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We study the RKKY interaction of magnetic impurities in the α-T3 model which hosts pseudospin-1 fermions
with two dispersive and one flat bands. By using the effective low-energy Hamiltonian we calculate the RKKY
coupling for impurities placed on the same or different sublattices. We find that there are three types of
interaction, which depend on the model parameter defining the relative strength of hoppings between sublattices,
two of them can be reduced to graphene case while the third one is new and is due to the presence of a flat
zero-energy band. We derive general analytical expressions for the RKKY interaction in terms of Mellin-Barnes
type integrals and analyze different limiting cases. The cases of finite chemical potential and temperature, as
well as asymptotic at large distances, are considered. We show that the interaction between impurities located at
different rim sites displays a very strong temperature dependence at small doping being a direct consequence of
the flat band. The subtleties of the theorem for signs of the RKKY interaction at zero doping, as applied to the
T3 lattice, related to the existence of a dispersionless flat band are discussed.
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I. INTRODUCTION

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[1] is an indirect exchange interaction between two localized
magnetic moments mediated by a background of electrons.
It is an important characteristic of electron system and a
fundamental interaction responsible for magnetic ordering
in spin glasses and alloys. Besides three dimensions, it has
been extensively studied for the electron gas in one [2]
and two [3] dimensions. After the experimental discovery
of graphene, the RKKY interaction in systems with Dirac-
like dispersion attracted a great interest [4–13] due to the
richness of their structures. Moreover, the final results for the
complete structure of the RKKY interaction in graphene were
obtained only after a decade of debates [7,14]. The RKKY
interaction was studied also in strained graphene [15], bilayer
graphene [16,17], biased single-layer silicene [18], 8-Pmmn
borophene [19], on the surface of three-dimensional Dirac
semimetals [20].

Graphene has given a start to a proliferation of fermionic
quasiparticles emerging in condensed matter systems which
have no counterparts in particle physics where Poincaré sym-
metry constrains fermions to the three types: Dirac, Weyl,
and Majorana (not discovered yet) particles with spin 1/2. In
condensed matter systems, symmetries are less restrictive and
besides fermions with pseudospin 1/2 other types of fermions
with a higher pseudospin can appear in two- and three-
dimensional solids. A recent paper [21] has given a classifica-
tion of possible low-energy fermionic excitations protected by
space group symmetries of lattices in solid state systems with
spin-orbit coupling and time-reversal symmetry. The T3 lattice
provides one of the well-known realizations of pseudospin-1
fermions in two dimensions [22,23]. Pseudospin-1 fermions
appear also in the Lieb [24] and kagome lattices [25]. Recently

an experimental evidence of Dirac fermions as well as flat
bands was reported in the antiferromagnetic kagome metal
FeSn [26]. Also, the realizations of Lieb lattice as electronic
lattice formed by the surface state electrons of Cu(111) [27] as
well as the Lieb-like lattices in covalent-organic frameworks
were reported [28,29]. Fermions of different pseudospins may
coexist in some lattices, for example, Dirac and pseudospin-1
fermions are found to coexist in the α-T3 model [30], the
edge-centered honeycomb lattice [31], and the 2D triangular
kagome lattice [32], Weyl fermions coexist with pseudospin-1
and pseudospin-3/2 fermions in transition metal silicides [33]
under the protection of crystalline symmetries.

In this work, we analyze the RKKY interaction in the
so-called α-T3 model [34] that contains the mixing of Dirac
and pseudospin-1 fermions as low-energy excitations. The
α-T3 model is a tight-binding model of two-dimensional
fermions on the T3 (or dice) lattice whose atoms are situated at
vertices of hexagonal lattice and the hexagons centers [22,35].
The parameter α describes the relative strength of couplings
between the honeycomb lattice sites and the central site. Thus,
as α changes the α-T3 model reveals a smooth transition from
graphene (α = 0) to dice or T3 lattice (α = 1). Since the α-T3

model has three sites per unit cell, the electron states in this
model are described by three-component fermions. It is natu-
ral then that the spectrum of the model is comprised of three
bands. Two of them form Dirac cones as in graphene, and
the third band is completely flat, dispersionless, and has zero
energy in the whole Brillouin zone [34]. All three bands meet
at the K and K ′ points, which are situated at the corners of the
Brillouin zone. In the linear order in momentum deviations
from the K and K ′ points, the low-energy Hamiltonian of
the dice model with α = 1 describes massless pseudospin-1
fermions and is given by the scalar product of momentum and
the spin-1 matrices.
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The T3 lattice was experimentally realized in Josephson
arrays [36,37] as well as in a network made of metallic
wires tailored in a high mobility two-dimensional electron gas
[38], and its optical realization by laser beams was proposed
in Ref. [39]. The experiments [36–38] have confirmed the
existence of novel localization effects, which arise due to the
presence of flat band in the spectrum of T3 lattice. Recently
several physical quantities have been studied in the α − T3

model such as orbital susceptibility [34], optical and magneto-
optical conductivity [40–43], magnetotransport [30,44–46].
The role of transverse magnetic field on zitterbewegung was
studied in Ref. [47] and the enhancement of thermoelec-
tric properties of a nanoribbon made of α-T3 model was
discussed in a recent paper [48]. The stability of flat band
with respect to different perturbations such as terminations
of the lattice as well as the phenomenon of atomic collapse
the Coulomb field of the charged impurity were studied in
Refs. [49–51].

The presence of completely flat energy band is a remark-
able feature of the considered model, for example, it results
in strong paramagnetic response in a magnetic field [34].
In general, the Fermi systems hosting flat bands attract a
lot of attention last time because quenching of the kinetic
energy strongly enhances the role of electron-electron and
other interactions and may lead to the realization of many
very interesting correlated states. The most striking recent
example is the observation of superconductivity in twisted
bilayer graphene [52] when tuned to special “magic angles”
at which isolated and relatively flat bands appear. The three-
bands models with a flat band found their applicability in
many physical systems (see, for example, reviews [53,54]),
surprisingly even for the description of equatorial waves [55].
The special role of flat zero Landau level on RKKY interac-
tion in graphene was analyzed in Ref. [9].

The RKKY interaction of impurities placed on dice lattice
demonstrates larger richness compared to graphene. As in
case of graphene, the RKKY interaction can be written as a
product of oscillating part fab(R) resulting from intervalley
scattering times an interaction integral I (R) (a, b refer to sub-
lattices A, B,C). We show that while some relative locations
of impurities can be reduced to graphene case (multiplied by α

dependent coefficients), there is also a new type of interaction.
Like in graphene, the RKKY interaction in undoped α-T3

model decays as 1/R3 while there are envelope oscillations
for finite doping at large distances. We also show that in
some cases the flat band gives an essential contribution in the
RKKY interaction, especially for the undoped case and small
temperature.

The paper is organized as follows. In Sec. II, we discuss a
general expression for the RKKY interaction. In Sec. III, we
describe the general properties of the α-T3 model and derive
the corresponding Green functions in the mixed real space -
frequency representation. In Sec. IV, we calculate the RKKY
interaction for impurities placed on different sublattices of
dice lattice, concentrating on the most interesting case of im-
purity positions which is absent in graphene. In Appendix A,
we present the expression for the retarded Green’s function of
pseudospin-1 excitations near K points. In Appendices B and
C, we derive the exact expressions for interaction integrals in
terms of Mellin-Barnes type integrals.

