = χ±prx p−1r−1
x [p⊥ ◦ l, p‖kz], (E16)

where χ±[p ◦ l, kz] := χ±[p ◦ l] as defined in Eq. (E7), and
χ±[p ◦ l, kz] is identical to χ±[p ◦ l] except that the ori-
entation of each Wilson loop is reversed (from increasing
kz to decreasing kz). The above equation has the following
justification:

(i) A coordinate transformation effectively changes the
bent quasimomentum region on which χ is calculated; this is
reflected in a change in the argument of χ . For example, rx ◦
χ±[l, kz] is defined over the bent quasimomentum subregion
a′b′c′ = rx ◦ abc that we illustrate in the primed coordinates
[red sheet in Fig. 9(c)] and reference coordinates [red sheet in
Fig. 9(b)]; rx ◦ abc projects in the z direction to rx ◦ l .

(ii) Whether the glide representation changes under a coor-
dinate transformation (x, y, z) → (x′, y′, z′) = p ◦ (x, y, z) de-
pends on p. To appreciate this, let us recall that the reflection
component (rx) of glide gx has an associated orientation.
Indeed, rx may be viewed as the composition of a spatial
inversion (I) with the twofold rotation (C2x) about the x axis,
and, for half-integer-spin representations, we need to specify
if this rotation is clockwise or anticlockwise oriented. That is
to say, a π clockwise rotation differs from a π anticlockwise
rotation by a −1 phase factor. Consequently, the same glide-
invariant state has glide eigenvalues with opposite signs—
with respect to two glide operations which differ only in
orientation. For a coordinate system (x, y, z), we always define
gx with a clockwise rotation about the x axis; this was implicit

FIG. 9. (a) Illustration of p ◦ l in the surface Brillouin torus. (b) Bent subregions on which the Z4 invariants χ [p ◦ l] are defined. (c) Bent
subregion in which rx ◦ χ±[l] is defined, in the reflected coordinates (k′

x, k′
y, k′

z ) = (−kx, ky, kz ). (d) Representative Zak-phase dispersion along
12 and rx ◦ 12. (e) Representative Zak-phase dispersion along 01 and ry ◦ 01.
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in our previous definitions of �± and χ±. Suppose a Bloch
state transforms under gx with eigenvalue �± = ±ie−iky/2;
the same state may (or may not) transform with the inverted
eigenvalue ∓ie−iky/2 under the glide gx′ , which is defined with
a clockwise orientation about the x′ axis [recall (x′, y′, z′) =
p ◦ (x, y, z)]. The glide eigenvalue is inverted if and only if
the coordinate transformation p inverts the orientation of a
rotation about the x axis, i.e., it depends on prx p−1r−1

x = ±1
(with −1 indicating an inversion), for example, if p = C2x,
gx′ , and gx have the same orientations; if p = C2y, gx′ , and gx

have opposite orientations, then rx and C2y anticommute in
the half-integer-spin representation. This possible change in
the glide representation is accounted for in Eq. (E16) by the
superscript of χ .

Beginning from Eq. (E16), the next step is to express

p ◦ χ±[l, kz] ≡ p‖χ±prx p−1r−1
x [p⊥ ◦ l, kz]. (E17)

To justify this, p‖ = −1 implies that the orientation of the
Wilson loop flips, thus eiθ (t ) → e−iθ (t ), and the velocities at
the reference Zak phase are likewise inverted; cf. Eq. (E9).
Finally, inserting Eq. (E15) and Eq. (E8) (which should be
understood as relating χ with constant kz arguments) into
Eq. (E17), we obtain

C2x ◦ χ±[l, kz] ≡ −χ±[ry ◦ l, kz] ≡ −χ∓[l, kz],

C2y ◦ χ±[l, kz] ≡ −χ∓[rx ◦ l, kz] ≡ −χ∓[l, kz],

C2z ◦ χ±[l, kz] ≡ χ∓[C2z ◦ l, kz] ≡ χ±[l, kz], (E18)

from which Eq. (E6) follows directly.

APPENDIX F: CONSIDERATION OF LIGHT SOURCES
FOR PHOTOEMISSION

To exploit the selection rule developed in Sec. V, we
would like that the electron-photon coupling Hint transforms
in a one-dimensional representation of glide reflection [cf.
Eq. (9)]. As we will show in this Appendix, this transforma-
tion holds for a linearly-polarized light source, with photon
wave vector parallel to the glide-invariant yz plane and with
the polarization vector �ε either orthogonal [see Fig. 6(d)]
or parallel [Fig. 6(c)] to the glide-invariant plane. To orient
�ε relative to the glide plane, we would need to know the
sample’s crystallographic orientation; this may be obtained
by independent experiments (e.g., x-ray diffraction) or by
comparison of the angle-resolved photoemission data to a
first-principles calculation (where the glide plane is known).