II. BASIC FORMULAS

Generally, the RKKY interaction defined by second-order
correction to the free energy δF = 1

2 T TrV G0V G0, where
trace goes over all degrees of freedom. Here the free Green
function is defined by the standard tight-binding or low energy
Hamiltonian, which contains contributions from both valleys.
The interaction potential of impurity and electron spins is
given by [9,11]

V (μ1,μ2 ) ≡ V (μ1 ) + V (μ2 )

= −λ
[
S1 · sδ(r − R1)Pμ1 + S2 · sδ(r − R2)Pμ2

]
,

(1)

where Si are the spin operators of impurities and s = h̄σ/2
is the spin of itinerant electrons. The spin-spin coupling
constant can be estimated as λ � 1 eV. The sublattice projec-
tors are denoted by Pμ, and can be written as the following
diagonal matrices PA = diag(1, 0, 0), PC = diag(0, 1, 0), and
PB = diag(0, 0, 1). The contribution, which accounts for the
interaction between two different spins, is given by

δF12 = λ2h̄2

2
S1S2

∫ 1/T

0
dτ tr

[
Pμ1 G0(R1, R2; τ )

× Pμ2 G0(R2, R1; −τ )
]
. (2)

Using the following Fourier decomposition of imaginary-time
Green function,

G0(τ ) = T
∑

n

G0(iωn)e−iωnτ , ωn = (2n + 1)πT, (3)

we can replace the integral over imaginary time τ by T
∑

iωn
.

For example, for δF12, we get

δF12 = λ2h̄2

2
S1S2T

∑
n

tr
[
Pμ1 G0(R1, R2; iωn + μ)

× Pμ2 G0(R2, R1; iωn + μ)
]
, (4)

where we introduced the chemical potential μ. Performing the
sum over the Matsubara frequencies by means of the formula

T
∑

n

f (iωn) = −
∫ ∞

−∞

dω

π
nF (ω)Im f R(ω + iε), (5)

where nF (ω) = 1/(exp(ω/T ) + 1) is the Fermi distribution
function and superscript R denotes retarded function. Hence
we find an effective RKKY interaction between two magnetic
impurities with the spins S1, and S2, sitting at the positions R1

and R2

δF12 = Jμ1μ2 S1S2, Jμ1μ2 = (λ2h̄2/4)χμ1μ2 (R1, R2), (6)

where χ is the spin-independent susceptibility, however, it
depends upon whether atoms belong to the same or different
sublattices.

χμ1μ2 (R1, R2)

= − 2

π

∫ ∞

−∞
dωnF (ω)Im tr

[
Pμ1 G0(R1, R2; ω + μ)

× Pμ2 G0(R2, R1; ω + μ)
]
. (7)

After calculating the trace, the role of projectors is reduced
to taking specific components of Green functions Gμ1μ2 and
Gμ2μ1 .
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FIG. 1. The T3 lattice whose red points display atoms of the
A sublattice, blue points describe the B sublattice, and the green
points define the C sublattice. The vectors a1 = (

√
3, 0)d and a2 =

(
√

3/2, 3/2)d are the basis vectors of the C sublattice. The nearest
neighbor hopping parameters between hub (C) and rim (A, B) atoms
are t1 and t2.

III. GREEN FUNCTION OF THE α-T3 MODEL

The α-T3 model describes quasiparticles in two dimensions
with pseudospin S = 1 on the T3 lattice schematically shown
in Fig. 1, where d denotes the distance between neighbor
atoms. This lattice has a unit cell with three different lattice
sites whose two sites (A,C) like in graphene form a honey-
comb lattice with hopping amplitude tAC = t1 and additional
B sites at the center of each hexagon are connected to the
C sites with hopping amplitude tBC = t2. The C atoms are
called hub centers, while A and B are rim sites, and electrons
hop between rim and hub atoms only [22]. Two hopping
parameters t1 and t2 are not equal, in general, and the dice
model corresponds to the limit t1 = t2. The lattice structure
and basis vectors are shown on Fig. 1.

We start our description from tight-binding Hamiltonian in
two dimensions, which in momentum space reads [34]

H0(k) =
⎛
⎝ 0 fk cos 
 0

f ∗
k cos 
 0 fk sin 


0 f ∗
k sin 
 0

⎞
⎠,

α≡ tan 
 = t2
t1

, fk = −
√

t2
1 + t2

2 (1+ e−ika2 + e−ika3), (8)

and acts on three-component wave functions with the
following order of components �T = (�A, �C, �B). As was
noted in Introduction, the angle 
 can be used to interpolate
between graphene and dice model. Thus, our results can be
compared with graphene literature by taking limit 
 → 0 or

 → π

2 .

The second quantized tight-binding Hamiltonian

Ĥ =
∫

BZ

d2k

(2π )2
�̂

†
kH0(k)�̂k (9)

possesses the particle-hole symmetry, which is realized by
antiunitary operator Ĉ. It acts on the second quantized wave
functions �̂ as

Ĉ�̂Ĉ−1 = S�̂∗, S = diag(1, −1, 1). (10)

The invariance of the Hamiltonian Ĥ under the particle-hole
symmetry, ĈĤĈ−1 = Ĥ, is guaranteed if the following condi-
tion is satisfied:

SH0(k)S = −H0(k), (11)

which is automatically fulfilled for the momentum space
Hamiltonian in Eq. (8). Below we show that this symmetry
gives restrictions on the sign of the RKKY interactions, simi-
lar to the graphene case considered in Ref. [5].

It is easy to derive the energy spectrum of the above
Hamiltonian, which is qualitatively the same for any α and
consists of three bands: the zero-energy flat band, ε0(k) = 0,
whose existence is protected by the particle-hole symmetry,
and two dispersive bands

ε±(k) = ±| fk| = ±
√

t2
1 + t2

2 [3 + 2(cos(a1k) + cos(a2k)

+ cos(a3k))]1/2. (12)

The eigenvectors in the whole Brillouin zone (BZ) are given
by Eq. (2) in Ref. [34] (gapless case) and by Eq. (5) in
Ref. [50] (gapped case). For dispersionless band the wave
function is localized on atoms of sublattices A, B while it is
zero on hub atoms C. The presence of a completely flat band
with zero energy is perhaps one of the remarkable properties
of the α-T3 lattice model.

There are six values of momentum for which fk = 0 and
all three bands intersect. They are situated at corners of the
hexagonal Brillouin zone. The two inequivalent points, for
example, are

K = 2π

d

(√
3

9
,

1

3

)
, K′ = 2π

d

(
−

√
3

9
,

1

3

)
. (13)

For momenta near the K-points, k = K(K′) + k̃, we find
that fk is linear in k̃, i.e., fk = h̄vF (ξ k̃x − ik̃y) with valley
index ξ = ±, where vF = 3td/2h̄ is the Fermi velocity, and
in what follows we omit for the simplicity of notation the
tilde over momentum. As for lattice parameters we take their
numerical values the same as in graphene. Hence, in the linear
order to momentum deviations from the K and K ′ points,
the low-energy Hamiltonian describes massless pseudospin-1
fermions [23,34] which for equal hoppings, 
 = π/4, is given
by the scalar product of momentum and the spin-1 matrices.