For the purpose of demonstrating Eq. (9), it is useful to
distinguish between normally and obliquely incident light.
With oblique incidence, we identify (by standard convention)
the parallel alignment as p polarization and the orthogonal
alignment as s polarization, e.g., compare Figs. 6(c) and
6(d). For normal incidence, the two types of polarization are
indistinguishable.

The cases of normal incidence (both parallel and orthog-
onal alignments) and oblique incidence (orthogonal align-
ment) will be dealt with in Appendix F 1, where we prove
Eq. (9) within the classical approximation [66,68,81,106] of
light within the solid. This classical approximation is invalid
(for surface photoemission) in the case of oblique incidence

(parallel alignment); nevertheless, so far as nonlinearities in
the optical response (of the medium) can be neglected, we
will find in Appendix F 2 that Eq. (9) still holds.

1. Normal incidence (parallel and orthogonal alignments) and
oblique incidence (orthogonal alignment)

For such incidence angles and polarizations, the incident
electric field is parallel to the surface, allowing for a classical,
Maxwell-based approximation of the electromagnetic field
(within the solid). We briefly review why: Corrections
to the classical approximation are known as local fields,
which are believed to be only significant near the surfaces
of solids [121], where surface plasmons and electron-hole
pairs may be excited by the incident radiation [66–68].
Consequently, local-field effects are especially relevant to
surface photoemission, which is the main application in
Sec. IV. It is known that local-field effects are negligible if
the incident electric field is aligned parallel to the surface
(i.e., �ε lies in the xy plane) [66–68,81,106]. The reason is that
surface-parallel electric-field components vary smoothly
across the surface, while surface-normal electric-field
components can vary rapidly on the order of atomic distances
(thus invalidating the dipole approximation). Even within
the classical, Maxwell-based approximation, it is known that
surface-normal field components are discontinuous across the
interface of two distinct media due to the presence of a surface
charge [122]; this surface charge is an idealization, and its
proper, quantum description is given by the aforementioned
surface plasmons and electron-hole pairs [68]. Within the
classical approximation, and for the above-stated conditions
on the light source, Fresnel’s equations [122] inform us that
the photon field within the solid remains linearly polarized,
with a polarization vector �ε (within the solid) that is identical
to the polarization vector of the light source.

In the temporal gauge, the electric field and vector potential
are parallel, hence a (the screened vector potential within the
solid) is proportional to �ε. So far as we are concerned only
with the absorption of photons, a (occurring in the electron-
photon coupling Hint) may be equated with a0�εeiq·r, where a0

is a spatially-independent constant, and q is the wave vector
of the photon within the solid.

For normally-incident light (q = −ω�z/c) with the polariza-
tion vector parallel to the glide plane (ε = �y), Hint commutes
with the glide operation ĝx. If the polarization vector is orthog-
onal to the glide plane (�ε = �x), Hint anticommutes with ĝx in
the case of normal incidence. For non-normal incidence and
�ε = �x, ĝxHintĝ−1

x = −e−iqyR2/2Hint; the qy-dependent phase
factor originates from the half-lattice translation (y → y −
R2/2) in ĝx.

2. Oblique incidence (parallel alignment)

As explained in the previous Appendix F 1, the classical
approximation is not satisfied if the incident electric field has
a component normal to the surface, as would be the case for
p-polarized radiation at oblique incidence [66–68]. Neverthe-
less, so long as the optical response of the medium is linear
(though not necessarily local [68]), the electron coupling to
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the medium-induced electromagnetic field (given by vector
potential aind) transforms in the same glide representation as
the electron coupling to the externally applied field (given by
aext) [123]. That is to say, if ĝx p · aextĝ−1

x = e−iqyR2/2 p · aext,
so must ĝx p · aindĝ−1

x = e−iqyR2/2 p · aind. This follows from
the assumed existence of a linear functional relating the two
potentials:

aind
i (r) =

∑
j=x,y,z

∫
χi j (r, r′)aext

j (r′)dr′, (F1)

with the susceptibility satisfying the glide-symmetric con-
straint:

χi j (r, r′) =
∑
a,b

[rx]ia[rx] jbχi j (gx ◦ r, gx ◦ r′),

rx :=
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, gx ◦ (x, y, z)

:= (−x, y − R2/2, z). (F2)

Consequently, the electron coupling to the total photon field
transforms as ĝxHintĝ−1

x = e−iqyR2/2Hint.
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