A. Green’s function

The lattice Green’s function in the tight-binding approximation for Hamiltonian (8) is given by

G0(ω, k) = (ω − H0(k))−1 = 1

ω(ω2 − | f (k)|2)

⎛
⎝ω2 − sin2 
 | f (k)|2 ω cos 
 f (k) 1

2 sin(2
) f (k)2

ω cos 
 f ∗(k) ω2 ω sin 
 f (k)
1
2 sin(2
) f ∗(k)2 ω sin 
 f ∗(k) ω2 − cos2 
| f (k)|2

⎞
⎠. (14)
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In the low-energy model near the K (K ′) points (ξ = ±), it can be decomposed as

Gξ
0(ω, k) = 1

ω(ω2 − (h̄vF k)2)

⎛
⎜⎝ ω2 − sin2 
h̄2v2

F k2 ω cos 
h̄vF (ξkx − iky) 1
2 sin(2
)(h̄vF (ξkx − iky))2

ω cos 
h̄vF (ξkx + iky) ω2 ω sin 
h̄vF (ξkx − iky)
1
2 sin(2
)(h̄vF (ξkx + iky))2 ω sin 
h̄vF (ξkx + iky) ω2 − cos2 
(h̄vF k)2

⎞
⎟⎠. (15)

As was shown in Sec. II, the representation of Green’s function in the mixed coordinate-frequency variables (r, ω) is the most
useful for the calculation of susceptibility, and related to Eq. (15) by Fourier transformation over wave number k. The Fourier
transform of full retarded low-energy Green’s function should contain contributions from both valleys

G0(R1, R2, ω) = 1

BZ

∫
d2q

(2π )2
eiq·(R1−R2 )

[
eiK(R1−R2 )G0(q + K, ω) + eiK′(R1−R2 )G0(q + K′, ω)

]
, (16)

where K and K ′ are any two adjacent Dirac points in the Brillouin zone, and BZ = 2
3
√

3d2 is the area of the BZ. Replacing
wave number by derivative in the matrix part of (15), and performing integration as shown in Appendix A, we obtain the Green
function in valley ξ :

GR
0 (R1 − R2, ω, ξ ) = 1

BZ

ω

4(h̄vF )2

⎛
⎜⎝

−i cos2 
H (1)
0 (z) cos 
ξe−iξϕH (1)

1 (z) i
2 sin(2
)e−2iξϕH (1)

2 (z)

cos 
ξeiξϕH (1)
1 (z) −iH (1)

0 (z) sin 
ξe−iξϕH (1)
1 (z)

i
2 sin(2
)e2iξϕH (1)

2 (z) sin 
ξeiξϕH (1)
1 (z) −i sin2 
H (1)

0 (z)

⎞
⎟⎠, (17)

where we used notation z = |R|(ω + iε)/h̄vF , and H (1)
n (z) is

the Hankel function of the first kind. The polar angle of the
vector R1 − R2 is denoted by ϕ. Below we insert Eq. (17)
into (16) and then calculate susceptibility and the RKKY
interaction via Eq. (7) in all six relative positions of impurities
AA, AB, BB, AC, BC, and CC.

IV. RKKY INTERACTION OF IMPURITIES
ON DICE LATTICE

As was noted before, there are six different relative posi-
tions of impurities. The corresponding exchange interactions
are

JAA(R) = 4C

h̄2v2
F

cos4 
 fAA(R)I0(R, μ, T ), (18)

JBB(R) = 4C

h̄2v2
F

sin4 
 fBB(R)I0(R, μ, T ), (19)

JCC (R) = 4C

h̄2v2
F

fCC (R)I0(R, μ, T ), (20)

JAC (R) = 4C

h̄2v2
F

cos2 
 fAC (R)I1(R, μ, T ), (21)

JBC (R) = 4C

h̄2v2
F

sin2 
 fBC (R)I1(R, μ, T ), (22)

JAB(R) = C

h̄2v2
F

sin2(2
) fAB(R)I2(R, μ, T ). (23)

In these expressions, we introduced short-hand notations
R = R1 − R2 and C = 3λ2h̄2d2/64πt2. The temperature-
independent functions fμ1μ2 describe oscillations from contri-
bution of different K points for impurities placed on μ1 and μ2

sublattices

fμμ(R) = 1 + cos(K − K′)R, (24)

fAB(R) = 1 + cos[(K − K′)R − 4ϕ],
(25)

fBA(R) = 1 + cos[(K − K′)R + 4ϕ],

fAC (R) = fCB(R) = 1 − cos((K − K′)R − 2ϕ), (26)

fBC (R) = fCA(R) = 1 − cos((K − K′)R + 2ϕ). (27)

The functions fμ1μ2 are the only ones which depend on the
direction of the vector R while other functions are direction-
independent. In the graphene limit, 
 = 0 or 
 = π/2, only
three interactions are left, which correspond to coupled lat-
tices C and A (B). The AB interaction type vanishes in both
graphene cases and reaches its maximum value in dice model

 = π/4.

The frequency integrals on the right-hand side of the
expressions are

In(R, μ, T ) =
∫ ∞

−∞

dω f (ω)

e
ω−μ

T + 1
,

f (ω) = Im

[
(ω + iε)2

(
H (1)

n

(
(ω + iε)R

h̄vF

))2]
.

(28)

We find that the most interesting is the AB case, which
cannot be reduced to any known graphene cases due to the
lattice geometry, which corresponds to the appearance of the
H (1)

2 (z) function. For the functions H (1)
0 (z + iε) and H (1)

1 (z +
iε), we can take the limit ε → 0 in the integrand, however,
this is not the case for H (1)

2 (z + iε) due to its more singu-
lar behavior when z → 0 which is a reflection of a special
role of the flat band with ω = 0. Near ω = 0, we find the
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singular term in the following integral:

(ω + iε)2

(
H (1)

2

(
(ω + iε)R

h̄vF

))2

� − 16(h̄vF )4

π2R4(ω + iε)2
− 8(h̄vF )2

π2R2
, (29)

hence

Im

[
(ω + iε)2

(
H (1)

2

(
(ω + iε)R

h̄vF

))2]
� 32εω(h̄vF )4

π2R4(ω2 + ε2)2
→ −16(h̄vF )4

πR4
δ′(ω), ε → 0. (30)

Adding and subtracting the term 16(h̄vF )4/π2R4(ω + iε)2 in the expression

I2(R, μ, T ) =
∫ ∞

−∞

dω

e
ω−μ

T + 1
Im

[
(ω + iε)2

(
H (1)

2

(
(ω + iε)R

h̄vF

))2

+ 16(h̄vF )4

π2R4(ω + iε)2
− 16(h̄vF )4

π2R4(ω + iε)2

]
, (31)

we can safely take the limit ε = 0 for the first two terms in the square brackets while the third term produces an additional
contribution

I2(R, μ, T ) =
∫ ∞

−∞

dωω2

e
ω−μ

T + 1
Im

[(
H (1)

2

(
ωR

h̄vF

))2]
− 4(h̄vF )4

πR4

1

T cosh2(μ/2T )
. (32)

For finite μ, the additional term does not contribute in the zero temperature limit, T → 0, while at zero chemical potential,
μ = 0, it gives a divergent contribution ∼ − 1/T .

The evaluation of the integral (28) with ε = 0 represents a nontrivial task due to the combination of Bessel functions. It can
be written as

In(R, μ, T ) = 2

(
h̄vF

R

)3 ∫ ∞

0
dxx2Jn(x)Yn(x)

(
1

zex/a + 1
+ z

ex/a + z
− 1

)
, a = T R

h̄vF
, z = e−μ/T . (33)

The last term in brackets is divergent at the upper limit, that corresponds to physical divergence at ω = −∞ in Eq. (28). In
such a case one can introduce frequency cut-off, or another well defined regularization [5,7]. We choose the regularization by
replacing x2 by xα−1 and take the limit α = 3 only in finite expressions. We checked that the frequency cut-off regularization
gives the same result. Equation (33) is written in terms of the corresponding more general integral I (α, ν, z, a), Eq. (B1), studied
in Appendix B, as follows

In(R, μ, T ) =
(

h̄vF

R

)3

I (α = 3, n, z, a), n = 0, 1,

I2(R, μ, T ) =
(

h̄vF

R

)3[
I (α = 3, n = 2, z, a) − 4h̄vF

πRT

1

cosh2(μ/2T )

]
. (34)

Generally, the answer can be expressed as inverse Mellin transform [see Eq. (B10) or (B15)], which is suitable for studying
different physically relevant asymptotics such as low and high temperature expansions, or the behavior at large distances R.

A. Small temperature expansion

To find small temperature corrections at finite chemical potential, one can apply the Sommerfeld expansion for the frequency
integral (28) rewriting it in the form

In(R, μ, T ) =
∫ μ

−∞
dω f (ω) + T

∫ ∞

0

dx[ f (μ + T x) − f (μ − T x)

ex + 1
�

∫ μ

−∞
dω f (ω) + π2T 2

6
f ′(μ) + O

(
T

μ

)4

. (35)

Using the first equality, one can evaluate interaction numerically. As discussed in Appendix B, we can find all terms of the
expansion in powers of T/μ. Here we present only two lowest terms of this expansion, which are given by (B21).

In(R, μ, T ) =
(

h̄vF

R

)3
[

1√
π

G30
24

(
(kF R)2

∣∣∣ 2, 1
0, 3

2 , 3
2 + n, 3

2 − n

)
+ 2π3/2T 2

3μ2
G30

24

(
(kF R)2

∣∣∣ 2, 1
2

3
2 , 3

2 , 3
2 + n, 3

2 − n

)]
, (36)

where we defined the Fermi momentum as kF = μ/h̄vF . Clearly, nonanalytic in the temperature term in I2 (34) does not
contribute in the Sommerfeld expansion. For zero temperature, using the value of Meijer function at zero argument,

G30
24

(
0
∣∣∣ 2, 1
0, 3

2 , 3
2 + n, 3

2 − n

)
= (4n2 − 1)

√
π

8
, (37)
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FIG. 2. RKKY interactions as functions of kF R at zero temperature and finite chemical potential calculated through Meijer G-functions.
(Left) RKKY interactions normalized to their values at μ = 0 and divided by kF R. (Right) RKKY interactions (solid lines) versus their
asymptotic expansions, Eqs. (42)–(44), at T = 0 (dashed lines) with the same normalizations.

we get for exchange integrals of undoped α-T3 system

J0
AA(R) = − h̄vF cos4 


2R3
C fAA(R), J0

AC (R) = 3h̄vF cos2 


2R3
C fAC (R), J0

AB(R) = 15h̄vF sin2(2
)

8R3
C fAB(R). (38)

For 
 = 0, J0
AA(R) and J0

AC (R) coincide with expressions derived in Refs. [7,14]. (Note that our definition of the constant C
coincides up to a sign with Ref. [14] while Ref. [7] uses a different definition.) The minus sign for the exchange interaction
means ferromagnetic coupling for spins while the positive sign corresponds to antiferromagnetic one. We see that couplings
J0

AB, J0
AC describing the interaction of impurities on different sublattices are of antiferromagnetic nature in undoped α-T3 system,

like in the case of graphene [4,5,7]. For angles 
 close to π/4 (dice model), the coupling J0
AB is significantly larger than

graphenelike couplings: |J0
AB| > |J0

AC | > |J0
AA|. All couplings feature 1/R3 behavior familiar in graphene.

At finite doping, the short distance (or small kF ) behavior is given by

JAA(R) = J0
AA(R)

[
1 − 32(kF R)3

3π

(
ln(kF R/2) + γ − 1

3

)]
, (39)

JAC (R) = J0
AC (R)

[
1 − 16(kF R)3

9π

]
, (40)

JAB(R) = J0
AB(R)

[
1 − 8(kF R)3

45π

]
. (41)

Expanding Eq. (36) at large values kF R, we find the following results for the exchange interactions when both impurities are
on the same sublattice AA or couple to different sublattices (AC and AB, for example):

JAA(R, μ, T ) = 8

π
J0

AA(R)

[
kF R sin(2kF R) + 1

4
cos(2kF R) − 2π2T 2R2

3(h̄vF )2

(
kF R sin(2kF R) − 3

4
cos(2kF R)

)]
, (42)

JAC (R, μ, T ) = 8

3π
J0

AC (R)

[
kF R sin (2kF R) + 5

4
cos (2kF R) − 2π2R2T 2

3(h̄vF )2

(
kF R sin (2kF R) + 1

4
cos (2kF R)

)]
, (43)

JAB(R, μ, T ) = − 8

15π
J0

AB(R)

[
kF R sin(2kF R) + 17

4
cos(2kF R) − 2π2T 2R2

3(h̄vF )2

(
kF R sin(2kF R) + 13

4
cos(2kF R)

)]
. (44)

One should note that the exchange interactions oscillate with a distance R. The terms with sin(2kF R) in square brackets are
equal in all cases while more decreasing terms with cos 2kF R are different and have the largest amplitude in case of magnetic
impurities situated on sublattices A and B. Zero-temperature behavior is given by first two oscillating factors in square brackets.
A comparison of Eqs. (42)–(44) with the exact formulas (36) shows that these asymptotic expressions work quite well for
kF R > 0.5 in AA case and kF R > 1.5 in AB case (the right panel in Fig. 2). We note that while the normalized couplings
JAA/J0

AA, JAC/J0
AC oscillate in phase, the coupling JAB/J0

AB oscillates out of phase (see left panel in Fig. 2). Physically this is
related to the fact that A atom does not interact directly with B atom but only indirectly via the hub atom C.

We also compare the Sommerfeld expansion (36) with numerically calculated interaction [via the first expression in (35)] at
temperature T = 50 K and chemical potential μ = 0.1 eV (see Fig. 3). The approximations work very well in a large interval
of distances. As one can see from the asymptotic expressions (42)–(44), the temperature correction grows with distance. Thus,
when 2π2T 2R2

3(h̄vF )2 ∼ 0.5, the next terms in expansion (B18) become important.
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FIG. 3. (Left) Numerically calculated interactions (solid lines) are compared with the second-order Sommerfeld expansion (36) (dashed
lines). The chemical potential equals μ = 0.1 eV and temperature T = 50 K. Distances are measured in terms of the lattice constant al =√

3d = 0.246 nm. The expansion parameter in Eq. (B18) equals 2πT
μ

≈ 0.3. (Right) AB interaction at R = 20al and μ = 0.01 eV (solid line)
and Sommerfeld expansion (36) with additional term from Eq. (32) (dashed line). The nonmonotonic dependence on temperature comes from
an additional term in integral (32), while the nonsingular part remains constant due to very small value of (kF R)2. Also we note that the sign
of interaction changes with temperature.

B. Large distance behavior at finite temperature

In this section, we present an exchange interaction in phys-
ically relevant case of large distances and finite temperature,
thus obtaining more general asymptotic than in Eqs. (42)–
(44). For this purpose, we use the general expansion in powers
of T/μ [see Eq. (B23) in Appendix B]. However, instead of
taking several terms of this expansion we sum up the leading
asymptotic terms in series. The obtained Eq. (B27) allows us
to recover approximations similar to those in Ref. [14] using
one general expression. Here we present the result for the new
AB-type interaction integral

JAB(R, μ, T ) = − 8

15
J0

AB(R)
R

h̄vF
F1

[
kF R sin (2kF R)

+ 15

4
cos (2kF R) + πR

h̄vF
F2 cos (2kF R)

]
,

(45)

where we used the following definitions in analogy with
Ref. [14]:

F1 = T

sinh
(

2πT R
h̄vF

) , F2 = T

tanh
(

2πT R
h̄vF

) . (46)

Again in this case the term with cos(2kF R) in square brack-
ets has much larger magnitude comparing to the other two
interactions JAA, JAC , which are similar to graphene case
in Ref. [14]. This is an interesting property of AB-type
interaction.

As was mentioned in Ref. [14], the term which is propor-
tional to the product F1F2 should have a nonmonotonic depen-
dence on temperature. Here we should note that depending
on relative distance between impurities, other terms in square
brackets in Eq. (45) can destroy this effect.

C. Zero chemical potential

The results in the case of zero chemical potential are not
given in the literature in its fullest form even for graphene.
Only partial results can be found in the recent paper [10].

Here we discuss the asymptotics for low and high temperature
which follow from expansion of the expression (B15).

Firstly, we start from the low temperature limit. In fact,
it is easier to determine a low temperature expansion of the
integral (28) itself. Making replacement x → ax in Eq. (B5),
we find

In(μ = 0) =
(

h̄vF

R

)3

×
[
−2C2,n + 4a3

∫ ∞

0

x2dx

ex + 1
Jn(ax)Yn(ax)

]
,

(47)

where a is defined in Eq. (33).
Expanding the product of Bessel functions near zero, and

then performing integration over x, we find the following
expressions for interactions:

JAA(R, 0, T ) = J0
AA(R)

[
1 + 16

π
a3(−6ζ (3) ln(a) − 6ζ ′(3)

+ ζ (3)(ln(16) − 9))

]
, (48)

JAC (R, 0, T ) = J0
AC (R)

[
1 − 16a3ζ (3)

π

]
, (49)

JAB(R, 0, T ) = J0
AB(R)

[
1 − 32

15πa
− 8a3ζ (3)

5π

]
, (50)

where ζ (x) denotes the Riemann zeta-function. Note that the
leading temperature correction is of order T 3 (or T 3 ln T )
instead of T 2 in the case of finite chemical potential (see left
panel in Fig. 4). In addition one should note the presence of
singular 1/T term in the AB interaction. As was shown in
Eqs. (29)–(32), this term comes from singular behavior of H2

function, and is related to the effects of flat band. The effect
of this term is demonstated on right panel in Fig. 4. Such
singular behavior of the AB interaction at low temperature can
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FIG. 4. Temperature dependence of normalized interactions AA and AB is compared with asymptotic expressions at small values of
parameter a (48), (50) and expansions (51), (53) at large values of a. (Left) Nonmonotonic behavior of JAA integral, which was discussed
in detail in Ref. [14]. (Right) Behavior of relative AB interaction, which has opposite sign comparing to J0

AB at zero doping, and becomes very
strong as T goes to 0. Such behavior represents a special feature of the α-T3 model and is directly related to the existence of flat band.

be used as a benchmark of flat band physics in experiment, for
example, in the recently discovered systems [26,27].

The case of high temperatures (or large distances) is much
more complicated. The details of calculation are presented in
Appendix C, and here we present main results for the AA, AC,
and AB cases:

JAA(R, 0, T ) = J0
AA(R)

16a2

sinh(2πa)

(
π

tanh(2πa)
− 1

4a

)
,

(51)

JAC (R, 0, T ) = J0
AC (R)

16a2

3 sinh(2πa)

(
π

tanh(2πa)
+ 3

4a

)
,

(52)

JAB(R, 0, T ) = −J0
AB(R)

16a2

15 sinh(2πa)

(
π

tanh(2πa)
+ 15

4a

)
.

(53)

The main difference between the last expression for the AB
interaction and the AA, AC cases is the changed sign of
interaction in Eq. (53) comparing to Eq. (50). This change
comes from the additional term in Eq. (32), which is related
to existence of flat band, and exactly cancels 1/R4 term in
integral, see Appendix C. As is seen, all exchange interac-
tions exponentially decrease at large RT � 1 in the absence
of doping. Mathematically this comes from the structure of
Mellin-Barnes integral (C2), for details we refer the reader to
Appendix C.

D. Sign of interaction at zero chemical
potential and temperature

For completeness it is worth noting the sign difference
between J0

AB(R) and the limit a → 0 in Eq. (50) (which
is divergent). For bipartite lattices, the signs of interactions
J0(R) in undoped case and for zero temperature are fixed
by general considerations based on particle-hole symmetry,
which result in theorem proved in Ref. [5] (and generalized
in Ref. [17]). Here we find that the same arguments with
particle-hole symmetry (10) contain subtleties, which do not
allow to fix the sign of J0

AB.
Using the fact that the ground state is particle-hole sym-

metric, we find the following symmetry restriction for Green’s

function:

G0(R1 − R2, τ1 − τ2) = 〈Ĉ�1(R1, τ1)�†
2 (R2, τ2)Ĉ−1〉

= − SGT
0 (R2 − R1, τ2 − τ1)S, (54)

where the operator Ĉ and the matrix S are defined in Eq. (10).
Substituting this into susceptibility at zero temperature, we
obtain

χμ1μ2 (R1 − R2)

= −
∫ ∞

0
dτ tr

[
Pμ1 G0(R1 − R2; τ )Pμ2 SGT

0 (R1 − R2; τ )S
]
.

(55)

Calculating the trace, we find susceptibility in terms of single
elements of G0(r, τ )

χμμ(r) = −
∫

dτ (G0)2
μμ(r, τ ),

χAB(r) = −
∫

dτ (G0)2
AB(r, τ ),

χAC (r) =
∫

dτ (G0)2
AC (r, τ ),

χBC (r) =
∫

dτ (G0)2
BC (r, τ ). (56)

By using the Fourier transformation of Eq. (14),

G0(r, τ ) =
∫ ∞

−∞

dω

2π

∫
BZ

d2k

(2π )2
G0(k, iω) exp(−iωτ + ikr),

(57)

one can easily check that the elements of Green’s function
in imaginary time representation G0μ1μ2 (r, τ ) are real. Then,
(56) gives the following signs for interactions at zero temper-
ature and doping:

J0
μμ∣∣J0
μμ

∣∣ = −1,
J0

AC∣∣J0
AC

∣∣ = J0
BC∣∣J0
BC

∣∣ = 1,
J0

AB∣∣J0
AB

∣∣ = −1. (58)

Clearly, the sign of J0
AB does not agree with our result (38).

However, one should note that this theorem fixes the sign of
interaction only if the integrals in (56) exist. This is not the
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case for the elements G0AB and G0BA, because the frequency
integral in (57) diverges at the origin. The divergence comes
from the pole at ω = 0, which is a manifestation of highly-
degenerate flat band. Therefore we cannot fix the sign of such
interaction a priori, and should find it from the physically
relevant limiting cases, μ → 0 or T → 0, and the answer
depends on the order of these limits.

V. CONCLUSIONS

In recent years, there was an increasing interest to materials
which host fermionic excitations with no analogues in high-
energy physics [21]. In particular, the so-called pseudospin-
1 fermions provide a platform for studying exotic physical
properties such as transport anomalies, topological Lifshitz
transitions, as well as dispersionless flat bands which may lead
to the realization of many very interesting strongly correlated
states. Quasiparticle excitations with pseudospin one can be
realized in many ways, as we discussed in Introduction.

In this paper, we provided results for the RKKY interaction
of magnetic impurities, placed on sites of T3 lattice, mediated
by a background of pseudospin-1 fermions. Our calculations
are performed mainly in the low-energy linear-band approxi-
mation where we managed to obtain general analytical expres-
sions for the RKKY interactions which are expressed in terms
of Mellin-Barnes type integrals for finite chemical potential
and temperature. This allowed us to obtain analytically all
asymptotics from one expression. The asymptotic behavior at
large distances was analyzed in detail. In particular, we found,
that oscillatory behavior at large distances was controlled by
the same two parameters, the distance between K points and
Fermi wave vector, as in graphene.

Our results show that there are three types of interac-
tion, two of them (for impurities on hub and rim sites) can
be reduced to graphene case while the third one (between
impurities on different rim sites) is new. This new type of
interaction, which comes as a special feature of T3 lattice
geometry, becomes very strong at small temperatures and
doping. Physically this is an effect of the flat band, which
results in a singular behavior of Green’s function at ω = 0.

For bipartite lattices, it is known that the signs of RKKY
interactions at zero temperature and in the absence of doping
are fixed by general considerations based on particle-hole
symmetry, which result in the theorem proved in Ref. [5]
(and generalized in Ref. [17]). We discussed the subtleties
of this theorem, as applied to the T3 lattice, related to the
existence of a dispersionless flat band. The breakdown of the
theorem for the interaction J0

AB is refered to the divergence of
the Green’s function at zero energy due to flat band. The
divergence is regularized in the presence of finite temperature
and/or doping, but taking the limits μ = 0 and T = 0 depends
on the order of these limits what is reflected in the last term
in the integral I2(R, μ, T ) of Eq. (34). This dramatic change
of behavior could be utilized to reveal the presence of a
flat band in experiment and can be tested, for example, in
recently discovered flat-band systems, such as kagome metal
FeSn [26], Lieb-like lattices in covalent-organic frameworks
[28,29] or the electronic Lieb lattice formed by the surface
state electrons of Cu(111) [27]. The RKKY interaction may
lead to the realization of magnetic order in these materials.

The described strong temperature dependence in α-T3 lat-
tice systems may manifest also in Friedel oscillations. The
last ones could be detected using STM-based quasiparticle
interference measurements [56]. As is known, the flat band
emerging in tiny-angle twisted bilayer graphene results in
a strong sensitivity to perturbations leading to strongly cor-
related states including superconductivity [52]. While the
RKKY interaction was already studied in bilayer graphene
[14,17], the corresponding calculation for twisted bilayer
graphene is still ahead.
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APPENDIX A: GREEN’S FUNCTION IN THE COORDINATE-FREQUENCY REPRESENTATION

The contribution to the retarded Green’s function in r space (16) from one K point is given by Fourier transform

GR
0 (R1 − R2, ω, ξ ) = 1

BZ

∫
d2k

(2π )2
eik(R1−R2 )Gξ

0(k, ω + iε). (A1)

Using the expression for Green function in the low-energy model (15) and replacing wave numbers by derivatives, we write

GR
0 (r, ω, ξ ) = 1

ω

⎛
⎜⎝

ω2 + sin2 
h̄2v2
F ∂2

r −iω cos 
h̄vF (ξ∂x − i∂y) − 1
2 sin(2
)(h̄vF (ξ∂x − i∂y))2

−iω cos 
h̄vF (ξ∂x + i∂y) ω2 −iω sin 
h̄vF (ξ∂x − i∂y)

− 1
2 sin(2
)(h̄vF (ξ∂x + i∂y))2 −iω sin 
h̄vF (ξ∂x + i∂y) ω2 + cos2 
(h̄vF ∂r )2

⎞
⎟⎠

× 1

BZ

∫
d2k

(2π )2

eikr

(ω + iε)2 − (h̄vF k)2
. (A2)

Now we integrate over the angle and then use the formula 2.12.4.28 from Ref. [57],∫ ∞

0

xν+1Jν (cx)

x2 + z2
dx = zνKν (cz), c > 0, Re z > 0, (A3)
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and get

F (r) =
∫

d2k

(2π )2

eikr

(ω + iε)2 − (h̄vF k)2
=

∫ ∞

0

dkk

2π

J0(k|r|)
(ω + iε)2 − (h̄vF k)2

= − 1

2π (h̄vF )2
K0

(−i|r|(ω + iε)

h̄vF

)
, (A4)

where J0 and K0 are the Bessel’s functions. Using the relation between Macdonald’s functions and the Hankel function of first
kind,

H (1)
ν (z) = −2i

π
e− iπν

2 Kν (ze− iπ
2 ), z = |r|(ω + iε)

h̄vF
, (A5)

we find

F (r) = − i

4(h̄vF )2
H (1)

0

( |r|(ω + iε)

h̄vF

)
. (A6)

Next, we evaluate all matrix elements of Green’s function. Let’s calculate all needed derivatives

(h̄vF )2∂2
r F (r) = iω2

4(h̄vF )2
H (1)

0 (z), (A7)

h̄vF (ξ∂x ± i∂y)F (r) = ξ
iωe±iξϕ

4(h̄vF )2
H (1)

1 (z), (A8)

(h̄vF )2(ξ∂x ± i∂y)2F (r) = − iω2e±2iξϕ

4(h̄vF )2
H (1)

2 (z). (A9)

Substituting these expressions back to Green’s function, we find result which is given by Eq. (17) in the main text. Note that all
elements of the Green function are proportional to ω.

APPENDIX B: EVALUATION OF THE INTERACTION INTEGRAL

In this Appendix, we consider the integral

I (α, ν, z, a) = 2
∫ ∞

0
dxxα−1Jν (x)Yν (x)

(
1

zex/a + 1
+ z

ex/a + z
− 1

)
, −1 < Re α < 1. (B1)

In the region 0 < α < 1 we can calculate the terms in round brackets separately, for example, the term with −1 can be evaluated
using Eq.2.24.3.1 from Ref. [58],

Cα,ν =
∫ ∞

0
dzzα−1Jν (z)Yν (z) = − 1

2
√

π

�
(

α
2

)
�

(
α
2 + ν

)
�

(
1+α

2

)
�

(
1 + ν − α

2

) , (B2)

which gives the following values for α = 3 and ν = 0, 1, 2:

C3,0 = 1
16 , C3,1 = − 3

16 , C3,2 = − 15
16 . (B3)

Thus we can rewrite the integral as follows:

I (α, ν, z, a) = −2Cα,ν + J (α, ν, z, a), (B4)

where, for ν � 0,

J (α, ν, z, a) = 2
∫ ∞

0
dxxα−1Jν (x)Yν (x)

(
1

zex/a + 1
+ z

ex/a + z

)
, Re α > 0. (B5)

We calculate the last integral using the Mellin transform

J (α, ν, z, s) =
∫ ∞

0
daas−1J (α, ν, z, a) = 2

∫ ∞

0
dxxα−1Jν (x)Yν (x)

∫ ∞

0
daas−1

(
1

zex/a + 1
+ z

ex/a + z

)
. (B6)

After the change a → ax and then a → 1/a, Eq. (B6) takes the form

J (α, ν, z, s) =
∫ ∞

0
dxxα+s−1Jν (x)Yν (x)Q(s, z), 0 < α + s < 1, (B7)

where

Q(s, z) = 2
∫ ∞

0
daa−s−1

(
1

zea + 1
+ z

ea + z

)
, Re s < 0. (B8)
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The function Q(s, z) possesses the symmetry Q(s, 1/z) = Q(s, z). The integral over x in Eq. (B7) is evaluated using Eq. (B2).
There exists the range of parameters α, s where the Mellin transform J (α, ν, s, z) is defined. We obtain

J (α, ν, s, z) = − �
(
ν + α+s

2

)
�

(
α+s

2

)
2
√

π�
(

α+1+s
2

)
�

(
ν + 1 − α+s

2

)Q(s, z), 0 < α + Re s < 0, ν � 0, (B9)

hence

I (α, ν, z, a) = −2Cα,ν − 1

2π i

∫ γ+i∞

γ−i∞
ds a−s �

(
ν + α+s

2

)
�

(
α+s

2

)
2
√

π�
(

α+1+s
2

)
�

(
ν + 1 − α+s

2

)Q(s, z), (B10)

where the contour separates poles of the function Q(s, z) (at s = 0 and s = 2n + 1, n = 0, 1, . . . , see below) from poles of
gamma functions in the numerator. The integrals in Eq. (B8) can be evaluated explicitly through the polylogarithm function [59]
and we get

Q(s, z) = −2�(−s)[Li−s(−1/z) + Li−s(−z)]. (B11)

The function Lis(z) has the following properties. It is an analytical function of complex variables s, z. For fixed z, it does not have
poles or branch cuts in a finite region of the complex s plane, the point s = ∞ is the only (essential) singularity. For fixed s, Lis(z)
does not have poles and essential singularities but has a cut in the z plane along the interval [1,∞], where it is continuous from
below side of the cut. It has the symmetry property with respect to complex conjugation Lis∗ (z∗) = Li∗s (z) for z not belonging to
the interval (−∞, 0).

Analytic continuation of Lis(z) into the region |z| > 1 can be performed by means of the formula (see Eq.(1.11.16) in
Ref. [60])

Lis(z) + eiπsLis

(
1

z

)
= (2π )s

�(s)
eiπs/2ζ

(
1 − s,

1

2
+ ln(−z)

2π i

)
, Re s < 0, (B12)

where ζ (s, q) is the Hurwitz ζ -function. When s is a negative even integer, s = −2m, m = 1, 2, . . . , we get Li−m(−z) +
Li−m(−1/z) = 0. It follows then from Eq. (B11) that Q(s, z) has poles only for s = 0 and odd positive s = 2n + 1, n = 0, 1, . . . ,
while for even positive s = 2n the poles of �(−s) are canceled by zeros of the sum of polylogarithm functions. Applying this
formula to Eq. (B11), we get

Q(s, z) = − 1

(2π )s cos(πs/2)

[
ζ

(
1 + s,

1

2
+ ln z

2π i

)
+ ζ

(
1 + s,

1

2
− ln z

2π i

)]
. (B13)

Near s = 0 the function Q(s, z) behaves as

Q(s, z) � −2

s
, (B14)

then moving the contour in Eq. (B10) to slightly right of the point s = 0 (γ > 0) and calculating the residue at s = 0, we get

I (α, ν, z, a) = − 1

2π i

∫ γ+i∞

γ−i∞
ds a−s �

(
ν + α+s

2

)
�

(
α+s

2

)
2
√

π�
(

α+1+s
2

)
�

(
ν + 1 − α+s

2

)Q(s, z) (B15)

[the residue at s = 0 cancels the first term in Eq. (B10)].
Expanding the functions ζ (s, 1/2 ± iv) (where v = ln z

2π
) in series around v = 0, we find the following representation of the

function Q(s, z) near the point z = 1:

Q(s, z) = − 2

(2π )s cos(πs/2)

∞∑
k=0

(−1)k�(1 + s + 2k)ζ (2k + 1 + s, 1/2)

�(1 + s)(2k)!

(
ln z

2π

)2k

. (B16)

This expansion can be used to find a high-temperature expansion of Eq. (B15), hence the integral (28), when |μ|/(2πT ) � 1.
To obtain the expansion at large |v| = |μ|/(2πT ) � 1 we start from the asymptotic expansion [61]:

ζ (s, q) = 1

�(s)

∞∑
k=0

(21−2k − 1)B2k�(s + 2k − 1)

(2k)!(q − 1/2)s+2k−1
, (B17)

where B2k are Bernoulli numbers. For the function Q(s, z), we get the asymptotic series at large |v|:

Q(s, z) = − 2

(2π |v|)s�(s + 1)

∞∑
k=0

(−1)k (21−2k − 1)B2k�(s + 2k)

(2k)!v2k
. (B18)

The first terms of the expansion of Q(s, z) at small z (large |v|) are

Q(s, z) = − 2

(2π |v|)s�(s + 1)

[
�(s) + �(s + 2)

24v2
+ 7�(s + 4)

5760v4
+ O

(
1

v6

)]
. (B19)
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Hence, for small z (or μ/T � 1), we obtain, keeping two lowest terms,

I (α, ν, u) = 1

2π i

∫ γ+i∞

γ−i∞
ds u−s �

(
ν + α+s

2

)
�

(
α+s

2

)
2
√

π�
(

α+1+s
2

)
�

(
ν + 1 − α+s

2

)
[

�
(

s
2

)
�

(
1 + s

2

) + 1

6v2

�
(
1 + s+1

2

)
�

(
s+1

2

)
]
, u = μR

h̄vF
= kF R. (B20)

Changing s → 2s and calculating integrals, we get equivalent expressions

I (α, ν, u) = 1√
π

G30
24

(
u2

∣∣∣ α+1
2 , 1

0, α
2 , α

2 + ν, α
2 − ν

)
+ 1

6
√

πv2
G30

24

(
u2

∣∣∣ α+1
2 , 1

2
3
2 , α

2 , α
2 + ν, α

2 − ν

)

= − 1√
π

G21
24

(
u2

∣∣∣ 1, α+1
2

α
2 , α

2 + ν, α
2 − ν, 0

)
− 1

6
√

πv2
G21

24

(
u2

∣∣∣ 1
2 , α+1

2
α
2 , α

2 + ν, α
2 − ν, 3

2

)
, (B21)

where we used Eq. 8.2.1.17 from Ref. [58],

Gmn
pq

(
z
∣∣∣(ap−1), b ± l

b, (bq−1)

)
= (−1)lGm−1,n+1

p,q

(
z
∣∣∣b ± l, (ap−1)

(bq−1), b

)
. (B22)

The first term in Eq. (B21) corresponds to the case of zero temperature, and for α = 3, ν = 0, 1 it agrees with the result of
Ref. [7]. In general, the expansion of the expression (B18) over 1/|v| corresponds to the expansion over T/μ (Sommerfeld’s
expansion). At large kF R, Eq. (B21) gives for interested cases α = 3, ν = 0, 1, 2 the results in Eqs. (42)–(44).

From our final formula (B15) we can obtain an expansion for μ near zero by means of Eq. (B16), and an expansion for T � μ

using Eq. (B18).
To find a large kF R expansion at fixed RT/h̄vF we consider the expression (B15) using Q(s, z) represented by the asymptotic

series (B18),

I (α, ν, z, a) = 1√
π

∞∑
k=0

(−1)k (1 − 22k−1)B2k

(2k)!v2k

1

2π i

∫ γ+i∞

γ−i∞
ds (2πav)−s �

(
ν + α+s

2

)
�

(
α+s

2

)
�

(
k + s

2

)
�

(
k + 1+s

2

)
�

(
1+s

2

)
�

(
1 + s

2

)
�

(
1+α+s

2

)
�

(
1 + ν − α+s

2

)
= 2√

π

∞∑
k=0

(−1)k (1 − 22k−1)B2k

(2k)!v2k
G40

35

(
(2πav)2

∣∣∣ 1
2 , 1, 1+α

2

k, k + 1
2 , α

2 , α
2 + ν, α

2 − ν

)
, (B23)

where we used the duplication formula for �(2k + s) and �(1 + s). Since 2πav = kF R, we consider the asymptotic of Meijer
function at large kF R � 1. For α = 3 and nonnegative integer ν, we get

G40
35

(
(2πav)2

∣∣∣ 1
2 , 1, 2

k, k + 1
2 , 3

2 , 3
2 + ν, 3

2 − ν

)
� (−1)(k+ν)(2πav)2k

√
π

[−2πav sin(4πav) + (k − ν2 − 1/4) cos(4πav)]. (B24)

Using the representation for Bernoulli numbers

(1 − 21−2k )B2k = (−1)k+1π

∫ ∞

0

dt t2k

cosh2(πt )
, (B25)

we get after performing the summation over k,

I (3, ν, z, a) = (−1)ν+1

π

∫ ∞

0

dt

cosh2 t

[
cos(4at )

(
μR

h̄vF
sin(2kF R) + 4ν2 + 1

4
cos(2kF R)

)
+ 2at sin(4at ) cos(2kF R)

]
. (B26)

Calculating the integrals over t , we finally obtain

I (3, ν, z, a) = (−1)ν+1 2R2

(h̄vF )2
F1

[
μ sin(2kF R) + h̄vF (4ν2 − 1)

4R
cos(2kF R) + πF2 cos(2kF R)

]
, kF R � 1, (B27)

where F1 and F2 are defined in Eq. (46). The last expression for ν = 0, 1 leads to the same expressions as were found in
graphene for exchange interactions [14], while the expression for ν = 2 is completely new and corresponds to interaction
between impurities on rim sites in considered pseudospin-1 fermion system.

APPENDIX C: ZERO CHEMICAL POTENTIAL AND FINITE TEMPERATURE

Asymptotics of the integrals In with n = 0, 1 were at least partially analyzed in graphene literature, except the integral I2.
However, in the case of zero chemical potential, μ = 0, such an analysis was not performed to the best of our knowledge. The
evaluation of corresponding integrals in the large distance limit poses a rather complicated task. This is because the leading
correction is given by exponentially small term, and thus any power series decomposition can not give the desired result.
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However, our formula (B15) allows us to analyze the case μ = 0 straightforwardly. First, we write the function Q(s, z = 1)
from Eq. (B16) in the form

Q(s, 1) = − 2ζ (1 + s, 1/2)

(2π )s cos(πs/2)
= − 4

π s+1
�

(
1 + s

2

)
�

(
1 − s

2

) ∞∑
k=0

1

(2k + 1)s+1
, Re s > 0. (C1)

Then for the integral (B15), we obtain

I (α, ν, 1, a) = 2a√
π

∞∑
k=0

1

2π i

∫ γ+i∞

γ−i∞
ds [πa(2k + 1)]−s−1 �

(
ν + α+s

2

)
�

(
α+s

2

)
�

(
1+s

2

)
�

(
1−s

2

)
�

(
α+1+s

2

)
�

(
ν + 1 − α+s

2

) , 0 < γ < 1. (C2)

Finally, making the change s → 2s − 1, we get the expression in terms of Meijer functions,

I (α, ν, 1, a) = 4a√
π

∞∑
k=0

G3,1
2,4

(
π2a2(2k + 1)2

∣∣∣ 0, α
2

0, α−1
2 , ν + α−1

2 , α−1
2 − ν

)
. (C3)

The function G31
24(z) is an analytic in z function in the sector |argz| < π . To find asymptotic behavior of J (α, ν, 1, a) at large a,

we use two terms of asymptotic expansion of Meijer function at large argument and then evaluate the sum. Below we present
results for three cases ν = 0, 1, 2:

I (3, 0, 1, a) = − 2a2

sinh(2πa)

(
π

tanh(2πa)
− 1

4a

)
, a > 1; (C4)

I (3, 1, 1, a) = 2a2

sinh(2πa)

(
π

tanh(2πa)
+ 3

4a

)
, a > 1; (C5)

I (3, 2, 1, a) = 4

πa
− 2a2

sinh(2πa)

(
π

tanh(2πa)
+ 15

4a

)
, a > 1. (C6)

The last expression contains the power decreasing term ∼1/a in contrast to the first two expressions. This is because the
corresponding Mellin-Barnes integrand has one pole (at s = 1) to the right of the integration contour while the integrands for
α = 3 and ν = 1, 2 do not contain poles at all in that region. Hence they have only exponentially decreasing terms, for example,
the first correction is exponentially small, ∼a2 exp(−2πa), at large a � 1. On the other hand, since the expression for ν = 2
decreases as ∼1/a the corresponding integral in Eq. (33) has 1/R4 decrease with a distance. However, as we find from Eq. (32)
in main text, this power-decreasing term is exactly canceled by the flat-band correction.
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